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Supplementary Figure 1: Simulation results showing performance of the PRS 
constructed by MUSSEL and various existing methods, assuming a fixed common SNP 
heritability (0.4) across ancestries under a strong negative selection model for the 
relationship between SNP effect size and allele frequency. The genetic correlation in SNP 
effect size is set to 0.8 across all pairs of populations. The causal SNP proportion (degree of 
polygenicity) is set to 1.0%, 0.1%, or 0.05% (~192𝐾, 19.2𝐾, or 9.6𝐾 causal SNPs). We generate 
data for ~19 million common SNPs (MAF≥1%) across the five ancestry groups but conduct 

analyses only on the ~2.0 million SNPs in HapMap 3 + MEGA. The discovery GWAS sample 
size is set to (a) 15,000 or (b) 45,000 for each non-EUR ancestry, and 100,000 for EUR. A 
tuning set consisting of 10,000 individuals is used for parameter tuning, as well as training the 
SL in CT-SLEB and MUSSEL or the linear combination model in weighted C+T, weighted 
LDpred2, PRS-CSx, and weighted MUSS. The reported 𝑅2 values are calculated on an 

independent testing set of 10,000 individuals for each ancestry group. The corresponding 95% 
bootstrap CIs are obtained from the same testing set based on 10,000 bootstrap samples using 
the Bca approach1 implemented in the R package “boot”. 



 2 

 

 
 
 



 3 

Supplementary Figure 2: Simulation results showing performance of the PRS 
constructed by MUSSEL and various existing methods, assuming a fixed common SNP 
heritability (0.4) across ancestries under a strong negative selection model for the 
relationship between SNP effect size and allele frequency. The genetic correlation in SNP 
effect size is set to 0.8 across all pairs of populations. The causal SNP proportion (degree of 
polygenicity) is set to 1.0%, 0.1%, or 0.05% (~192𝐾, 19.2𝐾, or 9.6𝐾 causal SNPs). We generate 
data for ~19 million common SNPs (MAF≥1%) across the five ancestries but conduct analyses 

only on the ~2.0 million SNPs in HapMap 3 + MEGA. The discovery GWAS sample size is set to 
(a) 80,000 or (b) 100,000 for each non-EUR ancestry, and 100,000 for EUR. A tuning set 
consisting of 10,000 individuals is used for parameter tuning, as well as training the SL in CT-
SLEB and MUSSEL or the linear combination model in weighted C+T, weighted LDpred2, PRS-
CSx, and weighted MUSS. The reported 𝑅2 values are calculated on an independent testing set 

of 10,000 individuals for each ancestry group. The corresponding 95% bootstrap CIs are 
obtained from the same testing set based on 10,000 bootstrap samples using the Bca 
approach1 implemented in the R package “boot”. 
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Supplementary Figure 3: Simulation results showing performance of the PRS 
constructed by MUSSEL and various existing methods, assuming a fixed per-SNP 
heritability (0.4) across ancestries under a strong negative selection model for the 
relationship between SNP effect size and allele frequency. The genetic correlation in SNP 
effect size is set to 0.8 across all pairs of populations. The causal SNP proportion (degree of 
polygenicity) is set to 1.0%, 0.1%, or 0.05% (~192𝐾, 19.2𝐾, or 9.6𝐾 causal SNPs). We generate 
data for ~19 million common SNPs (MAF≥1%) across the five ancestries but conduct analyses 

only on the ~2.0 million SNPs in HapMap 3 + MEGA. The discovery GWAS sample size is set to 
(a) 15,000 or (b) 45,000 for each non-EUR ancestry, and 100,000 for EUR. A tuning set 
consisting of 10,000 individuals is used for parameter tuning, as well as training the SL in CT-
SLEB and MUSSEL or the linear combination model in weighted C+T, weighted LDpred2, PRS-
CSx, and weighted MUSS. The reported 𝑅2 values are calculated on an independent testing set 

of 10,000 individuals for each ancestry group. The corresponding 95% bootstrap CIs are 
obtained from the same testing set based on 10,000 bootstrap samples using the Bca 
approach1 implemented in the R package “boot”. 
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Supplementary Figure 4: Simulation results showing performance of the PRS 
constructed by MUSSEL and various existing methods, assuming a fixed per-SNP 
heritability (0.4) across ancestries under a strong negative selection model for the 
relationship between SNP effect size and allele frequency. The genetic correlation in SNP 
effect size is set to 0.8 across all pairs of populations. The causal SNP proportion (degree of 
polygenicity) is set to 1.0%, 0.1%, or 0.05% (~192𝐾, 19.2𝐾, or 9.6𝐾 causal SNPs). We generate 
data for ~19 million common SNPs (MAF≥1%) across the five ancestries but conduct analyses 

