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SUMMARY
We conduct proteome-wide Mendelian randomization and colocalization analyses to decipher the associa-
tions of blood proteins with the risk of type 2 diabetes and diabetic complications. Genetic data on plasma
proteome are obtained from 54,306 UK Biobank participants and 35,559 Icelanders. Summary-level data on
type 2 diabetes are obtained from the DIAGRAM (DIAbetes Genetics Replication And Meta-analysis con-
sortium) consortium (74,124 cases) and FinnGen study (33,043 cases). Data on 10 diabetic complications
are obtained from FinnGen and corresponding studies. Among 1,886 proteins, genetically predicted levels
of 47 plasma proteins are associated with type 2 diabetes. Eleven of these proteins have strong support of
colocalization. Seventeen proteins are associated with at least one diabetic complication, although a few
have colocalization support. HLA-DRA, AGER, HSPA1A, and HSPA1B are associated with most microvas-
cular complications. This study reveals causal proteins for the onset of type 2 diabetes and diabetic compli-
cations, which enhances the understanding of molecular etiology and development of therapeutics.
INTRODUCTION

Type 2 diabetes is an emerging pandemic affecting 1 in 10 adults

globally.1 This number is projected to continue to increase in

coming decades, especially in low-income and middle-income

countries,1 which will cause a heavy burden to the medical

system and the whole of society.

Studies havebeen conducted fromdifferent perspectives to un-

derstand type 2 diabetes and thus to better prevent and manage

the disease. Population-based and clinical studies have indicated

that obesity, physical inactivity, a sedentary lifestyle, smoking, and

unhealthy diets are the major modifiable risk factors for the dia-

betes epidemic.2–4 To deepen the genetic understanding, several

large-scale genome-wide association studies (GWASs) were con-

ducted to decipher the genetic architecture of type 2 diabetes5,6

and identifiedmore than300 loci, which increased the genetic pre-
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diction usefulness.6 Because of the development of high-

throughput detection and quantification of serum proteins, an

increasing number of studies were also conducted to explore the

associations of proteins with the risk of type 2 diabetes aiming at

revealing molecular pathological basis.7,8 A population-based

study found 24plasmaproteins consistently associatedwith prev-

alent type2diabetes indiscoveryand replicationstudies;however,

only 3 proteins were found to be associated with incident type 2

diabetes.7 Another study with a larger sample size identified 47

proteins associated with incident type 2 diabetes after 19 years

of follow-up.8 Still, merely three associations were confirmed by

Mendelian randomization (MR) analysis.8 These findings may

convey that observational studies on proteomic research in type

2 diabetes are prone to be influenced by reverse causation, as

well as confounding given that the factors influencing proteomic

profiles remain unestablished.
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Diabetic complications lead to a heavy disease burden, such

as, blindness, kidney dysfunction, an impaired quality of life, and

premature mortality among those with diabetes. Several drugs,

like metformin, sodium-glucose co-transporter-2 (SGLT2) inhibi-

tors, and glucagon-like peptide-1 receptor agonists, have been

used to lower the risk of developing complications or delay their

onset among diabetic patients. An appraisal of shared proteomic

basis between diabetes and diabetic complications is also of

importance to better understand underlying pathophysiology

and possibly to manage disease progression. It was found in a

cohort of 528 individuals that 15 plasma proteins shared by type

2 diabetes and coronary artery disease (a major macrovascular

complication of diabetes).9 However, the shared proteomic etiol-

ogy between diabetes and diabetic microvascular complications

remains to be fully explored.

Proteomic research can not only deepen molecular under-

standing, but also help to reveal potential therapeutic targets,

sincemany circulating proteins always act as the principal regula-

tors ofmolecular pathways.10 For example, someclasses of drugs

used for type 2 diabetes target proteins, like alpha-glucosidase in-

hibitors that inhibit alpha-amylase and alpha-glucosidase, the key

enzymes involved in the digestion of carbohydrates, and SGLT2

inhibitors that inhibit sodium-glucose transport proteins in the

nephron.11 MR design is an epidemiological approach that can

strength causal inference by using genetic variants as an instru-

mental variable for the exposure (e.g., circulating levels of a

protein). There are three key assumptions of MR: (1) the genetic

variants used as the instrumental variable should be robustly

associated with the exposure of interest; (2) the genetic instru-

ments should not be associated with any confounders; and (3)

the genetic instruments should impact the outcome only via the

exposure of interest and not via alternative pathways. Using MR

analysis to explore the associations between plasma proteins

and health outcomes has been widely used and found to be

assumption satisfied when using the cis-variant in the protein-en-

coding gene as the genetic instrument for the protein.12 Some

previous MR studies have been conducted to estimate the asso-

ciation betweenblood proteins and the risk of type 2 diabetes.13,14

Based on a larger number of blood proteins with data from two

large-scale studies, we conducted a protein-wide MR study sup-

plemented by colocalization analysis to explore nearly 2,000

plasma proteins in relation to the onset of type 2 diabetes and

diabetic complications.

