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Fig. S1. Digital PCR for CRISPR inhibition (CRISPRI) of genes and guide RNAs.
Digital PCR gene expression in K562 cells by targeting the transcription start sites (TSS) and
known enhancers of FSCNI (A), MRPS23 (B), and SLC25437 (C) with either CRISPRi with
KRAB-dCas9 or KRAB-dCas9-MeCP2. Each bar represents one guide RNA (gRNA) (n =3

biological replicates per gRNA).
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Fig. S2. Genome-scale screen for dual-effector CRISPRi (KRAB-dCas9-MeCP2).

A pooled screen of 1,992 guide RNAs targeting within 5 kb of 263 essential genes (DepMap
essentiality score less than -1). We used 100 nt sliding windows to quantify regions where at least
50% of the gRNAs were depleted greater than the median of 1,000 non-targeting gRNA controls.
We found that the dual-effector CRISPRi (KRAB-dCas9-MeCP2) is active at a distance of -400
to +850 nt (where +850 indicates 850 nt into the gene body).
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Fig. S3. Flow cytometry for estimation of multiplicity of infection.

(A) Flow cytometry gating strategy to quantify cell surface CD55 protein. Live cells were gated
by the forward and side scatter area (/eff) then viable cells were selected by gating on side scatter
area and LIVE/DEAD Violet (middle). Sorting gates were set so that 90% of wild-type K562 cells
without any guide RNA (gRNA) are classified as CD55 positive (right). (B) CD55 positive cells
with no transduction (veh.), non-targeting gRNAs, transcription start site (TSS)-targeting gRNAs,
and five separate volumes of the STING-seq pooled library. (C) Estimation of the multiplicity of
infection based on the starting distribution of CD55 TSS-targeting gRNAs and proportion of cells

bearing a gRNA.
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Fig. S4. Guide RNAs per cell and cells per targeted candidate cis-regulatory element (cCRE).
(A) Median number of gRNAs per cell detected with at least three UMIs per gRNA. This number
represents the multiplicity of infection. (B) Median number of cells per targeted cCRE after gRNA

UMI thresholding.
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Fig. S5. Gene and protein expression for TSS-targeting positive controls guide RNAs.
Quantile-quantile plots for positive control gRNAs and their effects on gene expression (A) and
protein levels (B). Comparison of cells with positive control gRNAs and their effects on target
gene expression with non-targeting gRNA controls (C for gene expression, D for protein).
Asterisks denote g-values, Benjamini-Hochberg adjusted SCEPTRE p-values (* ¢ <0.05, ** g <
0.01, *** g <0.001).
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Fig. S6. Individual CRE-targeting gRNA effects on target gene expression.

We explored three facets for possible gRNA discrepancy between gRNAs targeting the same CRE
and found that the number of cells bearing each gRNA is the main driver of statistical power (A).
We observed a weak effect of gRNA position (less significant gRNAs tend to be further from
significant gRNAs) (B), and no effect of off-target scores (C).
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Fig. S7. A multi-ancestry white blood cell count locus with weak enhancer activity.

(A) The lead, and only, fine-mapped variant, rs2286599 was targeted as it was highly plausibly
causal but did not map to a called peak of biochemical hallmarks of enhancers. However, open
chromatin data revealed weak enhancer activity, and we detected in single-cell expression data a
cis-target gene, LTBR, for rs2286599-CRE targeting gRNAs and not for NT gRNAs (B). Asterisks
denote g-values, Benjamini-Hochberg adjusted SCEPTRE p-values (* ¢ < 0.05, ** ¢ < 0.01, ***
q <0.001).
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Fig. S8. Plausibly causal variants without biochemical hallmarks of enhancers.

We targeted four independent loci where the lead variant was the sole fine-mapped variant but did
not map to called peaks for biochemical hallmarks of enhancers. We did not identify any cis-target
genes, including the genes with the closest transcription start sites for: (A) rs72836346 and
BCL2L11,(B)1s61823972 and TMCC2, (C) rs60237566 and ITM2C, and (D) rs333947 and CSF 1.
Each panel shows the locus with biochemical hallmarks of enhancers and closest gene (/eft) and
the expression of the closest gene for cells receiving the GWAS-CRE perturbation or a non-
targeting (NT) gRNA (right).
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Fig. S9. Additional GWAS loci where STING-seq identifies target genes.
(A) An ancestry-specific neutrophil count locus, only detected in individuals with African
ancestries (gray) and not in individuals with European ancestries (purple). The lead variant,
156674304, did not map to hallmarks of enhancers, therefore we targeted the remaining three
variants in the credible set that did: rs6660743 (blue), rs12087680 (red), and rs7544679 (orange).
(B) Single-cell gene expression for cells bearing NT and targeting gRNAs. Only rs12087680 had
a cis-target gene, ATPIA1. (C) A European ancestries reticulocyte count locus. One fine-mapped
variant was targeted, the lead variant, rs1065853 (red). (D) Single-cell gene expression for cells
bearing NT and targeting gRNAs. APOE and APOCI were both identified as cis-target genes.
Asterisks denote g-values, Benjamini-Hochberg adjusted SCEPTRE p-values (* ¢ < 0.05, ** g <

0.01, *** ¢ < 0.001).
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Fig. S10. STING-seq of nine GWAS variants at the PTPRC locus.