only on the ~2.0 million SNPs in HapMap 3 + MEGA. The discovery GWAS sample size is set to 
(a) 80,000 or (b) 100,000 for each non-EUR ancestry, and 100,000 for EUR. A tuning set 
consisting of 10,000 individuals is used for parameter tuning, as well as training the SL in CT-
SLEB and MUSSEL or the linear combination model in weighted C+T, weighted LDpred2, PRS-
CSx, and weighted MUSS. The reported 𝑅2 values are calculated on an independent testing set 

of 10,000 individuals for each ancestry group. The corresponding 95% bootstrap CIs are 
obtained from the same testing set based on 10,000 bootstrap samples using the Bca 
approach1 implemented in the R package “boot”. 
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Supplementary Figure 5: Simulation results showing performance of the PRS 
constructed by MUSSEL and various existing methods, assuming a fixed per-SNP 
heritability (0.4) across ancestries under a strong negative selection model for the 
relationship between SNP effect size and allele frequency but with weaker cross-
population (0.6 across all pairs of populations). The causal SNP proportion (degree of 
polygenicity) is set to 1.0%, 0.1%, or 0.05% (~192𝐾, 19.2𝐾, or 9.6𝐾 causal SNPs). We generate 
data for ~19 million common SNPs (MAF≥1%) across the five ancestries but conduct analyses 

only on the ~2.0 million SNPs in HapMap 3 + MEGA. The discovery GWAS sample size is set to 
(a) 15,000 or (b) 45,000 for each non-EUR ancestry, and 100,000 for EUR. A tuning set 
consisting of 10,000 individuals is used for parameter tuning, as well as training the SL in CT-
SLEB and MUSSEL or the linear combination model in weighted C+T, weighted LDpred2, PRS-
CSx, and weighted MUSS. The reported 𝑅2 values are calculated on an independent testing set 

of 10,000 individuals for each ancestry group. The corresponding 95% bootstrap CIs are 
obtained from the same testing set based on 10,000 bootstrap samples using the Bca 
approach1 implemented in the R package “boot”. 
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Supplementary Figure 6: Simulation results showing performance of the PRS 
constructed by MUSSEL and various existing methods, assuming a fixed per-SNP 
heritability (0.4) across ancestries under a strong negative selection model for the 
relationship between SNP effect size and allele frequency but with weaker cross-
population (0.6 across all pairs of populations). The causal SNP proportion (degree of 
polygenicity) is set to 1.0%, 0.1%, or 0.05% (~192𝐾, 19.2𝐾, or 9.6𝐾 causal SNPs). We generate 
data for ~19 million common SNPs (MAF≥1%) across the five ancestries but conduct analyses 

only on the ~2.0 million SNPs in HapMap 3 + MEGA. The discovery GWAS sample size is set to 
(a) 80,000 or (b) 100,000 for each non-EUR ancestry, and 100,000 for EUR. A tuning set 
consisting of 10,000 individuals is used for parameter tuning, as well as training the SL in CT-
SLEB and MUSSEL or the linear combination model in weighted C+T, weighted LDpred2, PRS-
CSx, and weighted MUSS. The reported 𝑅2 values are calculated on an independent testing set 

of 10,000 individuals for each ancestry group. The corresponding 95% bootstrap CIs are 
obtained from the same testing set based on 10,000 bootstrap samples using the Bca 
approach1 implemented in the R package “boot”. 
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Supplementary Figure 7: Simulation results showing performance of the PRS 
constructed by MUSSEL and various existing methods, assuming a fixed common SNP 
heritability (0.4) across ancestries with no negative selection for the relationship between 
SNP effect size and allele frequency. The genetic correlation in SNP effect size is set to 0.8 
across all pairs of populations. The causal SNP proportion (degree of polygenicity) is set to 
1.0%, 0.1%, or 0.05% (~192𝐾, 19.2𝐾, or 9.6𝐾 causal SNPs). We generate data for ~19 million 
common SNPs (MAF≥1%) across the five ancestries but conduct analyses only on the ~2.0 

