Figure 1 – figure supplement 1

DNA sequence for ASIC1a from rat used in this study. Conservative mutations to lessen alternative initiation highlighted in cyan and cysteine to serine mutations highlighted in yellow. Amino acid translation is above in red.

M E L K T E E E E V G G V Q P V S L Q A ATGGAACTCAAAACCGAGGAGGAGGAGGACGGTGGTGTCCAGCCGGTCAGCCCGCC 10 20 30 40 50 S S T L H G L A H I F S Y E R S F А S L TTCGCCAGCAGCTCCACCCTTCATGGTCTCCGCCCACATCTTCTCCTATGAGCGGCTGTCT 70 80 90 100 110 LKRALWALCFLGSLAVLL V С 130 140 150 160 170 R V O Y Y F C Y H H V T K L D E V СТЕ TGCACTGAGCGTGTGCAGTACTACTTCTGCTATCACCACGTCACCAAGCTTGACGAAGTG 190 200 210 220 230 ΟLΤ FPAVTLC NLN E F R F Α Α S GCTGCCTCCCAGCTCACCTTCCCTGCTGTCACACTGTGCAATCTCAATGAGTTCCGCTTT 250 260 270 280 290 S O V S K N D L Y H A G E L L A L L N N AGCCAAGTCTCCAAGAATGACCTGTACCATGCTGGGGAGCTGCTGGCCCTGCTCAACAAC 310 320 330 340 350 R Y E I P D T Q M A D E K Q L E I L O D AGGTATGAGATCCCGGACACACAGATGGCTGATGAAAAGCAGCTAGAGATATTGCAGGAC 410 370 380 390 400 N F R S F K P K P F N M R E FYDR K A AAGGCCAACTTCCGGAGCTTCAAGCCCAAGCCCTTCAACATGCGTGAATTCTACGACAGA 430 440 450 460 470 A G H D I R D M L L S C H F R G E A C S GCGGGGCACGATATTCGAGACATGCTGCTCTCGTGCCACTTCCGTGGGGAGGCCTGCAGC 490 500 510 520 530 A E D F K V V F T R Y G K C Y T F N S G GCTGAAGATTTCAAAGTGGTCTTCACTCGGTATGGGAAGTGTTACACATTCAACTCGGGC 550 560 570 580 590

Q D G R P R L K T M K G G T G N G L E I CAAGATGGGCGGCCACGGCTGAAGACCATGAAAGGTGGGACTGGCAATGGCCTGGAGATC 620 610 630 640 650 M L D I Q Q D E Y L P V W G E T D E T S ATGCTGGACATTCAGCAAGATGAATATTTGCCTGTGTGGGGAGAGACCGACGAGACATCC 670 680 690 700 710 FEAGIKVQIHSQDEPPFIDQ TTCGAAGCAGGCATCAAAGTGCAGATCCACAGTCAGGATGAACCCCCTTTCATCGACCAG 730 740 750 760 770 L G F G V A P G F Q T F V S C Q E Q R L CTGGGCTTTGG<mark>C</mark>GTGGCTCCAGGTTTCCAGACGTTTGTGTCTTGCCAGGAGCAGAGGCTC 790 800 810 820 830 I Y L P S P W G T C N A V T M D S D F F ATCTACCTGCCCTCACCCTGGGGCACCTGCAATGCTGTTACCATGGACTCGGATTTCTTC 860 870 880 890 850 D S Y S I T A C R I D C E T R Y L V E N GACTCCTACAGCATCACTGCCTGCCGGATTGATTGCGAGACGCGTTACCTGGTGGAGAAC 940 910 920 930 950 C N C R M V H M P G D A P Y C T P E O Y TGCAACTGCCGTATGGTGCACATGCCAGGGGACGCCCCATACTGCACTCCAGAGCAGTAC 970 980 990 1000 1010 K E C A D P A L D F L V E K D Q E Y C V AAGGAGTGTGCAGATCCTGCCCTGGACTTCCTAGTGGAGAAAGACCAGGAATACTGCGTG 1030 1040 1050 1060 1070 C E M P C N L T R Y G K E L S M V K I P TGTGAGATGCCTTGCAACCTGACCCGCTACGGCAAGGAGCTGTCCATGGTCAAGATCCCA 1100 1110 1120 1090 1130 S K A S A K Y L A K K F N K S E O Y I G AGCAAAGCCTCCGCCAAGTACCTGGCCAAGAAGTTCAACAAATCGGAGCAGTACATAGGG 1150 1160 1170 1180 1190 E N I L V L D I F F E V L N Y E T I E O GAGAACATTCTGGTGCTGGACATTTTCTTTGAAGTCCTCAACTATGAGACCATCGAGCAG 1210 1220 1230 1240 1250 K K A Y E I A G L L G D I G G Q M G L F

