
Supplementary Methods1

Classifiers2

We implemented the following classifiers in the machine learning framework and compared their performance: (1)3

random forest; (2) logistic regression; (3) L1-regularized (LASSO) logistic regression; (4) L2-regularized (Ridge)4

logistic regression; (5) Elastic net regularized logistic regression. Random forest was implemented using the5

randomForest R package with 1000 trees. The hyperparameter ‘mtry’ (number of variables randomly sampled as6

candidates at each split) was tuned using the caret R package with repeated cross-validation. Logistic regression7

was implemented using the glm function in R. The regularized logistic regression models were implemented using8

the glmnet R package. The hyperparameter ‘lambda’ in the LASSO and Ridge models was tuned using the9

cv.glment function. The hyperparameters ‘alpha’ and ‘lambda’ were tuned using the caret R package with repeated10

cross-validation.11

Bayesian Approach12

Let G = 1 if a genus is present (relative abundance > 0.001) and 0 if absent, B = 1 if a women has preterm birth
(PTB) and 0 if term birth. We can have the conditional probability of PTB giving a genus is absent for dataset i to be

pi(B = 1|G = 0) = p0
i = ui

1+ui

where ui is the odds of PTB giving a genus is absent for dataset i.13

Define r as the odds ratio between a genus is present and absent and it is the same for different datasets. Thus, the
conditional probability of PTB giving a genus is present for dataset i can be written as

pi(B = 1|G = 1) = p1
i = uir

1+uir

We assume both ui and r have prior distributions, p(ui) and p(r), respectively. We are interested in calculating14

the posterior distribution of r. Given dataset i, let Ni is the total number of subjects in study i, ni is the number of15

subjects that with certain genus present. Mi is the number of PTB subjects in study i, mi is the number of PTB16

subjects that with certain genus present. Thus, we can have the likelihood function17

p(Ni,ni,Mi,mi|ui, r)

= (p0
i )Mi−mi(1−p0

i )(Ni−ni)−(Mi−mi)(p1
i )mi(1−p1

i )ni−mi

=
uMi−mi

i

(1+ui)Ni−ni
∗ (uir)mi

(1+uir)ni

=
uMi

i rmi

(1+ui)Ni−ni(1+uir)ni

(1)

Thus, the posterior distribution of ui and r can be written as18

p(ui, r|Ni,ni,Mi,mi) = p(Ni,ni,Mi,mi|ui, r)p(ui, r)
p(Ni,ni,Mi,mi)

= p(Ni,ni,Mi,mi|ui, r)p(ui)p(r)∫
ui

∫
r p(Ni,ni,Mi,mi|ui, r)p(ui)p(r)

(2)

Furthermore, we can integrate out ui and obtain the posterior distribution for odds ratio r,19

p(r|Ni,ni,Mi,mi) =
∫

ui

p(ui, r|Ni,ni,Mi,mi)

=
p(r)

∫
ui

p(Ni,ni,Mi,mi|ui, r)p(ui)∫
ui

∫
r p(Ni,ni,Mi,mi|ui, r)p(ui)p(r)

(3)

We assume the log(ui) follows a uniform prior distribution for each dataset. For r, we let the first dataset has the20

uniform prior distribution, then calculate the posterior distribution of r. Next we let the posterior distribution of the21

odds ratio from the first dataset be the prior distribution for the second dataset, and update the posterior distribution22

of r. Repeated the process until the last dataset and obtain the final posterior distribution of r.23
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