Supplementary Information

Myo9b mutations are associated with altered dendritic cell functions and increased susceptibility to autoimmune diabetes onset

Supplementary Figures

Supplementary Figure 1. Comparison of *Myo9b* DNA sequences and *Myo9a* mRNA levels between NOD and ALR mice. (a) Comparison of *Myo9b* DNA sequences between NOD and ALR mice. (b) mRNA levels of *Myo9a* in NOD and ALR BMDCs as measured by real-time PCR. Data are represented as mean \pm SEM of 3 independent biological replicates. Statistical significance was determined by unpaired two-sided Student's *t* test.

Supplementary Figure 2. Quantification of T lymphocyte percentages in indicated tissues. (a) Representative western blot analysis and quantification of Myo9b levels in CD4⁺ T cells from WT and KO mice. (b-g) Representative flow cytometry plots and percentages of T cells among total CD45⁺ immune cells in salivary gland, colon, lung, liver, kidney, and heart from 12-week-old WT, KO and KI mice. n = 4 per group. Values are presented as mean ± SEM. Statistical difference in (a) was analyzed using unpaired two-sided Student's *t* test; and in (b-g) was determined by one-way ANOVA.

Supplementary Figure 3. Effect of ALR *Myo9b* KI and *Myo9b* deficiency on expression of MHC and co-stimulatory molecules in DCs. (a-f) PLN and pancreas cells from 10- to 12-week-old WT, KO, and KI mice were harvested and subjected to flow cytometry analysis (n = 4 per group). (a, b) Flow cytometry analysis of MHC I, CD80, and CD86 expression in CD11c⁺MHC II⁺ cells of PLNs (a) and pancreas (b). (c,

d) Flow cytometry analysis of MHC molecules, CD80, and CD86 expression in cDC1 (c) and cDC2 (d) of PLNs. (e, f) Flow cytometry analysis of MHC molecules, CD80, and CD86 expression in cDC1 (e) and cDC2 (f) of pancreas. (g, h) Representative histograms (g) and quantitative data (h) of MHC I, CD86, and CD80 expression in WT, KO, and KI BMDCs treated with vehicle or LPS for 24 h. (i) RT-PCR analysis of relative mRNA expression of *lfngr1* and *ll4ra* in BMDCs stimulated with LPS for 8 h. Data were collected from three independent experiments (g-i). Values are presented as mean ± SEM. Significance was determined by one-way ANOVA.

Supplementary Figure 4. Analysis of peripheral and thymic Treg cells in WT, KO, and KI mice. (a) Representative FACS plots and frequencies of Th1 cells in the PLNs of 16-week-old WT, KO, and KI mice. (b, c) Quantification of Foxp3⁺ Treg cells in the PLNs (b) and spleen (c) of 10- to 12-week-old WT, KO, and KI mice. (d) Representative flow cytometry plots and frequencies of thymic Treg cells among CD4 single positive cells in 10- to 12-week-old WT, KO, and KI mice. (e) Quantification of thymic Foxp3⁺ CD4 single positive cells in 10- to 12-week-old WT, KO, and KI mice. n = 4 in each study group (a-e). Values are expressed as mean ± SEM. Statistical difference was determined by one-way ANOVA.

Supplementary Figure 5. Representative western blot analysis and quantification of cleaved caspase-3 levels in pancreatic islets with or without proinflammatory cytokines (IL-1 β + TNF- α + IFN- γ) stimulation for 24 h. Data were collected from three independent experiments. Values are presented as mean ± SEM, and unpaired two-sided Student's *t* test was employed for data analysis.

Supplementary Figure 6. (a) OCR of BMDCs derived from WT, KO, and KI mice following LPS stimulation for 24 h, which was measured before and after sequential treatment with oligomycin, FCCP, and rotenone plus antimycin A. (b) Accordingly, basal OCR and the spare respiratory capacity (SRC) were shown. Data derived from 3 independent experiments are presented as mean ± SEM. Significance was determined by one-way ANOVA.

Supplementary Figure 7. Expression levels of p-LIMK, p-Cofilin, and p-MLC in BMDCs as detected by Western blot. Data were collected from three independent experiments. Values are presented as mean ± SEM and one-way ANOVA was used for data analysis.