million SNPs in HapMap 3 + MEGA. The discovery GWAS sample size is set to (a) 15,000 or 
(b) 45,000 for each non-EUR ancestry, and 100,000 for EUR. A tuning set consisting of 10,000 
individuals is used for parameter tuning, as well as training the SL in CT-SLEB and MUSSEL or 
the linear combination model in weighted C+T, weighted LDpred2, PRS-CSx, and weighted 
MUSS. The reported 𝑅2 values are calculated on an independent testing set of 10,000 

individuals for each ancestry group. The corresponding 95% bootstrap CIs are obtained from 
the same testing set based on 10,000 bootstrap samples using the Bca approach1 implemented 
in the R package “boot”. 
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Supplementary Figure 8: Simulation results showing performance of the PRS 
constructed by MUSSEL and various existing methods, assuming a fixed common SNP 
heritability (0.4) across ancestries with no negative selection for the relationship between 
SNP effect size and allele frequency. The genetic correlation in SNP effect size is set to 0.8 
across all pairs of populations. The causal SNP proportion (degree of polygenicity) is set to 
1.0%, 0.1%, or 0.05% (~192𝐾, 19.2𝐾, or 9.6𝐾 causal SNPs). We generate data for ~19 million 
common SNPs (MAF≥1%) across the five ancestries but conduct analyses only on the ~2.0 

million SNPs in HapMap 3 + MEGA. The discovery GWAS sample size is set to (a) 80,000 or 
(b) 100,000 for each non-EUR ancestry, and 100,000 for EUR. A tuning set consisting of 10,000 
individuals is used for parameter tuning, as well as training the SL in CT-SLEB and MUSSEL or 
the linear combination model in weighted C+T, weighted LDpred2, PRS-CSx, and weighted 
MUSS. The reported 𝑅2 values are calculated on an independent testing set of 10,000 

individuals for each ancestry group. The corresponding 95% bootstrap CIs are obtained from 
the same testing set based on 10,000 bootstrap samples using the Bca approach1 implemented 
in the R package “boot”. 
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Supplementary Figure 9: Simulation results showing performance of the PRS 
constructed by MUSSEL and various existing methods, assuming a fixed common SNP 
heritability (0.4) across ancestries under a mild negative selection model for the 
relationship between SNP effect size and allele frequency. The genetic correlation in SNP 
effect size is set to 0.8 across all pairs of populations. The causal SNP proportion (degree of 
polygenicity) is set to 1.0%, 0.1%, or 0.05% (~192𝐾, 19.2𝐾, or 9.6𝐾 causal SNPs). We generate 
data for ~19 million common SNPs (MAF≥1%) across the five ancestries but conduct analyses 

only on the ~2.0 million SNPs in HapMap 3 + MEGA. The discovery GWAS sample size is set to 
(a) 15,000 or (b) 45,000 for each non-EUR ancestry, and 100,000 for EUR. A tuning set 
consisting of 10,000 individuals is used for parameter tuning, as well as training the SL in CT-
SLEB and MUSSEL or the linear combination model in weighted C+T, weighted LDpred2, PRS-
CSx, and weighted MUSS. The reported 𝑅2 values are calculated on an independent testing set 

of 10,000 individuals for each ancestry group. The corresponding 95% bootstrap CIs are 
obtained from the same testing set based on 10,000 bootstrap samples using the Bca 
approach1 implemented in the R package “boot”. 
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Supplementary Figure 10: Simulation results showing performance of the PRS 
constructed by MUSSEL and various existing methods, assuming a fixed common SNP 
heritability (0.4) across ancestries under a mild negative selection model for the 
relationship between SNP effect size and allele frequency. The genetic correlation in SNP 
effect size is set to 0.8 across all pairs of populations. The causal SNP proportion (degree of 
polygenicity) is set to 1.0%, 0.1%, or 0.05% (~192𝐾, 19.2𝐾, or 9.6𝐾 causal SNPs). We generate 
data for ~19 million common SNPs (MAF≥1%) across the five ancestries but conduct analyses 

only on the ~2.0 million SNPs in HapMap 3 + MEGA. The discovery GWAS sample size is set to 
(a) 80,000 or (b) 100,000 for each non-EUR ancestry, and 100,000 for EUR. A tuning set 
consisting of 10,000 individuals is used for parameter tuning, as well as training the SL in CT-
SLEB and MUSSEL or the linear combination model in weighted LDpred2, PRS-CSx, and 
weighted MUSS. The reported 𝑅2 values are calculated on an independent testing set of 10,000 

