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Dose-response in case-control studies
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SUMMARY The evidence provided by a case-control study on the association between a disease and
some factor is strengthened if the extent of exposure to the factor is categorised into several groups
or measured on a continuous scale. Then dose-response relationships can be estimated. The
methods available are illustrated by application to data on lung cancer and chrysotile asbestos
exposure from Quebec in which there were three matched controls for each case. Regression-type
models were fitted assuming that the relative risk of lung cancer was linearly related to an exposure
measure; a covariate, smoking, was also included in the analysis. The data were first analysed
ignoring the matching and secondly taking account of the matching. The methodology for the latter
analysis has only recently been developed; formerly, matched studies were of necessity analysed as
unmatched. Although, in this particular example, the unmatched and matched analyses gave
similar results, this is not always the case and it is argued that, now that the methodology is
available, matched case-control studies should be analysed taking proper account of the matching.

In the simplest form of a case-control study, cases of
disease and suitable controls are each categorised
into two classes indicating exposure, or no exposure,
to an agent suspected of causing the disease. Such a
study may provide evidence on the association
between the agent and the disease, which will be
strengthened, particularly if it is to be used to imply
causation, if a dose-response relationship can be
established.' The dose-response relationship can be
estimated by categorising both cases and controls
into more than two groups defined in terms of the
extent of exposure to the agent. The controls must be
chosen from the same environment as the cases.
An example of the type of material under

discussion was obtained in a study of a cohort of men
employed in the mining and milling of chrysotile
asbestos in Quebec.2 There were 245 deaths from
lung cancer, and for each case three controls were
chosen, from the population of miners and millers,
matched for year of birth and still living when the case
died. The results of this study, summarised in Table 1,
are discussed by McDonaldet al2 whose report should
be consulted by those interested in the
epidemiological findings; in the present paper, the
data are used only for illustrative purposes.
Although the controls were chosen in threes to

match the individual cases, the data are first analysed
ignoring the matching; that is, treating the controls as
if they had been chosen strictly at random from the
complete cohort of miners and millers. Secondly, the
data are analysed using recently developed methods

Table 1 Dust exposure in deaths from lung cancer and in
controls

Dust exposure'

Range Mean` Cases Controls Relative risk

Less than 6 2 49 190 1 00
6- 8 12 51 0-91
10- 18 28 92 1-18
30- 60 40 119 1 30
100- 182 33 124 1-03
300- 442 32 88 1*41
600- 771 24 39 2-39
1000- 1249 12 15 3-10
1500- 1710 6 8 2-91
2000- 2722 9 9 3-88

Total 245 735

'Units are millions of particles per cubic foot x years evaluated up to 9 years
before death of case.

"The mean dust exposures are for cases and controls combined. Data are from
the study of McDonald et al.'

for matched case-control studies. The first analysis is
of interest because it illustrates the methods for
unmatched data, which have often been used-as in
an earlier presentation of this study3 -when the
matched analysis was not yet available for the
situation of multiple controls and multiple levels of
the factor.

DOSE-RESPONSE RELATIONSHIP
Let x be a measure of exposure and let R be the
relative risk of dying with lung cancer, relative to the
unexposed (x = 0). Then the simplest form of
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dose-response relationships is that R is linearly
related to x and, since R = 1 when x = 0,

R = 1 + b x
where b is a parameter. This is the basic form of
dose-response relationship used in this paper,
although extensions to this form will be introduced as
required.

UNMATCHED ANALYSIS
Consider data set out as in Table 2 where the cases
and controls are sampled from a population. Letpi be
the probability that a member of group i in the

Table 2 Form of data for unmatched analysis

Group Mean x Cases Controls Total

1 xI r, n,-r, ni
2 n2-r2 n2

k xk rk nk-rk nk

Total r. n.-r. n.

population is a case, and letp0 be the probability that
a, possibly hypothetical, non-exposed person in the
population is a case. Suppose that the sampling
fractions of the cases and controls are f' and f2
respectively and that Pi is the consequent probability
that a member of group i in the sample is a case. As is
well known, for case-control studies the only
functions of the pi that can be estimated are odds
ratios, that is, the approximate relative risks
assuming that cases are rare. We have

