iScience, Volume 26

Supplemental information

Mechanism of hyperproteinemia-induced damage

to female reproduction in a genetic silkworm model

Gui-Hua Jiang, Guang Wang, Cheng Luo, Yong-Feng Wang, Jian-Feng Qiu, Ru-Ji Peng, Yang-Hu Sima, and Shi-Qing Xu

Supplemental information

Mechanism of Hyperproteinemia-Induced Damage to Female Reproduction in a Genetic Silkworm Model

Gui-Hua Jiang^{1,2,3}, Guang Wang^{1,2,3}, Cheng Luo^{1,2}, Yong-Feng Wang^{1,2}, Jian-Feng Qiu^{1,2}, Ru-Ji Peng^{1,2}, Yang-Hu Sima^{1,2}, and Shi-Qing Xu^{1,2,4,*}

Supplemental information

This file includes:	
Methods S1	P3
Figures S1 to S5	.P4-P8
Tables S1	Р9

Methods S1: Detection of free amino acid, related to Figure S4.

An equal volume of 10% trichloroacetic acid was added to the hemolymph samples of the P2-P6 stage. The mixture was mixed well and centrifuged for 10 min at 13000 g after being placed at room temperature for 2 h to collect the supernatants for testing. The detection was performed using high performance liquid chromatography. The chromatographic column used was ODS HYPERSIL ($250 \times 4.6 \text{ mm}, 5 \mu \text{m}$). For Mobile phase A, 225 µL of triethylamine was added to a 0.65% (w/v) sodium acetate, and the PH was adjusted to 7.20 ± 0.05 using 5% acetic acid. Finally, 5 mL of tetrahydrofuran was added. For Mobile phase B, 2% acetic acid was used to adjust the PH of a 3.25% (w/v) sodium acetate solution to 7.20 ± 0.05, and then 400 mL of acetonitrile and 400 mL of methanol was added. The flow rate was set at 1.0 mL/min, and the detection wavelengths were 338 nm and 262 nm, respectively.

Figure S1: Impact of high PPC on the quality of silkworm eggs, related to Figure 1. (A) PPC. L5D3, the third day of the fifth-instar larval stage, n = 3. (B) EP rate. EP, eggs in the body pigmentation stage. no-EP, eggs in the body no-pigmentation stage, n = 6. The data were mean \pm standard deviation (SD), and the significance of the difference in the student's *t*-test was not significant (ns), with P > 0.05.

Figure S2: Schematic diagram of ovarian length measurement, related to Figure 2. M0, newly molted adult stage.

Figure S3: PCA, related to Figure 3. T2 and T4 represent TBH in P2 and P4 respectively. W2 and W4 represent WT in P2 and P4 respectively.

Figure S4: Levels of blood sugar and amino acid, related to Figure 4. (A) Fat body weight and pupa weight (n = 8). (B) PPC and trehalose levels in hemolymph of mAM (n = 3). (C) Levels of trehalose, glucose, and glycogen in L5D3 and W stage (n = 3). (D) Amino acid level (n = 3). Gly, glycine; Ser, serine; Ala, Alanine; Tyr, tyrosine. (E) The transcriptional level of *SNAT1* (n = 3). *SNAT1*, sodium-dependent nutrient amino acid transporter 1. *sw22934* was determined as the reference gene for qRT-PCR. The data were mean \pm SD, and the significance of the difference in the student's *t*-test was ns, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Figure S5: Egg numbers and expression level of Vg gene, related to Figure 5. (A) Number of laid eggs. Bovine insulin was injected into the body fluid at the P1 stage when PPC just began to rise, at doses of 20, 60, and 100 µg per individual, and the number of eggs was counted at the adult stage. (B) Glucose content (n = 3). Hemolymph samples were collected at 0, 30, 60, and 90 min after 100 µg bovine insulin injection. qRT-PCR analysis of Vg in TBH (C), WT injected with trehalose (D) and TBH injected with bovine insulin (E). *sw22934* was determined as the reference gene for qRT-PCR, n = 3. The data in the figures were the mean \pm SD. The data in figure A were analyzed by the ANOVA, and the different letters among groups indicated a significant difference. The data in figure B-E were analyzed by the student's *t*-test and the significance of the difference was ns, P > 0.05; *, P < 0.05; ***, P < 0.001.

Genes	Primers	Forward (5' to 3')	Reverse (5' to 3')
Fibroin heavy chain protein-like	Hpl	GCGACGAAAATGGAGGATAG GG	CGCTGGACCGCTTTGACTT C
Facilitated trehalose transporter1	Tret1	CGGATACCCGCTGAAGT	TCGGATAGCAACACCCAC
Trehalase2	Treh2	GTTACAGATTACGGCGAACTT C	CTTCTTCATCCCATAACGCT TG
Alanine aminotransferase	ALT	GCTGCGACCTGTTGTGAG	TCCCGACCTCAAGCCACA
Glutamate dehydrogenase	m-GDH	CTACCCGAACGCCAAAGA	GCTGCGACCTGTTGTGAG
Serine hydroxymethyl transferase	SHMT	TCGCAGACGCAAATGGA	CGAACGGGCTCGGTATT
Fuarylacetoacetehydrolase	FAH	GGACGGTGAAACAGCAAC	GTGCCCTTCCAGGACAAT
Pyruvate carboxylase	PC	GTGCCCTTCCAGGACAAT	CGAGCGAGTACAGGTTGT TGA AG
Phosphoenolpyruvate carboxykinase	PEPCK	ACTAACGTGGCGGAAACA	ACTAACGTGGCGGAAACA
Trehalose-6-phosphate synthase	TPS	TGAGGACAGCATTCGGTTTG	CATCGCCAGTAAAGAGTC GG
Trehalose synthase	Tres	TACCATGCAACCAGTCACTAT T	ATGATGGCTATGTACACAT CGG
Glycogen branching enzyme	Gbe	CCCGTGTCCAAATCATAG	AGGGCTGTTCTGGCTTAT
Glycogen synthase	Gys	GGGCTCATCGTTCTAAGGGTA	CCATGCAGTAGCGGTGGT AT
Glycogen synthase kinase	Gsk	GTTAAACGCAATGCAGACCC	AAAGAATGAATGTACGCC AGA
Sodium-dependent nutrient amino acid transporter 1	SNAT1	CGCCCACAACAAATACAAAG	GGAACTTCTCTTCTGGAA CCTT
Vitellogenin	Vg	CTTGTGCCATCGATAGAACA G	GTCGATATTGCATCCCCAT C
Sw22934	sw22934	TTCGTACTGCTCTTCTCG	CAAAGTTGATAGCAATTCC CT
RpL32	Rp49	CAGGCGGTTCAAGGGTCAAT AC	TACGGAATCCATTTGGGAG CAT

 Table S1: Primers used in qRT-PCR, related to Figures 1, 3, 4, S4 and S5.