individuals for each ancestry group. The corresponding 95% bootstrap CIs are obtained from 
the same testing set based on 10,000 bootstrap samples using the Bca approach1 implemented 
in the R package “boot”. 
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Supplementary Figure 11: Simulation results with 20% ancestry mis-specification in the 
LD reference sample, assuming a fixed common SNP heritability (0.4) across ancestries 
under a strong negative selection model for the relationship between SNP effect size and 
allele frequency. The LD matrix for each ancestry group is estimated based on a slightly mis-
specified LD reference sample that contains 800 individuals from the same ancestry group and 
50 individuals from each of the other four ancestry groups, totaling 200 individuals with ancestry 
mismatch. The genetic correlation in SNP effect size is set to 0.8 across all pairs of populations. 
The causal SNP proportion (degree of polygenicity) is set to 1.0%, 0.1%, or 0.05% (~192𝐾, 
19.2𝐾, or 9.6𝐾 causal SNPs). We generate data for ~19 million common SNPs (MAF≥1%) 

across the five ancestry groups but conduct analyses only on the ~2.0 million SNPs in HapMap 
3 + MEGA. The discovery GWAS sample size is set to (a) 15,000 or (b) 45,000 for each non-
EUR ancestry, and 100,000 for EUR. A tuning set consisting of 10,000 individuals is used for 
parameter tuning, as well as training the SL in CT-SLEB and MUSSEL or the linear combination 
model in weighted C+T, weighted LDpred2, PRS-CSx, and weighted MUSS. The reported 𝑅2 

values are calculated on an independent testing set of 10,000 individuals for each ancestry 
group. 
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Supplementary Figure 12: Simulation results with 20% ancestry mis-specification in the 
LD reference sample, assuming a fixed common SNP heritability (0.4) across ancestries 
under a strong negative selection model for the relationship between SNP effect size and 
allele frequency. The LD matrix for each ancestry group is estimated based on a slightly mis-
specified LD reference sample that contains 800 individuals from the same ancestry group and 
50 individuals from each of the other four ancestry groups, totaling 200 individuals with ancestry 
mismatch. The genetic correlation in SNP effect size is set to 0.8 across all pairs of populations. 
The causal SNP proportion (degree of polygenicity) is set to 1.0%, 0.1%, or 0.05% (~192𝐾, 
19.2𝐾, or 9.6𝐾 causal SNPs). We generate data for ~19 million common SNPs (MAF≥1%) 

across the five ancestry groups but conduct analyses only on the ~2.0 million SNPs in HapMap 
3 + MEGA. The discovery GWAS sample size is set to (a) 80,000 or (b) 100,000 for each non-
EUR ancestry, and 100,000 for EUR. A tuning set consisting of 10,000 individuals is used for 
parameter tuning, as well as training the SL in CT-SLEB and MUSSEL or the linear combination 
model in weighted C+T, weighted LDpred2, PRS-CSx, and weighted MUSS. The reported 𝑅2 

