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Figure S1. Ontological analysis of endothelial RBPs (related to figure 1). A. Pathway (KEGG and GO biological process) 
enrichment of all RBPs identified by RNA interactome capture of MCECs. B. Pathway (KEGG and GO biological process) 
enrichment of RBPs with increased RNA binding upon TGF-β stimulation (10 ng/ml, 24 h) (fold change 100% or greater) as 
identified by RNA interactome capture. C. Pathway (KEGG and GO biological process) enrichment of RBPs with decreased RNA 
binding upon TGF-β stimulation (10 ng/ml, 24 h) (fold change 100% or greater) as identified by RNA interactome capture.
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Figure S2. Effects of TGF-β on MCECs and mesenchymal activation A. Effects of TGF-β on tubule formation. MCECs were 
incubated with TGF-β for 24 hours followed by tubule formation assay. Quantifications reflect total tubule length in visible field, 
n=3, data shown as average ±SEM, significance assessed with one-way ANOVA and Tukey’s multiple comparison test, significance 
shown to three significant figures. Scale bar 250 µm. C. Pathway enrichment differentially expressed genes. Dot plot showing 
the enriched pathways in differentially expressed genes following TGF-β stimulation. D. Pathway enrichment upregulated genes. 
Dot plot showing selected enriched pathways of upregulated genes following TGF-β stimulation. F. Pathway enrichment 
downregulated genes. Dot plot showing selected enriched pathways of downregulated genes following TGF-β stimulation. E. 
Overlap between TGF-β regulated RBPs and differential expressed genes upon TGF-β stimulation. Overlap of RBPs which
showed a greater than two fold change in RNA binding upon TGF-β stimulation (10 ng/ml, 24 h) with differentially expressed 
RNAs (RNA seq.) following TGF-β stimulation (10 ng/ml, 24 h).
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Figure S3. Mechanism of RNA binding activity regulation. A. Effects of PI3K/AKT inhibition on RNA binding. MCECs were 
incubated in 10 ng/ml TGF-β for 24 hours in the presence of increasing concentrations of Pictilisib, a selective inhibitor of the 
PI3K/AKT signalling pathway, followed by UV-crosslinking and RNA interactome capture. Quantifications reflect changes in 
abundance of proteins in RNA interactome isolates, normalised to input lysate, n=3, error bars show average ±SEM, no statistical 
significance after one-way ANOVA and Tukey’s multiple comparison test. B. Effects of ERK inhibition on RNA binding. MCECs 
were incubated in 10 ng/ml TGF-β for 24 hours in the presence of increasing concentrations of PD 0325901, a selective inhibitor 
of the MEK1 and MEK2, followed by UV-crosslinking and RNA interactome capture. Quantifications reflect changes in abundance 
of proteins in RNA interactome isolates, normalised to input lysate, n=3, data shown as average ±SEM, no statistical significance 
after one-way ANOVA and Tukey’s multiple comparison test. 
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Figure S4. A. Effects of hnRNP H1 overexpression on mesenchymal marker gene expression. MCECs were transfected with 
hnRNP H1 OE construct (48 h) and TGF-β stimulation (10 ng/ml, 24 h), followed by RNA isolation and RT-qPCR analysis of the 
expression of selected mesenchymal genes. Expression normalised to Gapdh, n=3, each in triplicate, data shown as average 
±SEM, normality assessed by Shapiro Wilk and significance assessed by unpaired Student’s t-test, significance shown to three 
significant figures. B. Effects of Csde1 overexpression on mesenchymal marker gene expression. MCECs were transfected with 
Csde1 OE construct (48 h) and TGF-β stimulation (10 ng/ml, 24 h), followed by RNA isolation and RT-qPCR analysis of the 
expression of selected mesenchymal genes. All expression normalised to Gapdh, n=3, each in triplicate, data shown as average 
±SEM, normality assessed by Shapiro Wilk and significance assessed by unpaired Student’s t-test, significance shown to three 
significant figures. C. Effects of hnRNP H1 and Csde1 overexpression on tubule formation. hnRNP H1 and Csde1 were 
overexpressed (48 h) in MCECs incubated with TGF-β (24). Cells were cultured on matrigel membrane (24 h), flourescently
labelled and tubule formation assessed by microscopy. Quantifications represent average total tubule length and number of 
