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Simple exact analysis of the standardised mortality
ratio
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SUMMARY The standardised mortality ratio is the ratio of deaths observed, D, to those expected,
E, on the basis of the mortality rates of some reference population. On the usual assumptions-that
D was generated by a Poisson process and thatE is based on such large numbers that it can be taken
as without error-the long established, but apparently little known, link between the Poisson and x2
distributions provides both an exact test of significance and expressions for obtaining exact (1 -a)
confidence limits on the SMR. When a table of the X2 distribution gives values for 1 -ia and Ia with
the required degrees of freedom, the procedures are not only precise but very simple. When the
required values of X2 are not tabulated, only slightly less simple procedures are shown to be highly
reliable for D>5; they are more reliable for all D and a than even the best of three approximate
methods. For small D, all approximations can be seriously unreliable. The exact procedures are
therefore recommended for use wherever the basic assumptions (Poisson D and fixed E) apply.

Given that D deaths occurred where E would have
been expected had the mortality rates of some
reference population applied, the standardised
mortality ratio (SMR) is DIE, or often 100(D/E). For
half a century or more, consideration has been given
to tests of significance of the SMR and to its interval
estimation. The usual assumptions have been that E
is without error (because based on sufficiently large
numbers) and that D was generated by a Poisson
process; this note adopts the same assumptions.
Most proposed procedures are approximate,

although exact methods have been presented.'
Because approximations are still being debated,23
this note aims to unify the exact procedures and show
their practicality. That they are quite simple arises
from the remarkable link, known to Fisher,4 between
the Poisson and X2 distributions, well described on
page 10 of volume 1 of the Biometrika Tables for
Statisticians' hereinafter designated BTS1. Table 8
ofBTS1 (pages 136-7) gives values of X2 according to
the degrees of freedom (v) for which the upper tail
probability Q(x21 v), defined on page 136, takes
specified values. The link is that Q(2m 2c) is
identical to the cumulative sum of the terms of the
Poisson series with parameter m=4X2, up to but
excluding the term for which c=iv. Although many
tables of the x2 distribution gives values only for
selected v, the use of the Wilson/Hilferty
approximations-that is, the first in the footnote on
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page 137 of BTS1-allows almost unlimited
extension, because it is satisfactory even for quite
small v (>10, say),7 although BTS1 suggests its use
only for v>i100.

Also evaluated are three approximate methods,
based as follows: (a) on the square-root
transformation of the Poisson distribution, well
known to be both normalising and variance-
stabilising, so that sd (/D) can be taken as i for all D ;8
(b) on the asymptotic normality of the distribution of
D with standard error /D ;9 and (c) on the asymptotic
normality of the distribution ofD with standard error
VE.8

Test of significance

The rationale is that, on the stated assumptions, the
true test of significance is provided by the
probabilities accumulated in the appropriate tail of
the Poisson distribution with parameter E. This is
always so, and the accumulation is not unduly tedious
for reasonably small D. For larger D, however, the
shortcut from the X2 link provides exact probabilities
as follows:

Pr(D or more deaths |E) = 1 - Q(2E I 2D); (1)
Pr(D or fewer deathsIE) = Q(2El2D + 2). (2)
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If D>E, expressions (1) and (2) give probabilities
less than or greater than 0 5, respectively; the reverse
is true when D<E. A one-sided test would use either
(1) or (2), depending on the alternative being
examined. For a two-sided test, expression (1) is used
ifD>E and expression (2) if D<E; the (one-tailed)
probability obtained should then be doubled,
following Armitage.8
Q can be obtained from tables, such as table 8 of

BTS1 for D< 15 or Documenta Geigy10 for all
D< 100. Tables of the x2 distribution usually provide
only critical values. If the true p-value is required
interpolation will be necessary; or it can be obtained
accurately from many calculator or computer
aIgorithms. For larger D, the above expressions can
be replaced by the following, each yielding a
standardised normal deviate z:6

z = 3(D)i[1- (9D)-1 - (DIE)-13]; (la)

z = 3(D')t. [(D'/E)-113 + (9D ')-1 -1], (2a)

where D' = D + 1. If D>E, z from (la) is positive,
the deviate from (2a) negative; ifD<E, (la) and (2a)
yield negative and positive z, respectively. The
p-values usually required are, as for Q, upper-tail so
that positive z gives probabilities <0 5, and vice
versa. The (one-tailed) p-value of z can readily be
obtained-for instance, from table 1 of BTS1, pages
110, subtracting from unity for the upper-tail
probability.
The approximate methods lead to standardised

normal deviates as follows: (a) z = 2(VD - /E);
(b) z = (D - E)//D; and (c) z = (D - E)IVE.

Interval estimation

The basis for obtaining the (1 - a) confidence
interval on the SMR is to determine the means, EL
andEu, oftwo Poisson processes such that both Pr (D
or more deaths EL) and Pr(D or fewer
deathsl E ) = ia; then SMRL = EL/E,
SMRU = EUYE.
The exact limits are found as follows:
Lower limit: find X2L for which Q(X2L 2D) = 1 -*X;

then EL = 4X2Land SMRL = iX2L/E; (3)
Upper limit: find X2u for which Q(x2U 2D + 2) = la;
then EU = iX2u and SMRu = iX2u/E. (4)

ForD< 15, table 8 ofBTS1 provides both X2L and X2u
for six levels of (1 - a). ForD = 0(1)30(5)50, table
40 ofBTS1 (p 227) gives iX2L and iX2u for five leveis
of (1 - a). For other values ofD and any a, the limits
are:
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SMRL = D{1 - (9D)-1 - z-(9D)-}I3/E; (3a)

SMRU = D' {1 - (9D')-l + z.(9D')-ij3/E, (4a)

where z is the standardised normal deviate
corresponding to Aa.
The limits from the approximate methods are: (a)

LID ± (tz)}2/E; (b) {D t zVD}IE; and (c)
{D ± z/E}/E; all using the same z.