values are calculated on an independent testing set of 10,000 individuals for each ancestry 
group. 
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Supplementary Figure 13: Prediction R2 with 95% bootstrap CIs on validation individuals 
of AFR (N=2,015–3,428), EAS (N=2,316-4,647), and AMR ancestries (N=3,479-4,397) in 
PAGE based on discovery GWAS from PAGE (AFR NGWAS=7,775 – 13,699, AMR 
NGWAS=13,894 – 17,558), BBJ (EAS NGWAS=70,657 – 158,284), and UKBB (EUR 
NGWAS=315,133 – 355,983). We used genotype data from 1000 Genomes Project (498 EUR, 
659 AFR, 347 AMR, 503 EAS, 487 SAS) as the LD reference dataset. All methods were 
evaluated on the ~2.0 million SNPs that are available in HapMap 3 + MEGA, except for PRS-
CSx which is evaluated based on the HapMap 3 SNPs only, as implemented in their software. 
Ancestry- and trait-specific GWAS sample sizes, number of SNPs included, and validation 
sample sizes are summarized in Supplementary Table 3.1. A random half of the validation 
individuals is used as the tuning set to tune model parameters, as well as train the SL in CT-
SLEB and MUSSEL or the linear combination model in weighted C+T, weighted LDpred2, PRS-
CSx, and weighted MUSS. The other half of the validation set is used as the testing set to report 
R2 values for PRS on each ancestry, after adjusting for whether or not the sample is from BioMe 
and the top 10 genetic principal components for BMI, and additionally the age at lipid 
measurement and sex. The 95% bootstrap CIs of the estimated R2 are obtained from the testing 
set based on 10,000 bootstrap samples using the Bca approach1 implemented in the R package 
“boot”. Detailed 95% bootstrap CIs are reported in Supplementary Table 9. 
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Supplementary Figure 14: Prediction R2 with 95% bootstrap CIs on UKBB validation 
individuals of EUR (17,457 – 19,030), AFR (7,954 – 8,598), EAS (1,752 – 1,921), and SAS 
(9,385 – 10,288) origin based on discovery GWAS from GLGC on EUR (NGWAS =842,660 – 
930,671), AFR or admixed AFR (NGWAS =87,760 – 92,555), Hispanic/Latino (NGWAS =46,040 – 
49,582), EAS (NGWAS =82,587 – 146,492), and SAS (NGWAS =33,658 – 34,135). EUR (NGWAS 
=842,660 – 930,671), AFR or admixed AFR (NGWAS =87,760 – 92,555), Hispanic/Latino 
(NGWAS =46,040 – 49,582), EAS (NGWAS =82,587 – 146,492), and SAS (NGWAS =33,658 – 
34,135). The LD reference data is either (a) 1000 Genomes Project (498 EUR, 659 AFR, 347 
AMR, 503 EAS, 487 SAS), or (b) UKBB data (PRS-CSx: default UKBB LD reference data which 
overlap with our testing samples including 375,120 EUR, 7,507 AFR, 687 AMR, 2,181 EAS, and 
8,412 SAS; all other methods: UKBB tuning samples including 10,000 EUR, 4,585 AFR, 1,010 
EAS, and 5,427 SAS). The ancestry of UKBB individuals were determined by a genetic ancestry 
prediction approach (Supplementary Notes). Due to the low prediction accuracy of genetic 
component analysis and extremely small validation sample size of UKBB AMR, prediction R2 on 
UKBB AMR is unreliable and thus is not reported here. All methods were evaluated on the ~2.0 
million SNPs that are available in HapMap 3 + MEGA, except for PRS-CSx which is evaluated 
based on the HapMap 3 SNPs only, as implemented in their software. Ancestry- and trait-
specific GWAS sample sizes, number of SNPs included, and validation sample sizes are 
summarized in Supplementary Table 4.1. A random half of the validation individuals is used as 
the tuning set to tune model parameters, as well as train the SL in CT-SLEB and MUSSEL or 
the linear combination model in weighted LDpred2, PRS-CSx, and weighted MUSS. The other 
half of the validation set is used as the testing set to report R2 values for each ancestry. The 
95% bootstrap CIs of the estimated R2 are obtained from the testing set based on 10,000 
bootstrap samples using the Bca approach1 implemented in the R package “boot”. Detailed 95% 
bootstrap CIs are reported in Supplementary Table 9. In (b), PRS-CSx and other methods do 
not have a fair comparison because the UKBB LD reference data provided by the PRS-CSx 
software (UKBBPRS-CSx) is much larger than that for other methods, and thus the R2 of PRS-CSx 
PRS may be inflated due to a big overlap between UKBBPRS-CSx and the UKBB testing sample.  
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Supplementary Figure 15: Prediction R2 with 95% bootstrap CIs on UKBB validation 
individuals of AFR (N=9,169) origin based on discovery GWAS from GLGC on EUR (NGWAS 
=48,223 – 48,326), AFR (NGWAS =21,511 – 21,547), and Hispanic/Latino (NGWAS =15,362 – 
15,411). The LD reference data is either (a) 1000 Genomes Project (498 EUR, 659 AFR, 347 
AMR, 503 EAS, 487 SAS), or (b) UKBB data (PRS-CSx: default UKBB LD reference data which 
overlap with our testing samples including 375,120 EUR, 7,507 AFR, 687 AMR, 2,181 EAS, and 
8,412 SAS; all other methods: UKBB tuning samples including 10,000 EUR, 4,585 AFR, 1,010 
EAS, and 5,427 SAS). The ancestry of UKBB individuals were determined by a genetic ancestry 
prediction approach (Supplementary Notes). Due to the low prediction accuracy of genetic 
component analysis and extremely small validation sample size of UKBB AMR, prediction R2 on 
UKBB AMR is unreliable and thus is not reported here. All methods were evaluated on the ~2.0 
million SNPs that are available in HapMap3 + MEGA, except for PRS-CSx which is evaluated 
based on the HapMap 3 SNPs only, as implemented in their software. Ancestry- and trait-
specific sample sizes of GWAS, number of SNPs included, and validation sample sizes are 
summarized in Supplementary Table 5.1. A random half of the validation individuals is used as 
the tuning set to tune model parameters, as well as train the SL in CT-SLEB and MUSSEL or 
the linear combination model in weighted LDpred2, PRS-CSx, and weighted MUSS. The other 
half of the validation set is used as the testing set to report R2 values for each ancestry, after 
adjusting for age, sex, and the top 10 genetic principal components. The 95% bootstrap CIs of 
the estimated R2 are obtained from the testing set based on 10,000 bootstrap samples using the 
Bca approach1 implemented in the R package “boot”. Detailed 95% bootstrap CIs are reported 
in Supplementary Table 9. In (b), PRS-CSx and other methods do not have a fair comparison 
because the UKBB LD reference data provided by the PRS-CSx software (UKBBPRS-CSx) is 
much larger than that for other methods, and thus the R2 of PRS-CSx may be inflated due to a 
big overlap between UKBBPRS-CSx and the UKBB testing sample. 
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Supplementary Figure 16: Manhattan plot and QQ plot1 based on the GWAS summary-level 
association statistics from PAGE for BMI in four populations: European, Admixed African or African, 
Hispanic, and East Asian. 

