Decoding the Dual Recognition Mechanism of Glucocorticoid Receptor for DNA and RNA: Sequence vs. Shape

Hörberg Johanna & Reymer* Anna

Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden. * Email to: <u>anna.reymer@gu.se</u>

Figure S1: Derived models of GRE_RNA and Gas5_RNA. Models highlighted with orange (the highest ranked model) and green (the second highest ranked model) were used for the docking studies.

Figure S2: Prepared GR-DNA/RNA complexes.

Figure S3: Comparison of GR-Gas5 model1 and model2 starting and average structures.

Figure S4: Fluctuations of protein heavy atoms RMSD relative to the average structures for the whole md trajectory.

Figure S5: Fluctuations of protein-DNA/RNA complex heavy atoms RMSD relative to the average structures for the whole md trajectory.

Figure S6: Comparison of GR from all average structures, illustrating that predominant conformational changes occur at helix4.

Figure S7: Dynamic contacts map for the specific and nonspecific GR-Gas5_RNA_model1 interactions.

Figure S8: Dynamic contacts map for the specific and nonspecific GR-Gas5_RNA_model2 interactions.

Figure S9: Dynamic contacts map for the specific and nonspecific GR-GRE_RNA interactions.

Figure S10: Dynamic contacts map for the specific and nonspecific GR-dsRNA interactions.

Figure S11: Dynamic contacts map for the specific and nonspecific GR(monomer1)-DNA interactions.

Figure S12: Dynamic contact map for the specific and nonspecific GR(monomer2)-DNA interactions.

Figure S13: Specific (A) and nonspecific (B) GR-DNA/RNA interaction energies along the corresponding MD trajectories.

Figure S14: Specific (A) and nonspecific (B) GR-DNA/RNA interaction energies distributions

Table S1. Binding energies estimated by the MMPBSA and MMGBSA analyses for the GR-DNA/RNA complexes.

	MMPBSA MMGBSA					
	(kcal/mol) (kcal/mol)					
GR-DNA	-197.2±17.7	-197.8±15.3				
GR(mon1)-DNA	-99.8±14.0	-101.6±13.1				
GR(mon2)-DNA	-97.1±13.1	-93.4±11.5				
GR-dsRNA	-83.4±11.7	-72.9±9.7				
GR-GRE_RNA	-70.3±14.1	-64.8±11.2				
GR-Gas5_model1	-90.1±15.0	-79.7±13.1				
GR-Gas5 model2	-130±16.6	-129.2±15.3				

Table S2. Solvation energies estimated by the MMPBSA and MMGBSA analyses for the GR-DNA/RNA complexes.

	MMPBSA	MMGBSA	
	(kcal/mol)	(kcal/mol)	
GR-DNA	8083.3±189.4	8082.7±188.3	
GR(mon1)-DNA	4034.1±161.0	4032.2±159.7	
GR(mon2)-DNA	4049.6±157.5	4053.1±157.0	
GR-dsRNA	3877.3±193.7	3887.9±196.1	
GR-GRE_RNA	3737.4±181.9	3743.0±181.6	
GR-Gas5_model1	3896.3±225.9	3906.7±225.4	
GR-Gas5_model2	4327.9±158.9	4328.5±159.5	

Table S3. The polar and non-polar terms of the solvation energy calculated by the MMPBSA and MMGBSA analyses. The polar term represents the electrostatic interactions between the solute and the solvent continuum model. The non-polar term represents the hydrophobic effects and is estimated by a linear relation to the SASA.

	MMPBSA (kcal/mol)	MMGBSA (kcal/mol)		
GR-DNA polar	8101.8±189.8	8101.2±188.7		
GR-DNA non-polar	-18.5±1.2			
GR(mon1)-DNA polar	4043.2±161.9	4041.4±160.6		
GR(mon1)-DNA non-polar	-9.1±1.4			
GR(mon2)-DNA polar	4059.0±157.9	4062.5±157.5		
GR(mon2)-DNA non-polar	-9.4±0.8			
GR-dsRNA polar	3882.9±193.9	3893.5±196.2		
GR-dsRNA non-polar	-5.6±0.7			
GR-GRE_RNA polar	3744.4±182.2	3750.0±181.9		
GR-GRE_RNA non-polar	-7.0±0.8			
GR-Gas5_model1 polar	3904.7±226.2	3915.1±225.6		
GR-Gas5_model1 non-polar	-8.38±0.9			
GR-Gas5_model2 polar	4339.1±159.4	4339.76±160.0		
GR-Gas5 model2 non-polar	-11.3±0.8			

В

Α

С

Figure S15: Helical parameters distributions for unbound and GR-bound DNA. **A.** Twist **B.** Roll **C.** Tilt **D.** Shift E. Slide **F.** Rise. The glucocorticoid receptor response elements 1 and 2 are highlighted with yellow.

F

В

С

Figure S16: Helical parameters distributions for unbound and GR-bound dsRNA. **A.** Twist **B.** Roll **C.** Tilt **D.** Shift E. Slide **F.** Rise. The glucocorticoid receptor response element is highlighted with yellow.