RESULTS

An overview of the study design is shown in Figure 1. All analyses

were based on summary-level data listed in Table 1. We re-

placed 132 missing SNPs with proxy SNPs in FinnGen. After

removing plasma proteins without genetic instruments or SNP

proxies in type 2 diabetes data, MR analysis included 1,797

proteins in the DIAGRAM (DIAbetes Genetics Replication And

Meta-analysis consortium) consortium, 1,835 proteins in the

FinnGen R8 study, and 1,885 proteins in the combined analysis.

The minimal F statistic of used genetic instruments was more

than 300 in all outcome data. The statistical power in the ana-

lyses of diabetic complications was generally low because of

small sample sizes (Figure S1).
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Associations between plasma proteins and type 2
diabetes
Figure 2 displays the result summary of the analyses of type 2

diabetes. In the combined analysis of two outcomes data, genet-

ically predicted levels of 47 proteins were significantly associ-

ated with the risk of type 2 diabetes after Bonferroni correction

for multiple testing (p < 2.653 10�5) (Figure 2A). Per SD increase

in genetically predicted levels of protein, the odds ratio of type 2

diabetes ranged from 0.38 (95% confidence interval [CI],

0.28–0.51) for heat shock 70 kDa protein 1B (HSPA1B) to 2.08

(95% CI, 1.84–2.34) for glucokinase regulatory protein (GCKR)

(Figure 2B and Table S1). The identified associations were direc-

tionally consistent between the discovery and replication studies

for all proteins except heat shock 70 kDa protein 1A (HSPA1A)

(Tables S2 and S3). Among identified associations, eight pro-

teins were measured in both outcome datasets and generally

showed consistent associations with type 2 diabetes, despite

the proteins being measured on two different profiling platforms

(Table S4). Genetically predicted levels of the other studied

proteins were not associated with the risk of type 2 diabetes

(Table S1).

Among 47MR-identified proteins in relation to type 2 diabetes,

9 proteins had high support of colocalization analysis (PH4R0.8)

(Figure 2C and Table S5), which were GCKR, histo-blood group

ABO system transferase (ABO), hedgehog-interacting protein

(HHIP), phosphoglucomutase-1 (PGM1), mitogen-activated pro-

tein kinase 8 (MAPK8), metallophosphoesterase domain-con-

taining protein 2 (MPPED2), 3-hydroxyisobutyryl-CoA hydrolase,

mitochondrial (HIBCH), glutathione S-transferase A1 (GSTA1),

and ERO1-like protein beta. Three proteins had medium support

of colocalization analysis (0.8R PH4R 0.5) (Figure 2C). Sum of

single effects (SuSiE) additionally identified strong colocalization

support for the associations for arginase 1 (ARG1) and probable

tRNA(His) guanylyltransferase (THG1L) (Figure 2C).

Function and network prediction of diabetes-associated
proteins
Identified diabetes-associated proteins had networks, in partic-

ular co-expression and physical interactions (Figure S2). Based

on cis-genes for these proteins, many pathways were enriched,

including protein-folding and catabolism, response to tempera-

ture stimulus/heat, intrinsic apoptotic signaling pathway, and

response to oxidative stress (Table S6).

Reverse MR analysis of type 2 diabetes liability with
levels of identified 47 proteins
Genetic liability to type2 diabeteswas associatedwith levels of six

blood proteins (THG1L, sex hormone-binding globulin [SHBG],

inhibinbetaBchain,chymotrypsinogenB2,majorhistocompatibil-

ity complex class I polypeptide-related sequence B [MICB], and

HIBCH) after Bonferroni multiple testing correction. The associa-

tions were consistent in a series of analyses (Table S7).

Associations betweendiabetes-associated proteins and
body mass index
Among 47 diabetes-associated proteins, genetically predicted

levels of 18 proteins were associated with body mass index

(BMI) in the GIANT (The Genetic Investigation of ANthropometric



Figure 1. Study design overview
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Traits consortium) consortium or the UK Biobank study (Fig-

ure S3). The associations were overall consistent between the

two sources. Per SD increase, the changes of BMI ranged

from �0.29 (95% CI, –0.37 to �0.20) for mitochondrial peptide

methionine sulfoxide reductase to 0.12 (95% CI, 0.08–0.16) for

GCKR. The two-stage network MR analysis identified pathways

mediated by BMI from protein to type 2 diabetes. The mediation

by BMI ranged from 15.8% for the GCKR-diabetes association

to 60.6% for the hypoxia up-regulated protein 1-diabetes asso-

ciation (Table S8). Mainly because of the high co-expression of

these proteins (Figure S4), the sum of mediation proportion

was greater than 100%.

Associations between diabetes-associated proteins and
diabetic complications
Figure 3 displays the result summary of the analyses of 47 dia-

betes-associated plasma proteins in relation to major diabetic

complications. After adjusting for multiple testing, genetically

predicted levels of 17 proteins were associated with at least

one diabetic complication in MR analysis (Figures 3A and 3B).

The directions of the protein-diabetes associations were overall

consistent with that of the associations between proteins and

diabetic complications (Figure 3A), except for genetically pre-

dicted levels of PGM1 with an inverse association with type 2

diabetes, but a positive association with diabetic ketoacidosis

(Figure 3A). Diabetes-associated proteins were more likely to

be associated with acute and chronic microvascular complica-

tions instead of macrovascular complications (Figure 3A).