Pi/( 1- Pi) = f1/Pi/f2 (1 - pi)
= [fl/f2] [p,/(1-po)] [pi/(1-pi)]/

LPo/(l -Po)]
= 0Ri
= O(1 + bx) . . . (2)

where = flPof2 (1 -Po) and
Ri is the approximate risk in group i relative to zero

exposure. Within group i, ri is distributed binomially
with probability Pi and group size ni, and so the
likelihood of the data can be written down. This
enables the parameters and b to be estimated by
maximum likelihood using iterative methods. The
general method is well known and details are given in
the Appendix. The formulation is a particular case of
the class of generalised linear models discussed by
Nelder and Wedderburn4 and also by Nelder.5 Test
statistics are based on differences in the maximum
log-likelihood obtained when fitting different
models. The departure of a fitted model from a

perfect fit is measured by the deviance, defined as

twice the difference of the log-likelihoods of the
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perfect fit and the fitted model4; deviances are
approximately distributed as chi-squared statistics.
The linear dose-response relationship (1) was

fitted to the data of Table 1. The deviance between
the 10 groups was 23 05 with 9 degrees of freedom
(df). Fitting the linear term accounted for a reduction
in deviance of 19-61 (1 df), a highly significant effect,
and the maximum likelihood estimate of b was
000O119. The residual deviance was 3 43 (8 df)
providing no evidence against the linear fit. An
alternative method of judging the adequacy of the
linear model is to add a quadratic term inx, and see if
this results in a substantial reduction in deviance, but
here the reduction was less than 0-01.
The summary data in Table 1 were produced by

grouping the observations according to the exposure.
The number of groups and their boundaries are
arbitrary and the question arises of the extent to
which this might influence the conclusions. This
question was investigated by dividing the data into 6,
20, and 27 groups and also by treating each of the
cases and controls as individuals, equivalent to
treating the data as in 980 groups each with a single
member; the estimation method does not break
down in this case. The results are given in the upper
part of Table 3. Firstly, all estimates ofb were similar,
particularly when one considers that the approximate
95% confidence limits for b are from 0-0006 to
0-0024. Secondly, the significance of the
contribution of the linear term is similar for all
groupings. Thirdly, the adequacy of the linear model,
judged either by the residual deviance or by the
reduction in deviance due to including a quadratic
term, is assessed similarly for all groupings (the
former method is not available with no grouping
since it is not valid to regard the residual deviance as
approximately chi-squared when all the groups
contain just one member). Hence, dividing the data
into groups, even as few as 6, has little effect. This is
not surprising since a similar result is known to apply
for least squares regression analysis of a quantitative
variable.6 In the case of a quantal variate, grouping is
necessary to give a comprehensible presentation of
the data. In the Figure the data of Table 1 are plotted
together with the fitted linear relationship. The
relationship may be fitted on grouped or individual
data as convenient. The latter increases computing
time but not sufficiently to be an important
consideration.

MATCHED ANALYSIS
The method of analysis appropriate to a matched
case-control study with more than one control per
case and where the factor has more than two levels
was first given by Thomas7 and later by Prentice and
Breslow8 and also by Breslow.9



Table 3 Summary of unmatched and matched analyses

Deviances (df)

No. ofgroups in Due to linear Residual about Due to Estimate of b in linear model
unmatched analysis Between groups term b linear quadratic term (approximate 95% confidence limits)

6 19-90 (5) 18-03 (1) 1-87 (4) 0-08 (1) 0 00113 (0-00056-0.00228)
10 23-05 (9) 19-61 (1) 3-43 (8) 0-00 (1) 0-00119 (0-00060-0-00238)
20 35-20 (19) 20-22 (1) 14-98 (18) 0-00 (1) 0-00122 (0-00061 - 0.00242)
27 37-86 (26) 20-27 (1) 17-59 (25) 0-05 (1) 0-00121 (0-00061 - 0.00240)

980* 1102-09 (979) 19-89 (1) 1082-20 (978) 0-02 (1) 0-00119 (0-00060 - 0-00239)

Matched analysis - 21-37 (1) - 0.10 (1) 0-00136 (0-00068 - 0-00274)

* Ungrouped analysis; treating observations individually.
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Figure Relationship between relative risk of lung
and exposure to asbestos (data of Table 1).

