¹ **Supplementary Methods**

² **Classifiers**

³ We implemented the following classifiers in the machine learning framework and compared their performance: (1)

⁴ random forest; (2) logistic regression; (3) L1-regularized (LASSO) logistic regression; (4) L2-regularized (Ridge)

⁵ logistic regression; (5) Elastic net regularized logistic regression. Random forest was implemented using the

⁶ randomForest R package with 1000 trees. The hyperparameter 'mtry' (number of variables randomly sampled as ⁷ candidates at each split) was tuned using the caret R package with repeated cross-validation. Logistic regression

8 was implemented using the glm function in R. The regularized logistic regression models were implemented using

⁹ the glmnet R package. The hyperparameter 'lambda' in the LASSO and Ridge models was tuned using the

¹⁰ cv.glment function. The hyperparameters 'alpha' and 'lambda' were tuned using the caret R package with repeated

¹¹ cross-validation.

¹² **Bayesian Approach**

Let $G = 1$ if a genus is present (relative abundance > 0.001) and 0 if absent, $B = 1$ if a women has preterm birth (PTB) and 0 if term birth. We can have the conditional probability of PTB giving a genus is absent for dataset *i* to be

$$
p_i(B = 1 | G = 0) = p_i^0 = \frac{u_i}{1 + u_i}
$$

 $_{13}$ where u_i is the odds of PTB giving a genus is absent for dataset i .

Define *r* as the odds ratio between a genus is present and absent and it is the same for different datasets. Thus, the conditional probability of PTB giving a genus is present for dataset *i* can be written as

$$
p_i(B = 1|G = 1) = p_i^1 = \frac{u_i r}{1 + u_i r}
$$

¹⁴ We assume both u_i and r have prior distributions, $p(u_i)$ and $p(r)$, respectively. We are interested in calculating

 $_1$ s the posterior distribution of r . Given dataset i , let N_i is the total number of subjects in study i , n_i is the number of

 \cdot subjects that with certain genus present. M_i is the number of PTB subjects in study i , m_i is the number of PTB

¹⁷ subjects that with certain genus present. Thus, we can have the likelihood function

$$
p(N_i, n_i, M_i, m_i | u_i, r)
$$

= $(p_i^0)^{M_i - m_i} (1 - p_i^0)^{(N_i - n_i) - (M_i - m_i)} (p_i^1)^{m_i} (1 - p_i^1)^{n_i - m_i}$
= $\frac{u_i^{M_i - m_i}}{(1 + u_i)^{N_i - n_i}} * \frac{(u_i r)^{m_i}}{(1 + u_i r)^{n_i}}$
= $\frac{u_i^{M_i} r^{m_i}}{(1 + u_i)^{N_i - n_i} (1 + u_i r)^{n_i}}$ (1)

18 Thus, the posterior distribution of u_i and r can be written as

$$
p(u_i, r | N_i, n_i, M_i, m_i) = \frac{p(N_i, n_i, M_i, m_i | u_i, r) p(u_i, r)}{p(N_i, n_i, M_i, m_i)} = \frac{p(N_i, n_i, M_i, m_i | u_i, r) p(u_i) p(r)}{\int_{u_i} \int_{r} p(N_i, n_i, M_i, m_i | u_i, r) p(u_i) p(r)}
$$
\n(2)

¹⁹ Furthermore, we can integrate out u_i and obtain the posterior distribution for odds ratio r ,

$$
p(r|N_i, n_i, M_i, m_i) = \int_{u_i} p(u_i, r|N_i, n_i, M_i, m_i)
$$

=
$$
\frac{p(r) \int_{u_i} p(N_i, n_i, M_i, m_i|u_i, r) p(u_i)}{\int_{u_i} \int_r p(N_i, n_i, M_i, m_i|u_i, r) p(u_i) p(r)}
$$
 (3)

²⁰ We assume the $log(u_i)$ follows a uniform prior distribution for each dataset. For r , we let the first dataset has the 21 uniform prior distribution, then calculate the posterior distribution of r . Next we let the posterior distribution of the

₂₂ odds ratio from the first dataset be the prior distribution for the second dataset, and update the posterior distribution

²³ of *r*. Repeated the process until the last dataset and obtain the final posterior distribution of *r*.