Four of these proteins that included human leukocyte

antigen class II histocompatibility antigen, DR alpha chain

(HLA-DRA), advanced glycosylation end product-specific re-

ceptor (AGER), HSPA1A, andHSPA1Bwere directionally consis-

tently associated with most studied diabetic complications

(Figure 3B). Genetically predicted levels of the other proteins

were not associated with any of studied diabetic complications

(Table S9).
Some of aboveMR associations were supported by traditional

and SuSiE colocalization analyses with PH4 >0.5 (Figure 3C and

Table S10). MANSC domain-containing protein 4 (MANSC4) had

moderate to strong support of colocalization with diabetic ketoa-

cidosis (PH4 = 0.92), diabetic hypoglycemia (PH4 = 0.67 in tradi-

tional and 0.96 in SuSiE), and diabetic retinopathy (PH4 = 0.63 in

traditional and 0.85 in SuSiE). Beta-mannosidase (MANBA) had

moderate support of colocalization with diabetic retinopathy

(PH4 = 0.65 in traditional). PGM1 hadmoderate support of coloc-

alization with diabetic ketoacidosis (PH4 = 0.59 in traditional).

PTPN9 had moderate support of colocalization with diabetic

maculopathy (PH4 = 0.63 in traditional).

DISCUSSION

ThisMRstudyexamined theassociationsof1,885plasmaproteins

with the risk of type 2 diabetes andwas supplemented by a coloc-

alization analysis. We found 47 plasma proteins with a potential

causal association with type 2 diabetes, of which 11 proteins

had a strong support of colocalization. Function prediction based

on these proteins enriched many pathways, including protein

folding and catabolism, response to temperature stimulus/heat,

intrinsic apoptotic signaling pathway, and response to oxidative

stress. Several of these proteins were associated with BMI in a

consistent direction with that for diabetes and the two-stage

network MR indicated partial mediation of BMI in these protein-

diabetes associations. The subsequent analysis revealed the roles

of 17 diabetes-associated proteins in diabetic complications,

although only some proteins were identified in colocalization anal-

ysis. These diabetes-associated proteins were more likely to be

associated with microvascular complications compared with

macrovascular complications. This analysis further found a perva-

sive effect of four proteins (i.e., HLA-DRA, AGER, HSPA1A, and

HSPA1B) on acute and chronic microvascular complications.

Our study corroborated some previously identified protein-

diabetes associations, such as the associations of diabetes
Cell Reports Medicine 4, 101174, September 19, 2023 3



Table 1. Data sources for studied phenotypes

Study Phenotype Cases Controls PMID Adjustment

UKB-PPP Plasma protein 54,306 – Preprint age, gender, batch, UKB center, UKB

genetic array, time between blood

sampling and measurement and the

first 20 genetic principal components

deCODE Plasma protein 35,559 – 34857953 age, gender, and sample age

DIAGRAM Type 2 diabetes 74,124 824,006 30297969 principal components, relatedness,

and study-specific covariates

FinnGen R8 Type 2 diabetes 33,043 284,971 NA age, gender, and %20 genetic principal

components

GIANT BMI 681,275 – 30124842 age, gender, recruitment center,

genotyping batches, and 10 PCs

Neale Lab BMI 336,107 – NA age, gender, 10 genetic principal

components, and genotyping batch

FinnGen R8 Diabetic ketoacidosis 7,201 249,480 NA age, gender, and %20 genetic principal

components

FinnGen R8 Diabetic retinopathy 8,942 283,545 NA age, gender, and %20 genetic principal

components

FinnGen R8 Diabetic nephropathy 3,676 283,456 NA age, gender, and %20 genetic principal

components

FinnGen R8 Diabetic neuropathy 2,444 249,480 NA age, gender, and %20 genetic principal

components

FinnGen R8 Diabetic maculopathy 3,115 283,472 NA age, gender, and %20 genetic principal

components

FinnGen R8 Diabetic hypoglycemia 6,500 249,480 NA age, gender, and %20 genetic principal

components

FinnGen R8 Diabetes peripheral circulatory

complications

1,975 283,224 NA age, gender, and %20 genetic principal

components

FinnGen R8 Cardiomyopathy 5,344 237,263 NA age, gender, and %20 genetic principal

components

CARDIoGRAMplusC4D Coronary artery disease 60,801 123,504 26343387 NA

Malik et al. GWAS15 Ischemic stroke 34,217 406,111 29531354 age and gender

CARDIoGRAMplusC4D, Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) plus The Coronary Artery Disease

(C4D) Genetics; GIANT, The Genetic Investigation of ANthropometric Traits consortium; NA, not available; UKB-PPP, The UK Biobank Pharma Pro-

teomics Project.
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with TYRO3 (tyrosine-protein kinase receptor TYRO3), ARG1,