 

1 For continuous traits, 𝜆1000 scales the genomic inflation factor 𝜆 to a study with 1000 subjects using 𝜆1000 = 1 +
1000(𝜆 − 1)/𝑁, where N is the total sample size. For binary traits, 𝜆1000 scales 𝜆 to a study with 1000 cases and 1000 

controls using 𝜆1000 = 1 + 1000(𝜆 − 1)(
1

𝑁𝑐𝑎𝑠𝑒
+

1

𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙
). 
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Supplementary Figure 17: Manhattan plot and QQ plot1 based on the GWAS summary-level 
association statistics from PAGE for high-density lipoprotein (HDL) in four populations: 
European, Admixed African or African, Hispanic, and East Asian. 

 

1 For continuous traits, 𝜆1000 scales the genomic inflation factor 𝜆 to a study with 1000 subjects using 𝜆1000 = 1 +
1000(𝜆 − 1)/𝑁, where N is the total sample size. For binary traits, 𝜆1000 scales 𝜆 to a study with 1000 cases and 1000 

controls using 𝜆1000 = 1 + 1000(𝜆 − 1)(
1

𝑁𝑐𝑎𝑠𝑒
+

1

𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙
). 
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Supplementary Figure 18: Manhattan plot and QQ plot1 based on the GWAS summary-level 
association statistics from PAGE for low-density lipoprotein (LDL) in four populations: European, 
Admixed African or African, Hispanic, and East Asian. 

 

1 For continuous traits, 𝜆1000 scales the genomic inflation factor 𝜆 to a study with 1000 subjects using 𝜆1000 = 1 +
1000(𝜆 − 1)/𝑁, where N is the total sample size. For binary traits, 𝜆1000 scales 𝜆 to a study with 1000 cases and 1000 

controls using 𝜆1000 = 1 + 1000(𝜆 − 1)(
1

𝑁𝑐𝑎𝑠𝑒
+

1

𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙
). 
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Supplementary Notes 

Detailed simulation setup 

We investigated the performance of MUSSEL and a series of existing methods under various 

simulated scenarios of genetic architecture for phenotype and GWAS sample sizes across 

ancestries. This large-scale, multi-ancestry simulated dataset including 600,000 individuals 

across EUR, AFR, AMR, EAS, and SAS origins has recently been released by our group1. 