AAAAA	GGC	СТА	TGA	GAT	CGCZ	AGG	GCT	GTI	GGG	TGA	CAT	CGG	GGG	CCA	GAT	GGG	GTT	GTTC
		12	70		12	280			129	0		13	00		1	310		
TG	A	S	т	т.	Ŧ	V	T.	E	т.	ਜ	Л	Y	А	Y	E	V	т	К
	TCC	CAC	~~~ ~~~~	- ССТ		י רביים	<u>–</u> сст			- ~~~~	TCA	ר תייאי	TCC	<u>-</u> Стл		ССТ	 הערי	TAAC
AICGG	IGC	1 2	20	CCI		240	JCI	GGE		011	IGA		r GC	CIA		270	CAI	IAAG
		13	30		⊥.	340			133	0		13	60		T.	370		
H R	L	S	R	R	G	Κ	С	Q	K	Ε	А	Κ	R	S	S	A	D	K
CACAG	GCT	GT <mark>C</mark>	CAG	ACG	TGG	AAA	GTG	CCA	GAA	GGA	GGC	TAA	GAG	GAG	CAG	CGC	AGA	CAAG
		13	90		14	400			141	0		14	20		1	430		
G V	А	L	S	L	D	D	V	Κ	R	Н	Ν	Р	S	Е	S	L	R	G
GGCGT	GGC	GCT	CAG	ССТ	GGA'	rga(CGT	CAA	AAG	ACA	CAA	TCC	ст <mark>с</mark>	CGA	GAG	ССТ	CCG	AGGA
		14	50		14	460			147	0		14	80		1	490		
			00		-				/	0			00		-			
ΗР	A	G	м	т	Y	А	А	N	т	т.	P	н	н	P	A	R	G	т
CATCC	т <u>с</u> сі		СЪТ	GAC	- (277 ם (- CC	TGC			 ССТ				- тсс		TCG		
011100	100	15	1 0	0110	11	500. 500	100	<i>C11</i>	152	001	1100	15	1 O	100	1	550	100,	01100
		тJ	τU		1、	JZU			TJJ	U		тJ	чU		Τ.	550		

F E D F T S TTTGAGGACTTTACCT<mark>C</mark>C 1570

Figure 2 - figure supplement 1

Representative western blots for all TAG mutants created in this study. Westerns were blotted with an anti-GFP antibody that recognizes the terminal mCitrine. Each TAG mutant was cultured both with L-ANAP (10 μ M) and without L-ANAP supplementation. Westerns in this figure were run on Bis-Tris gels, whereas the westerns in Figure 2 were run on Tris-Glycine gels, which results in ASIC running slightly differently between the 2 gel types.

Figure 2- supplement table 1

 pH_{50} from 2C with N and SEM for each TAG position.

	pH ₅₀	6.52
C469 WT	SEM	0.01
	n	5
	pH ₅₀	6.66
E8TAG	SEM	0.01
	n	3
	pH ₅₀	6.58
G11TAG	G SEM 0.02	0.02
	n	4
	pH ₅₀	6.42
Q14TAG	SEM	0.02
	n	5
	pH ₅₀	6.58
505TAG	SEM	0.02
	n	4

Figure 3 – figure supplement 1 (A) Spectral properties of Zn^{2+} -TETAC and Zn^{2+} -C18-NTA at pH 8 and pH 6 .