SHBG, MANSC4, HP, MANBA, ABO, angiotensin-converting

enzyme (ACE), ERO1-like protein beta (ERO1LB), MICB, and

GSTA1.8,14 The associations of some well-studied proteins,

like GCKR,5 SHBG,16 ABO,17 and ACE18 with the risk of devel-

oping type 2 diabetes were also identified, which indicated a

good validity of data sources used in the current analysis. How-

ever, except for ABO, ARG1, ERO1LB, GSTA1, and TYRO3, we

observed weak colocalization support of the associations for

other above-mentioned proteins, which implies that these asso-

ciations may be influenced by linkage disequilibrium. However, a

lack of strong colocalization support may be caused by an inad-

equate power, even though the current colocalization analysis

was based on a large-scale meta-analysis GWAS including

107,167 type 2 diabetes cases. In addition, this study did not

pinpoint certain proteins associated with diabetes described in

previous studies, like growth-differentiation factor-15 and matrix

metallopeptidase 12,13 which did not indicate that our findings

were against these associations. Instead, these associations
4 Cell Reports Medicine 4, 101174, September 19, 2023
were also observed in our analysis, albeit non-significantly,

whichmight be caused by a heavymultiple testing burden. How-

ever, this multiple-testing correction strategy suits one of the

study’s aims, which is to discover proteins strongly associated

with type 2 diabetes.

Except for the GCKR protein, a well-known protein affecting

diabetes risk,5 our study revealed many other plasma proteins

that might be causally associated with the risk of type 2 diabetes

based on a larger pool of plasma proteins. For example, HHIP

has been found to be involved in the development of cancers.19

Our study in line with an observational study20 established a pos-

itive association between HHIP protein levels and the risk of type

2 diabetes, which indicates that the Hedgehog signaling

pathway may play a role in glycemic homeostasis. HIBCH plays

a role in the catabolism of the branched-chain amino acid valine

that has been positively associated with the risk of type 2 dia-

betes.21 In addition, this protein also determines the metabolism

of 3-hydroxyisobutyrate, which was associated with incident

type 2 diabetes.22 Altogether, support our finding on a causal
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Figure 2. Result summary of MR and colocalization analysis on the associations between plasma proteins and the risk of type 2 diabetes

(A–C) OR, odds ratio. Full name of proteins: ABO, histo-blood group ABO system transferase; ANGPTL4, angiopoietin-related protein 4; ARG1, arginase-1; ASIP,

Agouti-signaling protein; BDH2, 3-hydroxybutyrate dehydrogenase type 2; BOC, brother of CDO; CTRB2, chymotrypsinogen B2; DDR1, epithelial discoidin

domain-containing receptor 1; GALNT3, polypeptide N-acetylgalactosaminyltransferase 3; GCKR, glucokinase regulatory protein chain; HP, haptoglobin;

HSPA1A, heat shock 70 kDa protein 1A; HSPA1B, heat shock 70 kDa protein 1B; HYOU1, hypoxia up-regulated protein 1; INHBB, inhibin beta B chain; KIAA1161,

uncharacterized family 31 glucosidase KIAA1161; MPPED2, metallophosphoesterase MPPED2; MSRA, mitochondrial peptide methionine sulfoxide reductase;

NCAN, neurocan core protein; NUCB2, nucleobindin-2; PCSK7, proprotein convertase subtilisin/kexin type 7; PLEKHA1, pleckstrin homology domain-containing

family A member 1; PTPN9, tyrosine-protein phosphatase non-receptor type 9; RAB1A, Ras-related protein Rab-1A; ROBO2, roundabout homolog 2; RTBDN,

retbindin; SF3B4, splicing factor 3B subunit 4; SNUPN, Snurportin-1; TBCE, tubulin-specific chaperone E; TIGAR, fructose-2,6-bisphosphatase TIGAR;

TNFSF13, tumor necrosis factor ligand superfamily member 13; TP53, cellular tumor antigen p53; TYRO3, tyrosine-protein kinase receptor TYRO3.
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inverse association between HIBCH protein and type 2 diabetes.

Likewise, MAPK8-related signaling was found to be related to

the development of type 2 diabetes in animal studies.23 The cau-

sality of this association in human has now been strengthened by

our study. Another interesting protein associated with diabetes

was MPPED2, which was found to impact the development of

cancers24 with functions of regulating cell proliferation, differen-

tiation, and apoptosis. However, whether the MPPED2-diabetes

association was caused by pleiotropy needs assessment. PGM1

protein has been proven to act in glucosemetabolism and its en-

coding gene has been identified as a shared loci between type 1

and type 2 diabetes.25 Thus, the association between PGM1 and

type 2 diabetes can be regarded as a positive control. A double

catch of this association in our MR and colocalization analyses

partly reflects a good validity of the overall analysis. In addition
to the above-mentioned proteins, we identified more proteins

associated with type 2 diabetes but with weak evidence of co-

localization. More studies are needed to verify our findings.

In reverse MR analysis, we observed associations of genetic

liability to type 2 diabetes with six proteins, including some

well-established diabetes-associated proteins (i.e., SHBG,

MICB, and HIBCH), which raises the concern that these proteins

may be associated with type 2 diabetes due to reverse causa-

tion. However, we noticed that the directions of protein-diabetes

and diabetes-protein associations were opposite, except that for

chymotrypsinogen B2, whichminimizes the possibility of reverse

causation and imply potential bidirectional associations caused

by a feedback mechanism.26

Our analysis of diabetes-associated proteins in relation to dia-

betic complications added insights on diabetic progression from
Cell Reports Medicine 4, 101174, September 19, 2023 5
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Figure 3. Result summary of MR and colocalization analysis on the associations between diabetes-related proteins and the risk of diabetic
complications