complete loops. Representative images (n=3 triplicates scale bar 100µm). Data shown as average ± SEM, normality assessed by 
Shapiro Wilk, significance assessed by one way-ANOVA with Dunnett’s multiple comparison, significance shown to three 
significant figures. D. Effects of hnRNP H1 and Csde1 overexpression on LDL uptake. hnRNP H1 and Csde1 were overexpressed 
(48 h) +/- TGF-β stimulation (10 ng/ml, 24 h). MCECs were then incubated in fluorescently labelled LDL and uptake assessed and 
quantified by fluorescence microscopy. Data shown as average ±SEM. Normality assessed by Shapiro Wilk, significance assessed 
by one way-ANOVA with Dunnett’s multiple comparison, significance shown to three significant figures. E. 
Optimisation/validation of siRNA knockdown of hnRNP H1 and Csde1 (Western blot). MCECs were transfected with increasing 
concentrations of sihnRNP H1 or siCsde1 siRNA and expression assessed after 48 hours by Western blot. Expression relative to 
Gapdh, n=3, data shown as average ±SEM, normality assessed by Shapiro Wilk, significance assessed by one way-ANOVA with 
Dunnett’s multiple comparison, significance shown to three significant figures. F. Optimisation/validation of siRNA knockdown 
of hnRNP H1 and Csde1 (RT-qPCR). MCECs were transfected with increasing concentrations of sihnRNP H1 or siCsde1 siRNA and 
expression assessed after 48 hours by RT-qPCR. Expression relative to Gapdh, n=3, data shown as average ±SEM, normality 
assessed by Shapiro Wilk, significance assessed by one way-ANOVA with Dunnett’s multiple comparison, significance shown to 
three significant figures. G. Optimisation/validation of hnRNP H1 and Csde1 overexpression. MCECs were transfected with 
increasing concentrations of hnRNP H1 or Csde1 constructs and expression assessed after 48 hours by RT-qPCR. Expression 
relative to Gapdh, n=3, data shown as average ±SEM, normality assessed by Shapiro Wilk, significance assessed by one way-
ANOVA with Dunnett’s multiple comparison, significance shown to three significant figures. 
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Figure S5. hnRNP H1 and Csde1 in primary human endothelial cells. A. TGF-β regulated changes in RNA binding are conserved 
in HUVECs. Human Umbilical Vein Endothelial Cells (HUVECs) were incubated in increasing TGF-β (24 h) followed by UV-cross-
linking and RIC. Quantifications reflect changes in abundance in RIC isolates, normalised to input lysate, n=3, data shown as
average ±SEM. Normality assessed by Shapiro Wilk, significance assessed by one-way ANOVA with a Dunnett’s multiple 
comparison test, significance shown to three significant figures. B. Effects of hnRNP H1 and Csde1 knockdown on mesenchymal 
gene expression in HUVECs. hnRNP H1 or Csde1 were knocked down in HUVECs by siRNA for 48 hours followed by RT-qPCR
analysis of selected mesenchymal marker genes. Expression normalised to Gapdh, n=3 each in triplicate, data shown as average
±SEM, normality assessed by Shapiro Wilk, significance assessed by one-way ANOVA with a Dunnett’s multiple comparison test, 
significance shown to three significant figures. C. Effects of hnRNP H1 and Csde1 knockdown on LDL uptake in HUVECs. hnRNP 
H1 and Csde1 were knocked down in HUVECs (siRNA, 48 h), cells were incubated in fluorescently labelled LDL and uptake 
assessed by fluorescence microscopy. Representative images (n=3 experiments, scale bar 100µm). Data shown as average ± SEM. 
n=3 (10 quantifications per replicate), normality assessed by Shapiro Wilk, significance assessed by one-way ANOVA with a 
Dunnett’s multiple comparison test, significance shown to three significant figures. D. Effects of hnRNP H1 and Csde1 
knockdown on tubule formation in HUVECs. hnRNP H1 and Csde1 were knocked down in HUVECs (siRNA, 48 h), cells were 
plated on matrigel (24 h), fluorescently labelled and tubule formation assessed by microscopy. Quantifications represent average 
total tubule length and number of complete loops. Representative images (n=3 triplicates scale bar 100µm). Data shown as 
average ± SEM, normality assessed by Shapiro Wilk, significance assessed by one-way ANOVA with a Dunnett’s multiple 
comparison test, significance shown to three significant figures. E. Effects of hnRNP H1 and Csde1 knockdown on LDL uptake in 
HCMECs . hnRNP H1 and Csde1 were knocked down in HCMECs (siRNA, 48 h), cells were incubated in fluorescently labelled LDL 
and uptake assessed by fluorescence microscopy. Representative images (n=3 experiments, scale bar 100µm). Data shown as 