Suppose there are n cases each withm control
xi. be the exposure for the i-th case and xi, for i
control, and Rio and Rij the corresponding re
risks as defined by the dose-response relatic
(1). Then consider the set consisting of the i-tl
and its controls. Given that this set consi!
individuals with relative risks Rij and that jus
member of the set is a case, then the probabilil
particular member of the set being the ci
proportional to its relative risk. Therefori
probability Pio that the one case is the observe4
is given by

m

P1o = Rio/ I Rjj
j=0

m
= (1 + bxio)/ Y. (I + bxij)

j=O

The likelihood of the observations is the prodi
the above probabilities over the n cases an

method of maximum likelihood can be ar
(Appendix).

Applying the method to the data gave the results in
the lower part of Table 3. The maximum likelihood
estimate for b was 0X00136, with approximate 95%
confidence limits of 0-00068 and 0X00274, and the
test statistic, twice the gain in log-likelihood, was
21-37 (1 df). The test statistic for the inclusion of a
quadratic term was only 0 10 (1 df). Comparing these
results with the ungrouped unmatched analysis
(Table 3), the matched analysis gave a slightly higher
estimate of b and the test statistic for its significance
was a little higher, 21-37 compared with 19-89.
The smoking habits were available for about 60%

of the men in the study; 140 of the cases had known
smoking habits and at least one control with known

30W smoking habits. The effect of smoking and the
combination of asbestos and smoking have been

cancer analysed in this subgroup of the data. Men were
classified as non-smokers, s = 0, or smokers, s = 1.
The data are given in relation to smoking in Table 4.

Is. Let The cases have either 1, 2, or 3 matched controls and
its j-th the method copes without difficulty with differing
lative numbers of controls per case (Appendix).
)nship Various models for relative risk were fitted (Table
h case 5). Fitting asbestos exposure alone (B) gave an
sts of estimate of the linear effect of 0-00146 with a test
st one statistic of 11 92 (1 df). Fitting smoking alone (C)
:y of a

ase is
e the
I case

uct of
d the
)plied

Table 4 Smoking habits of cases and matched controls

NON-SMOKING NO. OF
CASES SMOKING CASES CONTROLS

No. of No. of
Case Control(s) sets Case Control(s) sets N S

N N 1 S N 16 17
S 2 S 19 21

N NN 4 S NN 14 36
NS 5 NS 24 28 29
SS 4 SS 21 50

N NNN 2 S NNN 4 18
NNS 0 NNS 5 10 5
NSS 2 NSS 7 9 18
SSS 0 SSS 10 30

20 120 119 153
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Table 5 Smoking and exposure relationships fitted to
matched data

Maximum likelihood estimates
2 x log-

Relative risk likelihood b, b2 b3

(A) R= 1 -294-06 - - -
(B) R = 1+b,x -282-14 0-00146 - -
(C) R = 1+b2s -253-47 - 4-53 -
(D) R = 1+ bx + b2s -240-65 0-00540 8-84 -
(E) R = 1+blx+b2s+b3xs -240-50 0-00487 8-32 0-00244
(F) R = (1 +b,x) (I +b2s) -243-03 0-00170 4-73 -

gave an estimate of effect of 4 5, that is, relative risk
due to smoking of 5-5, and a test statistic of 40-59
(1 df). Next, model (D) includes both smoking and
asbestos exposure with the two effects combined
additively. The inclusion of exposure as well as

smoking gave a test statistic of 12-82 (1 df) as

evidence of an effect due to asbestos after allowing
for the effect of smoking. Model (E) includes an extra
term, the product of smoking and asbestos, allowing
the effect of asbestos exposure to be dependent on

smoking, but this led to a negligible improvement.
Finally, model (F) includes both smoking and
asbestos exposure but, in contrast to model (D), the
two effects are combined multiplicatively. For these
data the additive model fitted better although there
was not much discrimination between the two
possibilities; the relative likelihood of the data with
the additive and multiplicative models was 3-3 to 1
(exponential of 1 19, the difference in
log-likelihood).
The estimates of the exposure and smoking effects,