(A–C) The gray squares in (A) indicate missing data. Full name of proteins: ABO, histo-blood group ABO system transferase; ANGPTL4, angiopoietin-related

protein 4; ARG1, arginase-1; ASIP, Agouti-signaling protein; BDH2, 3-hydroxybutyrate dehydrogenase type 2; BOC, brother of CDO; CTRB2, chymotrypsinogen

B2; DDR1, epithelial discoidin domain-containing receptor 1; GALNT3, polypeptide N-acetylgalactosaminyltransferase 3; GCKR, glucokinase regulatory protein;

HP, haptoglobin; HSPA1A, heat shock 70 kDa protein 1A; HSPA1B, heat shock 70 kDa protein 1B; HYOU1, hypoxia up-regulated protein 1; INHBB, inhibin beta B

chain; KIAA1161, uncharacterized family 31 glucosidase KIAA1161; MPPED2, metallophosphoesterase MPPED2; MSRA, mitochondrial peptide methionine

sulfoxide reductase; NCAN, neurocan core protein; NUCB2, nucleobindin-2; PCSK7, proprotein convertase subtilisin/kexin type 7; PLEKHA1, pleckstrin ho-

mology domain-containing family A member 1; PTPN9, tyrosine-protein phosphatase non-receptor type 9; RAB1A, Ras-related protein Rab-1A; ROBO2,

roundabout homolog 2; RTBDN, retbindin; SF3B4, splicing factor 3B subunit 4; SNUPN, snurportin-1; TBCE, tubulin-specific chaperone E; TIGAR, fructose-2,6-

bisphosphatase TIGAR; TNFSF13, tumor necrosis factor ligand superfamily member 13; TP53, cellular tumor antigen p53; TYRO3, tyrosine-protein kinase re-

ceptor TYRO3.
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the molecular perspective. We found that diabetes-associated

proteins seemed to be more associated with microvascular

complications compared to macrovascular complications,

which supported the findings that the associations of diabetes

withmacrovascular outcomeswere less pronounced, and signif-

icant than those with microvascular.27 However, given that data

used on three major macrovascular complications were ob-

tained from general populations instead of diabetic patients,

our result might be influenced by this.

We found that four proteins (i.e., HLA-DRA, AGER, HSPA1A,

and HSPA1B) were associated with most studied diabetic com-

plications. However, it is important to note that these protein

associations with diabetic complications lacked strong colocal-

ization support, possibly due to limited statistical power.

HLA-DR consisted of HLA-DRA andHLA-DRB1 (HLA class II his-
6 Cell Reports Medicine 4, 101174, September 19, 2023
tocompatibility antigen, DRB1 beta chain) has been associated

with the risk of type 1 diabetes.28 A few studies linked this protein

to the development of type 2 diabetes as well as its progression.

A study in the Han ethnicity of China showed that alleles of

HLA-DRA and HLA-DRB1 genes were associated with the sus-

ceptibility of type 2 diabetes and diabetic nephropathy.29 These

associations were replicated in a dataset-based multi-omics

study.30 Another study found that HLA-DR-related inflammation

might be associated with beta-cell destruction in patients with

type 2 diabetes, which may explain the associations with dia-

betic complications.31 Still, the immune response to increased

levels of HLA-DRA is complex. Our study can only convey that

HLA-DRA-related immune reactions may play a role in diabetic

progression and more studies are needed to explore in detail

the underlying mechanistic pathways. AGER is a cell-surface
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receptor of AGEs (advanced glycation end products) by glyca-

tion. It will activate pro-inflammatory pathways when AGEs

bind to AGER.32 Thus, low levels of AGER may decrease glyca-

tion-related inflammation and thus decrease the risk of diabetes

and its complications, which is supported by our findings. Many

small molecule AGER inhibitors or antagonists have been pro-

posed to treat diabetic complications and cancer progression

with a good tolerance in humans.33 Heat shock proteins were

associated with hypoglycemia34 and diabetic foot ulcer.35 How-

ever, the mechanisms underlying the inverse associations of

HSPA1A and HSPA1B with diabetes and its complications are

unclear, but possibly related to attenuation of oxidative stress.36

Except for the above four proteins, we also observed GCKR

and ANGPTL4 associated with some complications, which was

consistent with recent trial evidence that GCKR and ANGPTL4

are currently in therapeutic development for metabolic disor-

ders. Our data demonstrated potential involvement of these

two proteins in the development of type 2 diabetes and related

complications; thus, these drugs under development hold also

promise for these indications.