А

Figure 6- table supplement 1

P-values of relevant comparisons between NTD TAG positions with cysteine at C469 at pH 8 and pH 6. P values were calculated using two-way ANOVA with Tukey's multiple comparisons test.

	TAG position comparison	P value
	E8TAG pH 8 vs. E8TAG pH 6	0.1068
	G11TAG pH 8 vs. G11TAG pH 6	0.0091
	Q14TAG pH 8 vs. Q14TAG pH 6	<0.0001
рп о vs рп о 	S24TAG pH 8 vs. S24TAG pH 6	0.0069
_	I33TAG pH 8 vs. I33TAG pH 6	<0.0001
	A44TAG pH 8 vs. A44TAG pH 6	<0.0001
	E8TAG pH 8 vs. G11TAG pH 8	0.9991
	E8TAG pH 8 vs. Q14TAG pH 8	0.0139
	G11TAG pH 8 vs. Q14TAG pH 8	0.0071
рп о vs рп о 	S24TAG pH 8 vs. I33TAG pH 8	0.0521
_	S24TAG pH 8 vs. A44TAG pH 8	0.9973
	I33TAG pH 8 vs. A44TAG pH 8	0.4091
	E8TAG pH 6 vs. G11TAG pH 6	0.7078
	E8TAG pH 6 vs. Q14TAG pH 6	<0.0001
	G11TAG pH 6 vs. Q14TAG pH 6	0.0818
рп о vs рп о	S24TAG pH 6 vs. I33TAG pH 6	0.9865
	S24TAG pH 6 vs. A44TAG pH 6	<0.0001
	I33TAG pH 6 vs. A44TAG pH 6	<0.0001

Figure 6- table supplement 2

P-values of relevant comparisons between cytosolic NTD TAG positions with cysteine at C477 at pH 8 and pH 6. P values were calculated using two-way ANOVA with Tukey's multiple comparisons test.

	TAG position comparison	P value
	G11TAG pH 8 vs. G11TAG pH 6	0.0381
pH 8 vs pH 6	Q14TAG pH 8 vs. Q14TAG pH 6	0.9759
	S24TAG pH 8 vs. S24TAG pH 6	0.0075
	G11TAG pH 8 vs. Q14TAG pH 8	0.9732
pH 8 vs pH 8	G11TAG pH 8 vs. S24TAG pH 8	0.0259
	Q14TAG pH 8 vs. S24TAG pH 8	0.4234
	G11TAG pH 6 vs. Q14TAG pH 6	0.6374
pH 6 vs pH 6	G11TAG pH 6 vs. S24TAG pH 6	0.2881
	Q14TAG pH 6 vs. S24TAG pH 6	0.0015

Figure 7- figure supplement 1

(A) Normalized FRET efficiency between L-ANAP in the reentrant loop and Cu²⁺-TETAC at position C469 at pH 8 (black) and pH 6 (red). FRET efficiencies, SEM, N and calculated distances are summarized in Table 1. (B) Normalized FRET efficiency between L-ANAP incorporated at S24 and Cu²⁺-TETAC at either C477 or C485. Box and whisker plot with whiskers ranging from minimum to maximum values and the bottom and top edges of the box denoting the 25th and 75th quartiles, respectively. Statistical significance shown using two-way ANOVA with Tukey's multiple comparisons test are denoted between relevant comparison using appropriate asterisks. Ns indicates p > 0.05, * indicates $p \le 0.05$, ** indicates $p \le 0.001$, **** indicates $p \le 0.001$.

Figure 7- table supplement 1

P-values of relevant comparisons between cytosolic NTD TAG positions with cysteine at C485 at pH 8 and pH 6. P values were calculated using two-way ANOVA with Tukey's multiple comparisons test.