b I and b2, were both considerably increased when the
additive model (D) was used compared with fitting
each effect ignoring the other (B and C). In contrast,
when the multiplicative model (F) was used the
estimates were similar to those obtained when each
effect was estimated ignoring the other. Of course
any correlation between exposure and smoking in the
population under study would result in a
modification of the estimates of effect when both
effects are fitted together. In the absence of such
correlation the estimates when both are fitted
together will be similar to the separate estimates only
when the combined model is multiplicative. If the
additive model were appropriate then ignoring a
factor having a positive effect, as would have to be
done if the factor had not been measured or its
existence was unknown, would result in
underestimates of the remaining effects.
At the time when the data were supplied smoking

habits were known for only 60% of the men but the
possible influence of this is not discussed here
because the purpose of this paper is to illustrate
methods of analysis, not to present epidemiological
results. Readers interested in these are referred to
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McDonaldetal.2 All the evidence on the combination
of asbestos and smoking in producing lung cancer was
reviewed by Saracci.1O

Discussion

The aim of this paper is to illustrate the powerful
methods which are now available for the analysis of
case-control studies. These methods allow the
analysis of data using regression type models. The
actual type of dose-response relationship used in this
paper is one which is appropriate to agents which
increase the incidence of a tumour, but the methods
are more general. Other relationships may be more
appropriate in other situations. The matched analysis
has usually been considered in terms of an
exponential dose-response relationship and there are
theoretical advantages in this form but, as observed
by Thomas,"' not all biological models can be so
expressed. He discussed the type of relationship
considered in this paper and observed that in some
circumstances there may be difficulties in fitting the
relationship. Difficulties would certainly arise with a
factor which had a protective effect since b would
then be negative and the relationship given in
equation (1) would give impossible negative relative
risks above some value of x. The relationship would
be inappropriate in such a case and analysis using an
exponential model would be indicated.
The matched and unmatched analysis gave similar

results, and in this case allowing for the matching only
slightly increased the sensitivity of the analysis. This
would be expected if exposure was unrelated to the
matching variables12 but otherwise ignoring the
matching would result in conservative estimates as
did occur to a slight extent. Breslow et all3 also
discussed the conditions under which the unmatched
analysis would be expected to give similar results to
the matched, and gave an example in which ignoring
the matching led to substantial bias.
When information is missing then the matched

analysis ignores some subjects with complete
information, since all the controls of cases with
missing data and those cases whose controls all had
missing information would not contribute. In the
example discussed the matched analysis including
smoking was on 140 cases and 272 controls but the
corresponding unmatched analysis was on 145 cases
and 447 controls. The results of the latter analysis are
not given in this paper but the parameter estimates
were similar to those of the matched analysis.
However, because of the larger number of subjects,
the test statistics were higher; that is, the unmatched
analysis was more sensitive. However, the inclusion
of controls without the corresponding cases negates
the matching included in the study design and, if the
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matched analysis had not been carried out, one could
not be confident that the unmatched analysis was not
substantially biased.
A basic statistical principle is that the design

determines the analysis. For a quantitative variable
with matching there would be no argument that the
analysis would have to take account of the matching,
for example, using a paired t-test. Now that the
general methodology for the analysis of matched
categorical data is available there seems little reason
to continue to ignore the matching in the analysis.

I thank Professor J. C. McDonald for supplying me
with data from the Quebec asbestos study, Professor
D. C. Thomas for his comments on an earlier draft,
and Dr P. D. Oldham and Professor F. D. K. Liddell
for their helpful comments and encouragement
throughout.