This study has several strengths, including a large pool of

plasma proteins, a large number of type 2 diabetes cases, a

mutual validation in two independent outcome data, and a

supportive analysis of colocalization. Limitations deserve to be

discussed when interpreting our results. First, this analysis was

confined to Europeans, which limited the generalizability of our

findings to other populations. Second, we did colocalization

analysis only for proteins included in the deCODE Health study37

due to data availability. Thus, whether the MR associations for

proteins with instruments from the UKB-PPP study are sup-

ported by colocalization analysis remain unknown. Third, even

though we meta-analyzed GWAS data on type 2 diabetes from

two independent sources to increase the power, we may have

overlooked some weak associations, especially in colocalization

analyses. Fourth, the power may have been inadequate in the

analysis of diabetic complications due to a small number of

cases. Fifth, data on coronary artery disease, ischemic stroke,

and cardiomyopathy were not obtained from a diabetic popula-

tion, which might influence the comparison between the associ-

ations for macrovascular and microvascular complications

with diabetes-associated proteins. Sixth, even though we were

not able to differentiate the diabetic complications of type 1 or

type 2 diabetes, given that the analysis was based on the sum-

mary-level data, our results should reflect more on the complica-

tions of type 2 diabetes due to a small number of complication

cases of type 1 in the FinnGen study. For example, there were

1,897 cases of type 1 diabetes with ketoacidosis among 7,201

individuals with ketoacidosis. Seventh, even though cis-MR

analysis can minimize the influence of horizontal pleiotropy, the

observed associations might be affected by this phenomenon,

especially for a certain protein with an encoding gene exerting

a broad range of effects. Eighth, our study could not assess

the risk of non-specific binding for proteins or the variability of

protein measurement since this study was based on summary-

level data. However, including proteins with cis-SNPs might

decrease the risk of measurement error due to non-specific

binding and results were overall consistent for overlapping pro-

teins with data measured by SomaScan and Olink. Last, but
not least, we used proteomic data from Icelanders and outcome

data from Finnish, which might introduce bias by violating the

second assumption of MR because the genetic backgrounds

of these two populations may differ from other European popu-

lations. However, this potential bias is likely to be minimal as we

observed directionally consistent protein-type 2 diabetes asso-

ciations with outcome data from DIAGRAM and FinnGen

studies. Furthermore, we observed that more than 85% of the

proteins-type 2 diabetes associations with a p < 0.05 were direc-

tionally consistent among proteins with genetic instruments from

both deCODE (Icelanders) and UKB-PPP (British). The around

15% inconsistency might be attributed to different genetic archi-

tectures but more likely to different proteomic profiling platforms

(SomaScan and Olink) used in the two cohorts. This hypothesis

is supported by studies that observed that at least 14.7% of pro-

teins had poor correlations when measured in SomaScan and

Olink platforms.38–40

In summary, this proteome-wideMRand colocalizationanalysis

identified many plasma proteins highly causally associated with

type 2 diabetes. Among these proteins, almost one-third were

associated with diabetic complications, in particular acute and

microvascular complications. Universal effects of four diabetes-

associated proteins (HLA-DRA, AGER, HSPA1A, and HSPA1B)

on most studied diabetic complications may suggest the roles of

inflammation and oxidative stress in diabetic progression. Our

findings also suggest that AGER inhibitors or antagonists may be

a promising therapeutic target for diabetic complications.

Limitations of the study
Our findings, in relation to the analysis itself, may be subject to

the following potential limitations: (1) bias due to population

structure; (2) macrovascular complications in non-diabetic pop-

ulations; (3) the presence of complications from both type 1 and

type 2 diabetes; (4) horizontal pleiotropy; (5) heterogeneity intro-

duced by the usage of two protein profiling platforms; and (6)

limited generalizability. Each of these factors has been thor-

oughly addressed in the text. Furthermore, as these associations

were established through in silico analyses, they require

further validation through animal studies and population-based

research. Despite the inclusion of a vast number of blood pro-

teins in this study, we may have inadvertently overlooked signif-

icant proteins that lack genetic instruments. The risk prediction

ability of these identified proteins also warrants further studies.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Plasma protein UKB-PPP https://www.ukbiobank.ac.uk/

Plasma protein deCODE https://www.decode.com/summarydata/

Type 2 diabetes DIAGRAM https://www.diagram-consortium.org/

Type 2 diabetes FinnGen R8 https://www.finngen.fi/fi

Body mass index GIANT https://portals.broadinstitute.org/collaboration/

giant/index.php/GIANT_consortium_data_files

Body mass index Neale Lab http://www.nealelab.is/uk-biobank

Diabetic ketoacidosis FinnGen R8 https://www.finngen.fi/fi

Diabetic retinopathy FinnGen R8 https://www.finngen.fi/fi

Diabetic nephropathy FinnGen R8 https://www.finngen.fi/fi

Diabetic neuropathy FinnGen R8 https://www.finngen.fi/fi

Diabetic maculopathy FinnGen R8 https://www.finngen.fi/fi

Diabetic hypoglycemia FinnGen R8 https://www.finngen.fi/fi

Diabetes peripheral circulatory complications FinnGen R8 https://www.finngen.fi/fi

Cardiomyopathy FinnGen R8 https://www.finngen.fi/fi

Coronary artery disease CARDIoGRAMplusC4D http://www.cardiogramplusc4d.org/

Ischemic stroke Malik et al.15 https://www.ebi.ac.uk/gwas/publications/29531354

1000 Genomes European reference 1000 Genomes https://www.internationalgenome.org/data/

Software and algorithms

TwoSampleMR Github https://mrcieu.github.io/TwoSampleMR/

MendelianRandomization R project https://cran.r-project.org/web/packages/

MendelianRandomization/index.html

Coloc R package Github https://github.com/chr1swallace/coloc

SuSiE R package Github https://stephenslab.github.io/susieR/
RESOURCE AVAILABILITY

Lead contact
Further information and requests should be directed to the lead contact, Shuai Yuan (shuai.yuan@ki.se).