	TAG position comparison	P value
	E8 TAG pH 8 vs. E8 TAG pH 6	0.0065
pH 8 vs pH 6	G11 TAG pH 8 vs. G11 TAG pH 6	<0.0001
	Q14 TAG pH 8 vs. Q14 TAG pH 6	<0.0001
	S24 TAG pH 8 vs. S24 TAG pH 6	<0.0001
	E8 TAG pH 8 vs. G11 TAG pH 8	0.0005
	E8 TAG pH 8 vs. Q14 TAG pH 8	0.0323
	E8 TAG pH 8 vs. S24 TAG pH 8	<0.0001
σονς μη ο	G11 TAG pH 8 vs. Q14 TAG pH 8	0.6303
	G11 TAG pH 8 vs. S24 TAG pH 8	0.9871
	Q14 TAG pH 8 vs. S24 TAG pH 8	0.0833
	E8 TAG pH 6 vs. G11 TAG pH 6	<0.0001
	E8 TAG pH 6 vs. Q14 TAG pH 6	<0.0001
по vs рпо	E8 TAG pH 6 vs. S24 TAG pH 6	<0.0001
	G11 TAG pH 6 vs. Q14 TAG pH 6	>0.9999

Figure 7- table supplement 2

P-values of relevant comparisons between cytosolic NTD TAG positions with cysteine at C505 at pH 8 and pH 6. P values were calculated using two-way ANOVA with Tukey's multiple comparisons test.

	TAG position comparison	P value
	E8 TAG pH 8 vs. E8 TAG pH 6	0.0019
рп о vs рп о	Q14 TAG pH 8 vs. Q14 TAG pH 6	0.8454
pH 8 vs pH 8	E8 TAG pH 8 vs. Q14 TAG pH 8	0.0008
pH 6 vs pH 6	E8 TAG pH 6 vs. Q14 TAG pH 6	0.0944

Figure 7- table supplement 3

P-values of relevant comparisons between cytosolic NTD TAG positions with cysteine at C515 at pH 8 and pH 6. P values were calculated using two-way ANOVA with Tukey's multiple comparisons test.

E8TAG pH 8 vs. E8TAG pH 6	~0.0001
	<0.000 I
Q14TAG pH 8 vs. Q14TAG pH 6	<0.0001
E8TAG pH 8 vs. Q14TAG pH 8	< 0.0001
E8TAG pH 6 vs. Q14TAG pH 6	<0.0001
-	Q14TAG pH 8 vs. Q14TAG pH 6 E8TAG pH 8 vs. Q14TAG pH 8 E8TAG pH 6 vs. Q14TAG pH 6

Figure 8- table supplement 1

P-values of relevant comparisons between NTD TAG positions with the plasma membrane at pH 8 and pH 6. P values were calculated using two-way ANOVA with Tukey's multiple comparisons test.

	TAG position comparison	P value
	E8TAG pH 8 vs. E8TAG pH 6	0.9998
	G11TAG pH 8 vs. G11TAG pH 6	0.9975
pH 8 vs pH 6	Q14TAG pH 8 vs. Q14TAG pH 6	0.0032
	S24TAG pH 8 vs. S24TAG pH 6	>0.9999
	I33TAG pH 8 vs. I33TAG pH 6	0.0001
	E8TAG pH 8 vs. G11TAG pH 8	0.9949
	E8TAG pH 8 vs. Q14TAG pH 8	>0.9999
рп 8 vs рп 8	G11TAG pH 8 vs. Q14TAG pH 8	>0.9999
	S24TAG pH 8 vs. I33TAG pH 8	0.0092
	E8TAG pH 6 vs. G11TAG pH 6	0.1550
	E8TAG pH 6 vs. Q14TAG pH 6	<0.0001
рпоvsрно	G11TAG pH 6 vs. Q14TAG pH 6	0.0576
	S24TAG pH 6 vs. I33TAG pH 6	>0.9999

Figure 8- table supplement 2

P-values of relevant comparisons between CTD TAG positions with the plasma membrane at pH 8 and pH 6. P values were calculated using two-way ANOVA with Tukey's multiple comparisons test.

	TAG position comparison	P value
	464TAG pH 8 vs. 464TAG pH 6	0.8153
рп о vs рп о	505TAG pH 8 vs. 505TAG pH 6	<0.0001
pH 8 vs pH 8	464TAG pH 8 vs. 505TAG pH 8	0.8693
pH 6 vs pH 6	464TAG pH 6 vs. 505TAG pH 6	0.0366