Appendix
Unmatched analysis
The log-likelihood, L, of the data of Table 2 is given
by:

L = M {ri ln Pi + (n, - ri)ln(1 - P)}

and
Pi = GRi(1 + OR,)

The form of dose-response relationship considered is
Ri = 1 + b, x ii + b2x 2i

where there are two variables, xli and x2j, available
for each group i (in the example given in the text the
two variables were x and x2).
Therefore

L= R 1n + k. {ri In R-ni ln(1 + 8R-)}

The dose-response relationship can be substituted
for Ri in the above equation for L, which is a function
of the data and the parameters O, b1 and b2. The first
and second derivatives of L with respect to 0, b I and
b2 can be written down, enabling the
maximum-likelihood estimates of these parameters
to be obtained iteratively using the Newton-Raphson
technique. A suitable procedure is to start with
O = r.I(n. - r.) and bI = 0 and to omit the b2 term.
The maximum-likelihood estimates of 0 and b1, in the
simpler model with b2 = 0, are then obtained. If it is
required to include b2 the maximum-likelihood
estimates of 0 and b, can be used as starting values
together with b2 = 0-
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The best fitting dose-response relationship is that
obtained when the relative risks are as actually
observed. The log-likelihood of this, L, is obtained by
substituting ri/ni for Pi in the expression for L
(omitting from summation any groups with ri = 0 or
ri = ni). For any other relationship the deviance of
the fit is given by

D = 2(L- L)
with degrees of freedom equal to the number of
groups minus the number of estimated parameters.
Deviances, and reductions in deviance on adding
terms to a model, are approximately distributed as x2.
Following the steps of the above estimation
procedures gives firstly, at the starting values, the
deviance between groups, that is, about the null
relationship R = 1; secondly, the deviance about
R = 1 +blxI and, thirdly, the deviance about
R = 1+blxl+b2x2. Therefore the reductions in
deviance due tox1, and due tox2 after allowing forx1,
are available.
The above calculations can be carried out using the

computer programme for fitting generalised linear
models, GLIM-3."4 The necessary link function is not
standard and the method of coping with this was
given by Thompson and Baker.15

Matched analysis
Let the sets of a case and its matched controls be
represented by suffix i = 1,2,...,n. Let suffix j
identify the members of each set; j = 0 for the case
and j = 1,2,...,m for the m controls. Let the
dose-response relationship be as in the unmatched
analysis where x1ij and x21j are the variable values.
Then the log-likelihood, L, is given by:

n
L= E ln Pio

i=1

where

Therefore

m
Pjo= Rio/Y Rij

j=0

n m _
L = f1 in R,0 - In Y.L; 1j]

The estimation procedure is similar to that ot the
unmatched analysis, except that there is no
equivalent expression for the log-likelihood of the
best fitting relationship (L ) and therefore no test of
the adequacy of the fitted relationship. A test statistic
for the inclusion of a term in a model is twice the
corresponding increase in L.
The method can be adapted to cope with different

numbers of controls per case. If the i-th case has mi
controls then the upper limit of the summations overj
become mi instead of m.
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Confidence intervals
The square roots of the diagonal terms in the inverse
matrix of negative second derivatives at the
maximum likelihood solution are approximate
standard errors of the parameter estimates. In both
the unmatched and matched analyses the
log-likelihoods were asymmetric in the parameter
values about the maximum likelihood estimates so

that the confidence intervals should be calculated to
be similarly asymmetric. The confidence intervals
given in the text and in Table 3 were calculated
assuming that the estimate of the logarithm of the
parameter was distributed approximately normally
(s.e.(lnb) = s.e.(b)Ib). A better, but more tedious,
method would be to calculate the log-likelihood
surface for a range of parameter values and to take as

95% confidence interval those values of the
parameter which gave a log-likelihood within 1 92
(half of the 5% significant value of x2 with 1 df) of the
maximum log-likelihood. This method would not
involve the assumption that the estimate of a

particular transform of the parameter was distributed
normally. Table 6 gives the 95% confidence intervals
of the coefficient on exposure for both the
unmatched and matched analyses, calculated in three
different ways. For both analyses the intervals
calculated assuming ln(1) normal were closer to the
intervals obtained from the likelihood surface than

Table 6 Confidence intervals of exposure coefficients

Unmatched Matched

Estimate, 6 0-00119 0-00136
Standard error of 6 0-00042 0-00049

95% CONFIDENCE
INTERVAL
Symmetric in 6 0.00037 - 0-00202 0-00041 - 0-00232
Symmetric in ln(6) 0-00060 - 0-00239 0-00068 - 0-00274
From likelihood surface 0-00052 - 0-00222 0-00060 - 000256

G. Berry

those obtained assuming b normal, although the
logarithmic transformation over-adjusted for
asymmetry.
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