Materials availability
This study did not generate new unique reagents.

Data and code availability
This paper analyzes existing, publicly available data. All GWAS are referenced. This paper does not report the original code. Any addi-

tional information required to reanalyze the data reported in this report is available from the lead contact upon request.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

The analysis was based on summary-level GWAS data in European populations. We first examined the associations of genetically

predicted plasma proteins with risk of type 2 diabetes in two independent large-scale studies. To explore whether the diabetes-asso-

ciated proteins play a role in the development of diabetic complications, we estimated the associations of diabetes-associated pro-

teins with ten diabetic complications. We also tested the associations of the diabetes-associated proteins with BMI and conducted a

two-stage network MR analysis to reveal whether these protein-diabetes associations were mediated via obesity. The used studies

had been approved by corresponding ethical review committees and participants had signed the consent form. This study was

approved by the Swedish Ethical Review Authority.

GeneMANIA GeneMANIA https://genemania.org/
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METHOD DETAILS

Data sources for plasma proteins
We selected index cis-SNPs associated with the levels of plasma proteins at the genome-wide significance level (p < 5 3 10�8) as

instrumental variables from two large-scale GWASs in the UK Biobank Pharma Proteomics Project (UKB-PPP)41 and the deCODE

Health study.37Cis-SNPs were defined as SNPs within 1Mb from the gene encoding the protein, and linkage disequilibrium was esti-

mated based on 1000 Genomes European panel. UKB-PPP conducted proteomic profiling on blood plasma samples from 54,306

participants using the Olink platform and collected data on 1,463 proteins.41 For the two-sample MR analysis, we selected index cis-

SNPs as instrumental variables for 1161 proteins.41 Likewise, index cis-SNPs for 1423 plasma proteins were obtained from the

deCODE Health study where 4,907 aptamers were measured among 35,559 Icelanders using the SomaScan platform.37 There

were 509 proteins with index cis-SNPs that overlapped between the two studies. Given that colocalization analysis could only be

performed for proteins from the deCODEHealth study due to the availability of the summary-level data, we used genetic instrumental

variables selected from the deCODEHealth study for these overlapped proteins in themain results.We have presented results for the

overlapping proteins with genetic instruments from two studies to examine the consistency of results based on different proteomic

profiling platforms.

Data sources for type 2 diabetes
Data on the associations of protein-associated SNPs with type 2 diabetes were obtained from the DIAGRAM (DIAbetes Genetics

Replication And Meta-analysis) consortium5 and the FinnGen study.42 The DIAGRAM consortium included 32 studies with a total

of 74,124 cases and 824,006 controls of European descent. We used the latest release data on type 2 diabetes from the FinnGen

study R8 in this analysis, which comprised 33,043 cases 284,971 controls. There were no sample overlaps between two outcome

datasets. In MR analysis, we treated the DIGRAM consortium as the discovery study and the FinnGen R8 study as the replication.

To increase the power, wemeta-analyzed the two GWASs and performed colocalization analysis based on the GWASmeta-analysis

data (107,167 cases and 1,108,976 controls). The GWAS meta-analysis was performed by the METAL software. Genetic variants

associated with type 2 diabetes at p < 5 3 10�8 in this GWAS meta-analysis and with low linkage disequilibrium (R2 < 0.001)

were selected as the instrument variable for type 2 diabetes in the reverse MR analysis.

Data sources for BMI
Obesity is an important causal risk factor for type 2 diabetes. We estimated the associations of diabetes-associated proteins with

BMI to reveal whether these associations may be mediated via obesity. Summary-level data on BMI were available from a GWAS

in the GIANT (Genetic Investigation of ANthropometric Traits) consortium that included 681,275 individuals.43 Given a comparatively

small number of SNPs analyzed in this genome-wide association analysis (causingmissing in MR analysis), we also usedGWAS data

on BMI (N = 336,107) from the Neale Lab. The Neale Lab GWAS on BMI was based on 336,107 participants from the UK Biobank

study (http://www.nealelab.is/uk-biobank/). For proteins associated with BMI and type 2 diabetes in a consistent direction, we

performed a two-stage network MR analysis using the Neale Lab data and GWAS meta-analysis of type 2 diabetes to estimate

the mediation of BMI in the protein-diabetes associations. Genetic variants associated with BMI at p < 5 3 10�8 in Neale Lab

data and with low linkage disequilibrium (R2 < 0.001) were selected as the instrument variable for BMI in this network MR analysis.

Detailed methods of the two-stage network MR analysis and mediation calculation can be found somewhere else.44

Data sources for diabetic complications
The analysis included ten diabetic complications, which can be classified into four categories that are acute complications (diabetic

ketoacidosis), diabetic hypoglycemia, chronic microvascular complications (diabetic retinopathy, diabetic nephropathy, diabetic

neuropathy, and diabetic maculopathy), and chronic macrovascular complications (diabetes peripheral circulatory complications,

cardiomyopathy, coronary artery disease, and ischemic stroke). Given no available data on coronary artery disease and ischemic

stroke among diabetic patients, we used data on coronary artery disease (60,801 cases and 123,504 controls) and ischemic stroke

(34,217 cases and 406,111 controls) from corresponding genome-wide association studies among general populations, respec-

tively.15,45 Likewise, data on general cardiomyopathy were obtained from the FinnGen R8 study (5344 cases). Summary-level

data on other diabetic complications were obtained from the FinnGen R8 study with the number of cases ranging from 1975 for

peripheral circulatory complications to 8942 for diabetic retinopathy.