average ± SEM. n=3 (10 quantifications per replicate), significance assessed by a Krucksal-Wallis test, significance shown to three 
significant figures.
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Figure S6. Effects of hnRNP H1 knockdown on alternative splicing patterns. A. Significant alternative splicing  events following 
hnRNP H1 knockdown. Pie chart showing the significant alternative splicing changes upon sihnRNP H1  knockdown in both the 
presence and absence of TGF-β stimulation as detected by RNA sequencing between siCtl vs sihnRNP H1  conditions (FDR < 0.05). 
B. Significant alternative splicing events following hnRNP H1 knockdown in the absence of TGF-β  stimulation. Pie chart 
showing the significant alternative splicing events upon knockdown of hnRNP H1 under basal conditions  (siCtl 0 ng/ml TGF-β vs 
sihnRNP H1 0 ng/ml TGF-β) as detected by RNA sequencing (FDR < 0.05). C. Significant alternative  splicing events following 
hnRNP H1 knockdown in the presence of TGF-β stimulation. Pie chart showing the significant  alternative splicing events upon 
knockdown of hnRNP H1 in the presence of TGF-β stimulation (siCtl 10 ng/ml TGF-β vs sihnRNP  H1 10 ng/ml TGF-β) as detected 
by RNA sequencing (FDR < 0.05). D. Alternative splicing following sihnRNP H1 knockdown in  the presence and absence of TGF-
β stimulation. Dot plot showing enriched pathways in genes which showed significant  changes in splicing (FDR <0.05) in sihnRNP 
H1 vs siCtl samples in both the presence and absence of TGF-β stimulation. E.  Representative examples of alternative splicing 
events. Representative splicing maps of differentially spliced transcripts upon  knockdown of hnRNP H1.
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Figure S7. Effects of Csde1 knockdown on alternative splicing patterns. A. Significant alternative splicing events  following 
Csde1 knockdown. Pie chart showing the significant alternative splicing changes upon siCsde1 knockdown in both  the presence 
and absence of TGF-β stimulation as detected by RNA sequencing between siCtl vs siCSde1 conditions (FDR <  0.05). B. 
Significant alternative splicing events following Csde1 knockdown in the absence of TGF-β stimulation. Pie chart  showing the 
significant alternative splicing events upon knockdown of Csde1 under basal conditions (siCtl 0 ng/ml TGF-β vs  siCsde1 H1 0 
ng/ml TGF-β) as detected by RNA sequencing (FDR < 0.05). C. Significant alternative splicing events following  Csde1 
knockdown in the presence of TGF-β stimulation. Pie chart showing the significant alternative splicing events upon  knockdown 
of Csde1 in the presence of TGF-β stimulation (siCtl 10 ng/ml TGF-β vs siCsde1 10 ng/ml TGF-β) as detected by RNA  sequencing 
(FDR < 0.05). D. Alternative splicing following siCsde1 knockdown in the presence and absence of TGF-β  stimulation. Dot plot 
showing enriched pathways in genes which showed significant changes in splicing (FDR <0.05) in siCsde1  vs siCtl samples in both 
the presence and absence of TGF-β stimulation. E. Representative examples of alternative splicing  events. Representative 
splicing maps of differentially spliced transcripts upon knockdown of Csde1.
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Figure S8. A. Expression of selected EndoMT marker genes in endothelial cells after TAC. RT-qPCR analysis of genes in 
isolated cardiac endothelial cells from sham and two week TAC operated mice. Data shown as average ± SEM, normality 
assessed by Shapiro Wilk test, significance assessed by Student’s t-test, significance shown to three significant figures. B. 
Expression of hnRNP H1 and target genes in whole heart and endothelial cells after TAC. RT-qPCR analysis of hnRNP H1, 
Col1a1 and Smad6 expression in whole heart and isolated endothelial cells from sham and two week TAC operated mice. 
Data shown as average ± SEM, normality assessed by Shapiro Wilk test, significance assessed by Student’s t-test, significance 
shown to three significant figures. C. Expression of Csde1 and target genes in whole heart and endothelial cells after TAC. 
RT-qPCR analysis of Csde1, Col5a1 and Itga3 expression in whole heart and isolated endothelial cells from sham and two 
week TAC operated mice. Data shown as average ± SEM, normality assessed by Shapiro Wilk test, significance assessed by 
Student’s t-test, significance shown to three significant figures.