Specifically, the genotype data was simulated using HAPGEN2 (version 2.1.2)2 based on the 

genotype data of 2,504 unrelated individuals from Phase 3 1000 Genomes Project (503 EUR, 

661 AFR, 347 AMR, 504 EAS, and 489 SAS)3. We have checked and confirmed the consistency 

between the LD pattern in the original 1000 Genomes reference data and the LD pattern in our 

simulated data{Zhang, 2022 #360}. Approximately 19.2 million common biallelic SNPs with 

MAF≥0.01 in at least one ancestry group were included. For phenotype data, genetic 

architectures were simulated by first selecting a random set of 1.0%, 0.1%, or 0.05% SNPs 

across the whole genome to be causal, that is approximately 192𝐾, 19.2𝐾, or 9.6𝐾 causal SNPs 

among 19.2 million SNPs. Under a spike and slab structure, the nonzero standardized effect sizes 

for the causal SNPs were then generated under various negative selection models according to a 

function of allele frequency,  𝛽𝑘𝑗
(𝐽)

∝ {𝑞𝑘𝑗(1 − 𝑞𝑘𝑗)}
𝛼

: (1) strong negative selection: 𝛼 = 0, (2) 

mild negative selection: 𝛼 = 0.75, or (3) no negative selection, 𝛼 = 1. The genetic correlation 

was set to 𝜌 = 0.8 or 0.6 between all pairs of ancestries. Specifically, we first generated 𝜈𝑘𝑗 ∼

𝑁(0, 𝐻𝑘
2/𝑚𝑘) for SNPs only existing in ancestry 𝑘, with 𝑐𝑜𝑣(𝜈𝑘𝑗 , 𝜈𝑘′𝑗) = 𝜌𝐻𝑘𝐻𝑘′/𝑚𝑘𝑚𝑘′ for 

SNPs shared between ancestries 𝑘 and 𝑘′, where 𝐻𝑘
2 and 𝑚𝑘 denote the total heritability and the 

number of causal SNPs, respectively, in ancestry 𝑘. To control the total heritability at the 

predefined level 𝐻𝑘
2s, we set the standardized SNP effect sizes to 𝛽𝑘𝑗

(𝐽)
= {𝑞𝑘𝑗(1 −
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𝑞𝑘𝑗)}
𝛼

𝜈𝑘𝑗√𝐻𝑘
2/ ∑ [{𝑞𝑘𝑗(1 − 𝑞𝑘𝑗)}

𝛼
𝜈𝑘𝑗]

2𝑚𝑘
𝑗=1 . Two heritability settings were considered: (1) a 

constant common SNP heritability 0.4 across all ancestries, and (2) a total heritability of 0.4 

across all 19.2 million SNPs with a constant per-SNP heritability across ancestries, which leads 

to a common SNP heritability proportional to the number of common SNPs in the corresponding 

ancestry. 

 

We simulated 120,000 individuals for each ancestry. For EUR, NGWAS=100,000 individuals were 

included in the discovery GWAS, while the remaining 20,000 individuals were evenly split into 

a tuning set for parameter tuning and a testing set to report prediction R2 of the methods. For 

each non-EUR ancestry, NGWAS individuals were included in the discovery GWAS, while two 

separate sets, each including 10,000 individuals, were selected randomly from the remaining 

(120,000 – NGWAS) individuals to construct tuning and testing dataset. Although currently the 

non-EUR GWAS sample sizes are typically a lot smaller than EUR GWAS sample sizes, they 

are expected to continue growing, as there is an increasing emphasis on health equity. To mimic 

such real-world scenarios, we set non-EUR GWAS sample sizes to NGWAS = 15,000, 45,000, 

80,000, or 100,000, that gradually increase and eventually reach a similar level to the EUR 

GWAS sample size (100,000). For each ancestry group, the genotype data of 1000 randomly 

selected individuals in the discovery GWAS were used to estimate the ancestry-specific LD.  

 

Predicted genetic ancestry for non-EUR individuals in UKBB 

We compute genetic ancestry for all UKBB individuals that are not self-reported Whites. To 

balance between samples of different ancestry groups, we also include 8,000 unrelated self-

reported Whites to form the set of UKBB individuals for genetic ancestry prediction. We use 
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2,504 unrelated individuals from 1000 Genomes Project, including 498 EUR, 659 AFR, 347 

AMR, 503 EAS, and 487 SAS individuals to form the reference data for genetic ancestry 

prediction. We first compute the top 20 genetic principal components (PCs) for all UKBB and 

1000 Genomes individuals together using PLINK 2.0 command --pca 20 allele-wts5. We then 

train a random forest classifier with 1,500 trees using the R package “randomForest”6 based on 

the genetic PCs of the 1000 Genomes individuals with their true labels being provided by 

gnomAD7 that can be used to capture enough ancestral information. Finally, we apply the trained 

random forest classifier to predict the genetic ancestry of UKBB individuals based on their 

genetic PCs. 
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