QUANTIFICATION AND STATISTICAL ANALYSIS

MR analysis
Protein-associated SNPs unavailable in outcome data were replaced by SNP proxies with a high linkage disequilibrium (R2 R 0.8)

based on 1000 Genomes European reference panel. Missing SNPs without suitable SNP proxies were removed from the analysis

(N = 190). The F statistic was calculated to assess the strength of the instrumental variables. We estimated statistical power for

the analyses assuming a disease prevalence of 2% in general.46 The ORs and corresponding CIs of the associations between plasma

proteins and studied outcomes were estimated by theWald ratio and the delta method (a general method for deriving the variance of
Cell Reports Medicine 4, 101174, September 19, 2023 e2
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a function of asymptotically normal random variables with known variance and commonly used to estimate standard error of MR ratio

estimate),47 respectively. The associations for one protein from two outcome data were meta-analyzed using the fixed-effect model.

The MR associations were scaled to one SD increase in genetically predicated levels of circulating proteins. Bonferroni method was

used to correct for multiple testing in the analysis for type 2 diabetes. The combined association with a p value <2.65 3 10�5 (0.05/

1885 proteins) was deemed significant. For type 2 diabetes, we performed a reverseMR analysis to estimate the associations of type

2 diabetes liability with the levels of identified proteins to explore potential reverse causation. For the MR analysis of diabetic

complications, we used the false discovery rate approach to correct for multiple testing given a comparative small sample size.

MR analyses were performed using TwoSampleMR and MendelianRandomization packages in R software (4.4.1).

Colocalization analysis
We performed the colocalization analysis to test whether identified associations of proteins with type 2 diabetes and diabetic com-

plications were driven by linkage disequilibrium. The analysis was based on a Bayesian model that assesses the support for five

exclusive hypotheses: 1) no association with either trait; 2) association with trait 1 only; 3) association with trait 2 only; 4) both traits

are associated, but distinct causal variants were for two traits; and 5) both traits are associated, and the same shares causal variant

for both traits.48 A posterior probability is provided for each hypothesis testing (H0, H1, H2, H3, and H4). In this analysis, we used the

setting that is the prior probabilities of the SNP being associated with trait 1 only (p1) at 1 3 10�4; the probability of the SNP being

associated with trait 2 only (p2) at 1 3 10�4; and the probability of the SNP being associated with both traits (p12) at 1 3 10�5. Two

signals were considered to have a strong support of colocalization if the posterior probability for shared causal variants (PH4) was

R0.8. Medium colocalization indication was defined as 0.5< PH4 <0.8. The analysis was performed using the coloc package in R

software (4.4.1). Given that the traditional colocalization approach cannot detect the scenario where the exposure and outcome traits

share more than one causal hit, we, therefore, utilized SuSiE (Sum of Single Effects)49 colocalization method by integrating prote-

omics GWAS summary statistics and genetic correlation matrix reference panels based on individuals of European ancestry from

the 1000 Genomes Project Phase 3 to identify multiple causal variants.

Function and network prediction
We used GeneMANIA (http://www.genemania.org) to predict the functions and networks of cis-genes for the diabetes-associated

proteins and both diabetes- and BMI-associated proteins. Detailed information on included datasets in GeneMANIA is described

somewhere else.50 Enriched function pathways were considered to be significant with false discovery rate <0.05.
e3 Cell Reports Medicine 4, 101174, September 19, 2023
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Figure S1. Power estimation. The power estimation assumed the disease prevalence of 2% and was performed 

according to this paper: https://academic.oup.com/ije/article/42/5/1497/623616.   



 
 

Figure S2. Networks of identified proteins associated with type 2 diabetes. The network prediction was based on an 

online tool: GeneMANIA (http://www.genemania.org).  



 
 

Figure S3. Associations of diabetes-associated proteins with body mass index in MR analysis. Results for BMI1 

were based on Neale Lab data and that for BMI2 were based on the GIANT consortium data.  



 
 

Figure S4. Networks of identified proteins in the two-stage network MR analysis. The network prediction was based 

on an online tool: GeneMANIA (http://www.genemania.org). 


	XCRM101174_proof_v4i9.pdf
	Plasma proteins and onset of type 2 diabetes and diabetic complications: Proteome-wide Mendelian randomization and colocali ...
	Introduction
	Results
	Associations between plasma proteins and type 2 diabetes
	Function and network prediction of diabetes-associated proteins
	Reverse MR analysis of type 2 diabetes liability with levels of identified 47 proteins
	Associations between diabetes-associated proteins and body mass index
	Associations between diabetes-associated proteins and diabetic complications

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental models and subject details
	Method details
	Data sources for plasma proteins
	Data sources for type 2 diabetes
	Data sources for BMI
	Data sources for diabetic complications

	Quantification and statistical analysis
	MR analysis
	Colocalization analysis
	Function and network prediction