Supplementary Excel tables 

Supplementary Table 1. 

Proteomic analysis of the TGF-β regulated RNA interactome (related to Figure 1).

Supplementary Table 2. 

RIP analysis of TGF-β regulated RNA binding patterns of hnRNP H1 (related to Figure 4).

Supplementary Table 3. 

RNA sequencing analysis of differential RNA expression following si-hnRNP H1 knockdown (related to 
Figure 4).

Supplementary Table 4. 

RIP analysis of TGF-β regulated RNA binding patterns of Csde1 (related to Figure 6).

Supplementary Table 5. 

RNA sequencing analysis of differential RNA expression following si-Csde1 knockdown (related to 
Figure 6).



Source data



Source data related to Figure 1
Uncropped/unprocessed representative Western blots relating to Figure 1G. Boxes reflect data quantified in Figure 1 H 
(validation of TGF- β driven changes in cross-linked RBPs.)
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Lysate RBPs
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Source data relating to Figure 2. 
Uncropped/unprocessed representative Western blots relating to Figure 2C. Boxes reflect data quantified in 
Figure 2D (Quantification  of  dose dependent TGF- β driven changes in RBPs.)
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Uncropped/unprocessed representative Western blots relating to Figure 2E. Boxes reflect data quantified in 
Figure 2F (Quantification  of  time dependent TGF- β driven changes in RBPs.)
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Uncropped/unprocessed representative Western blots relating to Figure 2G. Boxes reflect quantified data shown in H. Lamin A/C and 
Gapdh were used as markers to show efficient separation of the nuclear and cytoplasmic fractions. 
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Source data relating to Figure 2I. 
Lysate

0 0.1 1 10
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Source data relating to Figure 2J. 
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Source data relating to Figure 2K. 
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Source data related to Figure 3.
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Source data related to Figure 3F.

Source data related to Figure 3G.
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Full source data related to Figure 1G. Boxes reflect data quantified in Figure 1 H (validation of 
TGF- β driven changes in cross-linked RBPs relative to the corresponding input lysate)
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Full source data related to Figure 2C. Boxes reflect data quantified in Figure 2D (Quantification  of  dose 
dependent TGF- β driven changes in RBPs relative to lysate.)
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Full source data related to Figure 2E. Boxes reflect data quantified in Figure 2F (Quantification  
of  time dependent TGF- β driven changes in RBPs relative to lysate .)

hnRNP H1 

hnRNP F 

Csde1 

Mov10 

Time

Lysate RBPs Lysate RBPs Lysate RBPs

0h12h 24h7d 0h12h 24h7d 0h12h 24h7d 0h12h 24h7d 0h12h 24h7d 0h12h 24h7d



Full source data related to Figure 2G and H. Boxes reflect quantified data shown in H. Lamin A/C and Gapdh were 
used as markers to show efficient separation of the nuclear and cytoplasmic fractions. 
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Full source data related to Figure 2I
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Full source data related to Figure 2J. Boxes reflect data shown in quantifications (changes in RNA binding in 
response to TGF-β).

Full source data related to Figure 2K. Boxes reflect data shown in quantifications (changes in RNA binding in 
response to TGF-β).
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Full source data related to Figure 3F
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Full source data related to Figure 3G. Boxes reflect data shown in quantifications (changes in RNA binding in 
response to TGF-β).

hnRNP H1 

Erk1/2

TGF-β

Csde1 



DOI [to be added] 

Major Resources Table 

In order to allow validation and replication of experiments, all essential research materials listed in the Methods should be included 
in the Major Resources Table below. Authors are encouraged to use public repositories for protocols, data, code, and other 

materials and provide persistent identifiers and/or links to repositories when available. Authors may add or delete rows as needed. 