а	Rs766200985	A>C			b	Rs776331004 G>A				
	Subjects	N	Genotyping distribution (AA / AC / CC)	MAF		Subjects	N	Genotyping distribution (GG / GA / AA)	MAF	
	T1D	1298	1292 / 6 / 0	0.23%		T1D	1298	1298 / 0 / 0	0%	
	Control	2936	2926 / 10 / 0	0.17%		Control	2936	2934 / 2 / 0	0.034%	
OR = 1.359, <i>p</i> = 0.590, 95% Cl = 0.405-4.137						OR = 0, <i>p</i> = 1,	95% CI =	0-12.049		

Supplementary Figure 8. Genotyping results for Rs766200985 (a) and Rs776331004 (b) in T1D cases and healthy controls. Statistical differences were assessed using Fisher's exact test.

Supplementary Figure 9. MYO9B expression in $Myo9b^{-/-}$ mouse DCs transduced with $MYO9B^{WT}$ or $MYO9B^{R133Q}$ virus. Values are presented as mean ± SEM of three independent experiments. Significance was determined by unpaired two-sided Student's *t* test.

Supplementary Figure 10. Gating strategy used for flow cytometry analysis. Gating strategies for Fig. 1c (a); Fig. 1d, 4f, 8g, 10e, 10k (b); Fig.3a, 3c, Supplementary Fig.3a, 3c, 3d (c); Fig.3e, Supplementary Fig.3a, 3c, 3d (d); Supplementary Fig.3a, 3c, 3d (e); Fig. 3b, Supplementary Fig.3b, 3e, 3f (f); Fig. 3d, 3f, Supplementary Fig.3b, 3e, 3f (g); Supplementary Fig.3b, 3e, 3f (h); Fig. 4a, 4b, Fig. 8e, Fig. 10c, Supplementary Fig.3g (i); Supplementary Fig.3g (j); Fig. 4e (k); Fig. 4g (l).

Supplementary Figure 11. Gating strategy used for flow cytometry analysis. Gating strategies for Fig. 4h (a); Fig. 4i, 4j (b); Fig. 5a, 5b, 5h, 5i (c); Fig. 5c, 5j (d); Fig. 5d, 5k, Supplementary Fig. 4a (e); Fig. 5e, 5l (f); Fig. 5f, 5m (g); Fig. 5g, 5n (h); Fig. 5o (i); Fig. 6d (j); Fig. 6e-g (k); Fig. 7f (l); Fig. 10h (m); Supplementary Fig. 2b, 2c (n); Supplementary Fig. 2d-g (o); Supplementary Fig. 4d (p).

Supplementary Tables

Supplementary Table 1. The frequencies and annotations of identified *MYO9B* variants in 260 T1D cases and 240 healthy controls.

Pos	Ref	Alt	Func	norm	norm	normal	T1D	T1D	T1D
				al_H	al_H	_NoVa	M_H	M_He	M_N
				om	et	r	om	t	oVar
17212907	С	Т	missens	0	0	240	0	1	259
			e_variant						
17263461	G	А	missens	0	0	240	0	1	259
			e_variant						
17263509	G	А	missens	0	0	240	0	1	259
			e_variant						
17264827	G	А	missens	0	0	240	0	1	259
			e_variant						
17291846	Т	G	missens	0	0	240	0	1	259
			e_variant						
17283156	G	А	missens	0	0	240	0	1	259
			e_variant						
17305429	G	А	missens	0	0	240	0	1	259
			e_variant						
17305466	С	Т	missens	0	0	240	0	1	259
			e_variant						
17305559	G	А	missens	0	0	240	0	1	259
			e_variant						
17306038	G	А	missens	0	0	240	0	1	259
			e_variant						
17303796	G	А	missens	0	0	240	0	1	259
			e_variant						
17316944	G	А	missens	0	0	240	0	1	259
			e_variant						
17322769	G	А	missens	0	0	240	0	1	259
			e_variant						
17303807	С	Т	missens	0	1	239	0	0	260
			e_variant						
17309021	G	А	missens	0	1	239	0	0	260
			e_variant						
17313005	G	А	missens	0	1	239	0	0	260
			e_variant						
17313092	А	G	missens	0	1	239	0	0	260
			e_variant						
17313676	G	А	missens	0	1	239	0	0	260

			e_variant						
17314011	С	Т	missens e_variant	0	1	239	0	0	260
17291849	Т	С	missens e_variant +splice_r egion_va riant	0	1	239	0	0	260
17298786	С	Т	missens e_variant	0	1	239	0	0	260
17212612	G	A	missens e_variant	0	1	239	0	0	260
17212865	A	G	missens e_variant	0	1	239	0	0	260
17265138	Т	С	missens e_variant	0	1	239	0	0	260
17317179	G	A	missens e_variant	0	1	239	0	0	260
17317548	A	G	missens e_variant	0	1	239	0	0	260
17322565	G	A	missens e_variant	0	1	239	0	0	260
17322935	G	A	missens e_variant	0	1	239	0	0	260
17317529	G	A	missens e_variant	0	1	239	0	1	259
17212518	G	A	5_prime_ UTR_var iant	0	0	240	0	2	258
17278758	A	С	missens e_variant	0	0	240	0	2	258
17212925	G	A	missens e_variant	0	2	238	0	0	260
17303595	С	Т	missens e_variant	0	2	238	0	2	258
17316782	Т	С	missens e_variant	139	93	8	156	88	16
17303774	Т	G/ A	missens e_variant	135	96	9	154	90	16