(A) Heatmap of p-values from 10 blood trait GWASs for nine variants mapping to cCREs proximal
to PTPRC. The maximal color value indicates genome-wide significance (6.6x10”). (B) Pairwise
linkage disequilibrium matrix (R? and D’) for the nine targeted variants using the 1000 Genomes
CEU and GBR populations. (C) Targeted GWAS-cCRE locations located at least 1 kb distal to the
PTPRC TSS. (D) Normalized single cell PTPRC expression for the top targeting gRNAs. PTPRC
was differentially expressed upon perturbation of six out of nine variants, identifying six
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significant CREs (5% FDR). Two variants (rs1926231 and rs75567729) were located closest to
the TSS of the PTPRC gene and had the strongest impact on gene expression. However, they were
not in LD and had different GWAS significance patterns. Two other variants (rs78900449 and
rs4915152) were not significant but were in strong LD (R?> 0.95) with variant-identified CREs
for PTPRC (rs1326270 and rs1998843, respectively), suggesting they may be non-functional LD
proxy variants. Asterisks denote g-values, Benjamini-Hochberg adjusted SCEPTRE p-values (* ¢
<0.05, ¥* ¢ <0.01, *** ¢ <0.001).
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Fig. S11. Cytosine base editing of CD46 splice donor sites.

We designed 12 CD46 targeting gRNAs to engineer C>T mutations predicted to disrupt splice
donor sites and used flow cytometry to measure CD46 protein depletion, compared to non-
targeting gRNAs and untransduced cells (negative controls). gRNAs were designed for assorted
non-canonical PAMs.
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Fig. S12. Trans-effects of the rs524137-CRE for GFI1B on transcript and protein expression.
(A) Volcano plot of the transcriptome-wide effects on differential expression upon inhibiting the
1$524137-CRE for GFIIB. We labeled nine additional genes that had significant changes in gene
expression (1% FDR) and found that their changes in expression were highly correlated with
changes in protein measured with oligo-tagged antibodies (B).
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Fig. S13. A trans-regulatory network uncovered by perturbing a short RNA gene.

(A) A multi-ancestry platelet count locus, where we targeted a fine-mapped variant that was also
the lead variant, rs2526377 (red). Rs2526377 does not map to any protein coding regions, however
it does map to a promoter for a short, noncoding microRNA host gene for miR-142. (B) Single-
cell gene expression for cells bearing NT and targeting gRNAs. The miR-142 host gene, a
noncoding RNA gene, was identified as a cis-target gene. (C) Volcano plot of the transcriptome-
wide effects of perturbing the miR-142 host gene, where the top two up-regulated genes, WASL
and CFL2, were known targets of miR-142. Asterisks denote g-values, Benjamini-Hochberg
adjusted SCEPTRE p-values (* ¢ <0.05, ** ¢ <0.01, *** g <0.001).
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GWAS gene set for red blood cells (RBCs), platelets, and white blood cells (WBCs).

(A) All protein-coding genes and whether they were unique or shared across RBC, platelet, and
WBC GWAS gene sets. We then inspected the GFIIB (B), NFE2 (C), IKZF1 (D), HHEX (E),
RUNXI (F), miR-142 (G), and miR-144-451 (H) networks and whether they were found in our
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Fig. S15. Subnetworks have distinct gene set enrichment profiles.
Co-expression matrices of network genes with hierarchical clustering in K562 and their
subnetwork cluster enrichments as odds ratios (diamonds) and 95% confidence intervals (/ines)
for direct targets and GWAS gene sets for the: (A) NFE2 1s79755767-CRE, (B) IKZF I rs6592965-
CRE, (C) HHEX rs12784232-CRE, (D) RUNXI rs2834670-CRE, (E) miR-142 rs2526377-CRE,

Enrichment odds ratio
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and (F) miR-144-451 rs35531439-CRE. There were no HHEX ChIP-seq data in K562 for testing
predicted direct target enrichments. Asterisks denote logistic regression p-values (* p <0.05, ** p
<0.01, *** p <0.001).
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Fig. S16. A GFI1B target gene, CD33, is up-regulated upon GFI1B CRE inhibition.

(A) A GFI1B ChIP-seq peak was found directly upstream of CD33 in K562. GFIIB is known to
act as a transcription repressor, and we observed upon inhibiting the GFI1/B CRE that CD33 had
increased expression (B) and protein (C). (D) These findings were consistent with GFI/I/B and
CD33 expression patterns in human bone marrow cells, where GFII/B was expressed in
hematopoietic stem cells, RBC progenitors, and megakaryocyte progenitors, but not in WBC
progenitors and differentiated myeloid cells. CD33 is a marker of myeloid cells and was not
expressed in cells where GFIIB was active. Asterisks denote g-values, Benjamini-Hochberg
adjusted SCEPTRE p-values (* ¢ <0.05, ** ¢ <0.01, *** g <0.001).
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Fig. S17. Detection limits of cis-regulatory effects in STING-seq.

(A) CRE:s for target genes grouped by effect size and gene expression, and down-sampled from
1,000 cells bearing perturbations to 50 and from 55,000 to 5,000 sequencing reads per cell. (B)
Distribution of genes with detected cis-regulatory effects and their expression rank relative to the
full K562 transcriptome. (C) Number of genes for each corresponding down-sampling group.
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