Animals (in vivo studies) 
Species Vendor or Source Background Strain Sex Persistent ID / URL 

Mouse Charles River C57Bl6N Male https://www.criver.com/products-
services/find-model/c57bl6-
mouse?region=23 

 
Genetically Modified Animals 

 Species Vendor or 
Source 

Background 
Strain 

Other Information Persistent ID / URL 

Parent - Male N/A 
Parent - Female N/A 

 
Antibodies 

Target antigen Vendor or 
Source 

Catalog 
# 

Working 
concentrat

ion 

Persistent ID / URL 

hnRNP H1  Thermo 
Fisher 

PA5-
50678 

1:1000 
(Western 
blot) 
1:500 
(PLA) 

https://www.thermofisher.com/antibody/product/hnRNP-
H1-Antibody-Polyclonal/PA5-50678 

hnRNP H1  Thermo 
Fisher  

PA5-
70400 

5 µg/mg 
(IP)  
 

https://www.thermofisher.com/antibody/product/hnRNP-
H1-Antibody-Polyclonal/PA5-70400 

CSDE1  Thermo 
Fisher 

PA5-
96480 

1:1000 
(Western 
blot) 
5 µg/mg 
(IP)  
1:250 
(PLA) 

https://www.thermofisher.com/antibody/product/CSDE1-
Antibody-Polyclonal/PA5-96480 

hnRNP F  Novus NBP2-
57442 

1:1000 
(Western 
blot) 

https://www.novusbio.com/products/hnrnp-f-
antibody_nbp2-57442 

Mov10  Santa-
Cruz 

sc-
515722 

1:500 
(Western 
blot) 

https://www.scbt.com/p/mov10-antibody-b-3 

eIF3c  Thermo 
Fisher 

PA5-
17110 

1:500 
(Western 
blot) 

https://www.thermofisher.com/antibody/product/eIF3c-
Antibody-Polyclonal/PA5-17110 

GAPDH  Fitzgerald  10R-
G109a 

1:1000 
(Western 
blot) 

https://www.citeab.com/antibodies/10173-10r-g109a-
gapdh-antibody 

Lamin A/C  Cell 
Signaling 

2032 1:1000 
(Western 
blot) 

https://www.cellsignal.com/products/primary-
antibodies/lamin-a-c-antibody/2032 
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Technolo
gies  

Phospho-
Smad2 
(Ser465/467)/
mad3 
(Ser423/425) 

Cell 
Signaling 
Technolo
gies  

8828S 1:1000 
(Western 
blot) 

https://www.cellsignal.com/products/primary-
antibodies/phospho-smad2-ser465-467-smad3-ser423-425-
d27f4-rabbit-mab/8828?site-search-
type=Products&N=4294956287&Ntt=8828s&fromPage=plp&
_requestid=1540768 

Smad2/3 Cell 
Signaling 
Technolo
gies 

3102S 1:1000 
(Western 
blot) 

https://www.cellsignal.com/products/primary-
antibodies/smad2-3-antibody/3102 

ERK 1/2 Cell 
Signaling 
Technolo
gies 

9102 1:1000 
(Western 
blot) 

https://www.cellsignal.com/products/primary-
antibodies/p44-42-mapk-erk1-2-antibody/9102 

GSL I - 
isolectin B4 
antibody 

Vector  FL-
1201 

1:50 (IF) https://vectorlabs.com/products/glycobiology/fluorescein-
gsl-i-isolectin-b4 

Biotin Abcam ab2013
41 

1:500 
(PLA) 

https://www.abcam.com/products/primary-
antibodies/biotin-antibody-hyb-8-ab201341.html 

IgG control 
(rabbit)  

Cell 
Signaling 
Technolo
gies 

2729S Experimen
tally 
matched 

https://www.cellsignal.com/products/primary-
antibodies/normal-rabbit-igg/2729 

 
DNA/cDNA Clones 

Clone Name Sequence Source / Repository Persistent ID / URL 
Primers (5’-3’) (Mouse unless stated otherwise) 