F

С

Model2

Model2

Model2

Model1

Figure S17: Helical parameters distributions of the glucocorticoid receptor response element for unbound and GR-bound Gas5_RNA for model1 (left panels) and model2 (right panels) . **A.** Twist **B.** Roll **C.** Tilt **D.** Shift E. Slide **F.** Rise.

Figure S18: Helical parameters distributions for unbound and GR-bound GRE_RNA. **A.** Twist **B.** Roll **C.** Tilt **D.** Shift E. Slide **F.** Rise. The glucocorticoid receptor response element is highlighted with yellow.

В

Α

Figure S19: Groove parameters distributions for unbound and GR-bound DNA. **A.** Major groove width **B.** Major groove depth **C.** Minor groove width **D.** Minor groove depth. The glucocorticoid receptor response elements 1 and 2 are highlighted with yellow.

A G A A 0.5 0.5 occrirence 0.5 0.5 5 10 majD (Å) A 0└ -5 0└ -5 0└ -5 -5 5 10 majD (Å) 0 5 10 majD (Å) **C** 5 10 majD (Å) **A** A e 1 0.5 0 -5 occurence occrirence 0.5 5 10 majD (Å) **A** 0└ -5 0└ -5 -5 5 10 majD (Å) **U** 5 10 majD (Å) **G** 5 10 majD (Å) **U** 0.5 occrirence 0.5 0.5 occrirence 0_ -5 0└ -5 -5 -5 5 10 majD (Å) **U** 5 10 majD (Å) **C** 5 10 majD (Å) **U** 5 10 majD (Å) occrirence 0.5 occurence 0.5 0∟ -5 -5 -5 majD (Å) majD (Å) majD (Å)

В

Figure S20: Groove parameters distributions for unbound and GR-bound dsRNA. **A.** Major groove width **B.** Major groove depth **C.** Minor groove width **D.** Minor groove depth. The glucocorticoid receptor response element is highlighted with yellow.

1.5

υ

1.5

Model2

G

G

20

20

1.5

Model1

Figure S21: Groove parameters distributions of the glucocorticoid receptor response element for unbound and GR-bound Gas5_RNA. **A.** Major groove width **B.** Major groove depth **C.** Minor groove width **D.**

С A A A r occrirence 0.5 occurence occurence occurence 0.5 majD (Å) majD (Å) **A** majD (Å) majD (Å) r occrirence 0.5 occurence occrirence occrirence 0.5 majD (Å) majD (Å) majD (Å) majD (Å) Occrirence 0.5 r occritence occritence occurence Ŋ majD (Å) majD (Å) majD (Å)

В

Figure S22: Groove parameters distributions for unbound and GR-bound GRE_RNA. A. Major groove width B. Major groove depth C. Minor groove width D. Minor groove depth. The glucocorticoid receptor response element is highlighted with yellow.

Figure S23: Comparison of average values for helical parameters and groove depths in different nucleic acids model systems for the b.p. within the GRE-site for the GR-bound systems.

Figure S24: PCA analysis showing the variance explained by the first 10 eigenvectors. **A.** For unbound nucleic acids systems. For the GR-bound nucleic acids systems for the two PCA analyses performed: **B.** for the heavy atoms of the protein-DNA/RNA systems with the superposition on the nucleic acids and **C.** for heavy atoms of DNA/RNA with the superposition on the nucleic acids.

	DNA	dsRNA	GRE_RNA	Gas5_model1	Gas5_model2
Unbound	57.9%	66.4%	65.1%	64.0%	63.5%
GR-bound					
(1)	52.5%	79.0%	58.5%	68.2%	51.1%
(2)	44.7%	65.7%	65.8%	61.3%	56.9%

Table S4: Variance of the dynamics explained by the first three eigenvectors

PC1

In l

PC1

PC1

PC3

Figure S25: The extreme points for the first three PCs of the unbound nucleic acid systems. **A.** DNA **B.** dsRNA **C.** GRE_RNA **D.** Gas5_RNA_model1 **E.** Gas5_RNA_model2. The blue arrows indicate the motion described by the corresponding PC.

PC1

PC2

PC3

PC1

PC2

PC3

PC2

P I PC1

Figure S26: The extreme points for the first three PCs of the GR-bound **A**. DNA **B**. dsRNA **C**. GRE_RNA **D**. Gas5_RNA_model1 **E**. Gas5_RNA_model2. Representative motions for analysis (1). Where analysis (1) is performed for the heavy atoms of the protein-DNA/RNA systems with the superposition on the nucleic acids. The blue arrows indicate the motion described by the corresponding PC.

PC2

PC3

凶

PC1

Figure S27: The extreme points for the first three PCs of the GR-bound **A.** DNA **B.** dsRNA **C.** GRE_RNA **D.** Gas5_RNA_model1 **E.** Gas5_RNA_model2. Representative motions for analysis (2), which is performed for heavy atoms of DNA/RNA with the superposition on the nucleic acids. The blue arrows indicate the motion described by the corresponding PC.