Pos, position. Ref, Reference allele. Alt, Alternate allele

Supplementary Table 2. Minor Allele Frequencies

MYO9B Locus T1D	Rs764932023	
		G/G
		G/A
	A/A	
Ref		G
Alt		A
Observed Alt in	Normal(n=2936)	0.085%
our result	T1D(n=1298)	0.54%
Global (n=247774)	(gnomAD – Exomes)	0.0121%
European (n=1332	18) (gnomAD – Exomes)	0.0023%
American (n=13664	k)	0
African (n=42054) (0.002%	
Asian (n=48544) (g	0.047%	
Japanese (n=16756	0.143%	
Korean (n= 1832) K	0.11%	

Supplementary Table 3. Primer sequences for real-time PCR	

Gene	Forward (5'-3')	Reverse (5'-3')
Mouse <i>Myo9a</i>	TGTCCAAATCATAGCAAGTGCC	CTGCCGAAATTCTTTCAGGGC
Mouse <i>II12</i>	CTCCTAAACCACCTCAGTTTG	CAGGAATAATGTTTCAGTTTTTC
Mouse <i>II6</i>	ATGGATGCTACCAAACTGGAT	TGAAGGACTCTGGCTTTGTCT
Mouse <i>Tnf</i>	ACTGAACTTCGGGGTGATCG	GGCTACAGGCTTGTCACTCG
Mouse <i>lfngr1</i>	TACAGGTAAAGGTGTATTCGGGT	ACCGTGCATAGTCAGATTCTTT
Mouse <i>II4ra</i>	AACCTGTACCCATCGAACAAC	GCCGTATAGTAGACCCCTGAC
Mouse Actb	AGAGGGAAATCGTGCGTGAC	CAATAGTGATGACCTGGCCGT
Human <i>IL</i> 6	ACTCACCTCTTCAGAACGAATTG	CCATCTTTGGAAGGTTCAGGTTG
Human <i>IL12</i>	CCTTGCACTTCTGAAGAGATTGA	ACAGGGCCATCATAAAAGAGGT
Human <i>TNF</i>	CCTCTCTCTAATCAGCCCTCTG	GAGGACCTGGGAGTAGATGAG
Human ACTB	CATGTACGTTGCTATCCAGGC	CTCCTTAATGTCACGCACGAT

	healthy control	T1D case
Number	2936	1298
Age (years)	28.78±0.28	26.26±0.42
Sex (M/F)	1547/1389	619/679
BMI	22.75±0.96	19.19±0.11
HbA1c (%)	-	9.89±0.10
HbA1c (mmol/mol)	-	
FPG (mmol/L)	4.85±0.02	12.33±0.27
2HG (mmol/L)	5.64±0.05	15.67±0.31
FCP (ng/ml)	-	0.20±0.01
2HCP (ng/ml)	-	0.34±0.02
Diabetes duration (months)	-	37.94±1.72
Number of subjects with IAA⁺	-	599
Number of subjects with GADA65 ⁺	-	932
Number of subjects with ZnT8⁺	-	282

Supplementary Table 4. Clinical characteristics of the subjects

Supplementary Table 5. The sequences of primers and probes for genotyping

Gene	Primer (5'-3')	Probe	
rs776331004	Forward CTGCCTGCCTCTTTCACACT	VIC-CGGCCGCCTGGCTT-BHQ1	
	Reverse ACTTCCTCCCACCATTCTGAC	FAM-CCTGCCGGCTGCCTG-BHQ1	
rs764932023	Forward CTGACTGTTACCTATTAAAACTTTAGAG	VIC-CAGCCACCCGGCGC-BHQ1	
	Reverse GAATGTCTGAATTATTATTCTAGGTTC	FAM-AGCCACCCAGCGCCT-BHQ1	
rs766200985	Forward GTCTGTGTAGCCGATGTTGTG	VIC-CCCTGATATTCCTCC-MGB	
	Reverse AAGAAACTTACCGACCCCGC	FAM- CTGATAGTCCTCCTG-MGB	