Pecam1 
 

F-GGAAGTGTCCTCCCTTGAGC 
R-GGAGCCTTCCGTTCTTAGGG 

Sigma/Merck This paper 

eNos 
 

F-TGGCATGGGCAACTTGAAGA 
R-CGGTGCTGGAGAGGCTG 

Sigma/Merck This paper 

Fn1  
 

F-TGTGACAACTGCCGTAGACC 
R-TGGGGTGTGGATTGACCTTG 

Sigma/Merck This paper 

α-Sma 
 

F-GAGACTCTCTTCCAGCCATCT 
R-CCCTGACAGGACGTTGTTAGC 

Sigma/Merck This paper 

Sm22α 
 

F-GCCACACTGCACTACAATCC 
R-CCAGTCCACAAACGACCAAG 

Sigma/Merck This paper 

hnRNP H1  
 

F- GCTTTTTGTGGAGCCCCG 
R- TTCTGCTCCCAGCATCATCG 

Sigma/Merck This paper 

Csde1 F- CATCCTTTGGAACTTGTGCTGA 
R- TGGATCAAAGCTCATCTCGCA 

Sigma/Merck This paper 

Smad6  
 

F-TCCGGGTGAATTCTCAGATGC 
R- GCCCTGAGGTAGGTCGTAGA 

Sigma/Merck This paper 

Col1a1 
 

F-CCGCTGGTCAAGATGGTC 
R-CCTCGCTCTCCAGCCTTT 

Sigma/Merck This paper 

Itga3 
 

F-ACAGAGTCAGGGTAGATGGCT 
R-AGAGGAGGATGATGAGCCCC 

Sigma/Merck This paper 
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Col5a1 F- GATCCCAACCAAGGGTGCTC 
R- CCAAGAAGTGATTCTGGCTCCC 

Sigma/Merck This paper 

Col3a1 F-AAGGCTGAAGGAAACAGCAA 
R- TGGGGTTTCAGAGAGTTTGG 

Sigma/Merck This paper 

TGF-β2 
 

F-CAGCGCTACATCGATAGCAA 
R-CCTCGAGCTCTTCGCTTTTA 

Sigma/Merk This paper 

hnRNP H1 
(human) 
 

F- 
CAGTTCAGCGACCACGTTTG 
R- 
CACCACGAATCCCTCTCCAC 
 

Sigma/Merck This paper 

Csde1 (human) 
 

F- CGCTGAGCTGTTGGGTATGA 
R- ACGAGGTTTGTTCCTTGCCT 

Sigma/Merck This paper 

PLA Probes 5’-3’     
Smad6  1.CTCAATCGGTGTTCGGAATGAA[BtnTg] 

2.CACAGAGATCGTAGCAAAGCGA[BtnTg]   
3.GAGGTAGTTCCACAAGCTGAAA[BtnTg] 
4. AGGATGAGTTGTTGGTGTCT[BtnTg]   

Sigma/Merck This paper 

Col1a1 
  

1.CGTTTCTCAGATGTACAGATCC[BtnTg]   
2.GATCTGTACAAGTCGAAACACC[BtnTg] 
3.GATACCGATACTACTTTTTAGT[BtnTg]   
4.CTCAGTCGTCTAACTCCTGTAG[BtnTg]   

Sigma/Merck This paper 

Itga3 
 

1.CATTTTTTAACGGACTGATGGC[BtnTg]   
2.GTAAAGTCTCTTTTCACTGGGA[BtnTg]   
3.AGAGGAAGTTCTGGAACGTTAC[BtnTg]   
4.GATTACCGGACGAGACTATATA[BtnTg]   

Sigma/Merck This paper 

Col5a1 1.CGAAGGATACTGAGGGACTT[BtnTg]   
2. CTAGAAGACCTCTACGATCT[BtnTg]   
3. CATGTTTACTGGAAGGACGC[BtnTg]   
4.ATAGGACGGAAAGGATGTCG[BtnTg]   

Sigma/Merck This paper 

 
Cultured Cells 

Name Vendor or Source Sex (F, M, or unknown) Persistent ID / URL 
Mouse cardiac 
endothelial cells (MCECs) 

CELLultions 
biosystems inc. 

unknown CLU510 

Human umbilical vein 
endothelial cells 
(HUVECs) 

PromoCell unknown C-12200 

NIH/3T3 ATCC unknown CRL-1658 
 

HL-1 Merck Female  SCC065 
Human Cardiac 
Microvascular Endothelial 
Cells (HCMEC) 

Promocell unknown C-12286 

 
Data & Code Availability 

Description Source / Repository Persistent ID / URL 



DOI [to be added] 

RIC data  Supplementary 
information 

This paper 

RIP-seq  and RNA seq data  Supplementary 
information and the 
GEO repository 

This paper and GSE216228 

 
Other 

Description Source / Repository Persistent ID / 
URL 

Key reagents  
Oligo d(T)25 
Magnetic beads 

New England Biolabs S1419S 

Lithium chloride 
(LiCl) 

Sigma/Merck 203637 

Lithium dodecyl 
sulphate (LiDS) 

Sigma/Merck L9781 

EDTA Sigma/Merck 03609 
Dithiothreitol 
(DTT) 

Sigma/Merck 43819-5G 

Tris Carl Roth  4855.3 
Tween 20 Carl Roth 9127.1 
IGEPAL CA-630 
(NP-40) 

Sigma/Merck I8896 

Complete Mini 
EDTA free 
protease 
inhibitor cocktail 

Roche 4693159001 

RNase A/T1 Mix Thermo Fisher EN0551 
DMEM (high 
glucose, 4.5 g/L) 

Pan biotech  P04-03500 

Feotal calf 
serum (FCS) 

Merck/Millipore (Biochrom) S0615 

Penicilin-
streptomycin 

Thermo/Life Technologies 15140122 

1M HEPES Thermo/Life Technologies  15630056 
MEM Non-
Essential Amino 
Acids Solution 
(100X) 

Thermo/Life Technologies  11140050 

PBS  Pan biotech  P04-53500 
Trypsin, 2.5%  Thermo/Life Technologies 15090046 
Endothelial cell 
growth media kit  

Promocell  C-22110 

Lipofectamine 
RNAiMAX 
transfection 
reagent 

Thermo Fisher Scientific  13778150 
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Corning Matrigel 
basement 
membrane 
matrix 

Corning  354234 

Hnrnph1, 
Mouse, ORF 
Clone (GFP 
tagged) 

Origene  MG207170 

Csde1, Mouse, 
ORF clone 
(untagged)  

Origene  MC202422 

Lipofectamine 
3000 
Transfection 
reagent 

Thermo Fisher Scientific L3000-015 

Vectashield 
HardSet 
Mounting 
Medium with 
DAPI 

Vector  VEC-H-1500 

Recombinant 
TGF-β1 (HEK-
293T derived) 

Peprotech 100-21 

Surebeads, 
Protein A 

BioRad 1614013 

RNaseIN 
Ribonuclease 
Inhibitor 

Promega N2515 

ProSieve™ 
QuadColor™ 
Protein Marker 

Lonza 00193837 

Prestained 
protein marker 

Proteintech PL00001 

MgCl2 Carl Roth KK36.3 
NaCl Carl Roth 9265.2 
SDS Carl Roth 2326.3 
Proteinase K  New England Biolabs P8107S 
Phenol 
chloroform 

Sigma/Merck 77617 

Phase Lock 
Heavy tube 

Avantor 733-2478 

TURBO DNase Thermo Fisher Scientific  AM2238 
Pictilisib (GDC-
0941) 

MedChemExpress HY-50094 

PD 0325901 Sigma/Merck PZ0162 
Triton x 100  Carl Roth  3051.3 
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Bovine Serum 
Albumin Fraction 
V 

Sigma/Merck  10735108001 

Triethanolamine  Carl Roth  6300.1 
Acetic anhydride  Sigma/Merck  320102 
SSC buffer (20x) Sigma/Merck  S6639 
Denhardts 
reagent 

Thermo Fisher Scientific 750018 

CHAPS Carl Roth 1479.1 
tRNA Sigma/Merck 10109495001 
Heparin sodium 
salt  

Sigma/Merck  H3393 

Deionised 
formamide 

Sigma/Merck F9037 

Actinomycin D  Sigma/Merck A9415-5MG 
Collagenase I  Worthington biochem LS004176 
DNase I Worthington biochem LS002139 
RPMI 1640 Thermo/Life Technologies 31870025 
MACS buffer Miltenyi 130091222 
CD146 
microbeads 

Miltenyi 130092007 

0.1% BCECF AM 
Ester 

Sigma/Merck B8806 

Kits and assays 
Maxima H Minus 
First Strand 
cDNA Synthesis 
Kit 

Thermo Fisher Scientific  K1652 

NucleoSpin RNA 
Extraction kit  

Macherey-Nagel 740955 

Maxima SYBR 
Green qPCR 
Master Mix 

ThermoFisher Scientific K0253 

Cell based LDL-
uptake assay kit  

Abcam ab133127 

Zymo RNA clean 
and 
concentrator kit  

Zymo R1015 

Agilent High 
Sensitivity DNA 
Kit 

Agilent Technologies 5067-4626 

Duolink In Situ 
Red Starter Kit 
Mouse/Rabbit 

Sigma/Merck  DUO92101 

Oligonucleotides 
ON-TARGETplus 
siRNA, hnRNP 

Dharmacon/horizon discovery  LQ-048699-
01-0010 
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H1 (mouse), set 
of 4 
ON-TARGETplus 
siRNA, Csde1 
(mouse), set of 4  

Dharmacon/horizon discovery LQ-040691-
01-0010 

ON-TARGETplus 
siRNA, hnRNP 
H1 (human), set 
of 4 

Dharmacon/horizon discovery L-012107-00-
0010 

ON-TARGETplus 
siRNA, hnRNP 
H1 (mouse), set 
of 4 

Dharmacon/horizon discovery L-015834-00-
0010 

Silencer 
Negative Control 
siRNA 

Thermo Fisher AM4635 

Software and algorithms 
IsobarQuant https://www.bioconductor.org/packages/release/bioc/html/isobar.html Version 3.17 
Limma  https://bioconductor.org/packages/release/bioc/html/limma.html Version 3.5 
Vsn https://www.bioconductor.org/packages/release/bioc/html/vsn.html Version 3.62 
Msnbase https://bioconductor.org/packages/release/bioc/html/MSnbase.html Version 2.20.4 
CASAVA Illumina  Version 1.8 
SAMBLASTER  https://github.com/GregoryFaust/samblaster Version 0.1.26 
skewer https://sourceforge.net/projects/skewer/files/Binaries/ Version  

0.1.126 
fastqc https://qubeshub.org/resources/fastqc Version 1.0 
Bowtie http://bowtie-bio.sourceforge.net/index.shtml Version 2.0 
BWA http://bio-bwa.sourceforge.net/ Version 0.7.12 
MACS2 https://pypi.org/project/MACS2/ Version 2.1.0 
Meme https://meme-suite.org/meme/ Version 4.10.2 
diffbind https://bioconductor.org/packages/release/bioc/html/DiffBind.html Version 3.4.11 
KOBAS http://kobas.cbi.pku.edu.cn/kobas3/help/ Version 3.0 
GOSeq https://bioconductor.org/packages/release/bioc/html/goseq.html Version 1.46 
HISAT2 http://daehwankimlab.github.io/hisat2/ Version 2.2.1 
featureCounts  https://rdrr.io/bioc/Rsubread/man/featureCounts.html Version 2.4.3 
rMATs http://rnaseq-mats.sourceforge.net/ Version 4.1.0 
GraphPad Prism  https://www.graphpad.com/scientific-software/prism/ Version 7.04 
ImageJ (Fiji) https://imagej.net/software/fiji/downloads  
Stellaris Probe 
designer  

https://www.biosearchtech.com/support/tools/design-
software/stellaris-probe-designer 
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ARRIVE GUIDELINES 

The ARRIVE guidelines (https://arriveguidelines.org/) are a checklist of recommendations to improve the reporting of 
research involving animals. Key elements of the study design should be included below to better enable readers to 
scrutinize the research adequately, evaluate its methodological rigor, and reproduce the methods or findings. 

Study Design 

Groups Sex Age Number (prior 
to experiment) 

Number (after 
termination) 

Littermates 
(Yes/No) 

Other description 

Group 1 
(Control) 
Sham (two 
weeks) 

Male 8-10 
weeks 
at 
surgery 

3 3 No  

Group 2 
TAC (two 
weeks) 

Male 8-10 
weeks 
at 
surgery 

3 3 No   

 

Sample Size: Please explain how the sample size was decided Please provide details of any a prior sample size 
calculation, if done. 

 

Inclusion Criteria 

Matched aged and sex. 

Exclusion Criteria 

Matched aged and sex. 

Randomization 

No randomisation. 

Blinding 

Unblind. 

https://arriveguidelines.org/
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