Examples

Several examples are presented to show the
universality and precision of the simple methods
described above, and the comparative, but
anticipated,28 failure of the approximations when
D is small. In the first example,11 D = 8, E = 3.59,
SMR = 8/3 59 = 2-23. For the test of significance
we need Q(7.18116). From BTS1, table 8,
0*975 >Q>0*950 or, by the simplest interpolation
Tecommended in BTS1 (p 16, footnotet),
Q 0-968; from a calculator algorithm
Q = 0-969634. Thus Pr(8 or more deaths when 3 59
were expected) = 1 - Q = 0-030366 [or
approximately 0-032, or lies between 0 025 and
0.05]. The first eight terms (from r = 0 to r = 7) of
the Poisson series e-359(3-59)r/(r!) accumulate to
0 969634, confirming the accuracy of the shortcut of
expression (1).
The 90% confidence interval on 2-23 requires

1 - ja = 095, 4a = 0-05. For the lower and upper
limits, v = 16 and 18, respectively, so that (from
table 8 of BTS1) X2L = 7*96165 and X'u = 28-8693.
Thus SMRL = 3*98082/3 59 = 1*1089 and
SMRU = 14-43465/3-59 = 4.0208. Thus the 90%
confidence interval on SMR does not embrace unity,
and is in accord with a two-sided p-value close to
0-06. Confirmation of the accuracy of the confidence
limits can be obtained from the Poisson series with
expectations EL and Eu; the relevant accumulations
give both Pr(8 or more deaths 13.98082) and Pr(8
or fewer deaths 114.43465) as 0 05 (to at least 6 dp).
The first portion of the table summarises these

results, and those from application of the three
approximate methods.
The second example2 had D = 23 and E = 17-83,

with SMR = 23/17-83 = 1*29. Expression (la)
gives the test statistic (normal standardised deviate):
z = 3(23)i[1 - (207)-i - (23/17.83)-11/3]
= (14-387495)[1 - 0.004831 - 0-918631]
= (14.387495) (0.076538) = 1*101189,

the one-sided p-value of which is 0 135408 by
interpolation from table 1 of BTS1, or 0 135407
from two calculator algorithms. This differs by less
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Comparison of exact and approximate methods

Square-rooot
Method Exact transfrm sd(D) = /D sd(D) = JE

Example 1: D = 8, E = 3 59, (1 - a) = 0 9

p-value 0-0304 0-0309 0-0595 0.0100

SMRL 1 1089 1 1209 0-9325 1-3603
(0-0500) (0.0526) (0.0213) (0.1215)

SMRU 4-0208 3-7128 3-5244 3 0966
(0.0500) (0-0856) (0.1167) (0.2218)

Example 2: D = 23, E = 17.83, (1 - a) = 0-95

p-value 01354t 0-1258 01405 0-1104

SMRL 0 8175 0 8166 0-7628 0 8258
(0-0249) (0.0247) (0-0124) (0-0275)

SMRU 1.9357 18710 1-8172 1-7541
(0.0250) (0.0381) (0-053 (0-0773)

Example 3: D = 210, E = 180, (1 - a) = 0-95

p-value 0-01564 0 0158 0-0192 0 0127

SMRL 10142 10142 10089 10206
(0.0250) (0-0250) (0.0210) (0.0305)

SMRU 13356 1-3298 1-3245 1-3128
(0.0250) (0-0291) (0-0334) (0-0447)

Obtained by specified method; figures in brackets are the tail area
probabilities, Pr(D or morelEL) and Pr(D or lessIEU), found from the
appropriate Poisson series.
fFrom 1(a); the true value is 0 1356.
*Confirmed (to 4 dp) from the Poisson series.

than 0 0002 from the true (one-tailed) p-value found
directly from the Poisson series as 0-135576.
For the desired 95% confidence limits, z = 1 96,

and expressions (3a) and (4a) lead to:
SMRL = 23{1 - (207)-i - (1-96) (207)-i}3/17.83

= 23(0.858940)3/17-83 = 14-575243/17-83
= 0-817456;

SMRU = 24{1 - (216)-l + (1.96) (216)-'}3/17.83
= 24(1.128731)3/17.83 = 34-513035/17-83
= 1-935672.

In this example it would have been possible to use
table 40 of BTS1, for c = D = 23, bearing in mind
the different convention over a; the values of IX2L
and iX2iucan be read as 14-58 and 34-51-that is, as
above when rounded to 2 dp. The appropriate
accumulations of the Poisson series with parameters
EL and EU (to 6 dp) were 0975079 and 0-024984.
These results and the corresponding findings from
the approximate methods are in the second part of
the table in this paper.
The full comparison of methods for the third

example' is presented at the foot of the table. In all
these three examples, D was greater than E and the

approximations taking sd(D) = /D and sd(D) = /E
have been conservative and liberal, respectively. This
was to have been expected, and the reverse has been
found to hold in several further examples in which
D<E. It was also to have been foreseen that the
square-root transformation of D leads to the best of
the approximate methods, and this is confirmed from
the table. Indeed, the other two approximations can
be unreasonable except for very large D.
When D is small, all the approximations are

unreliable, and occasionally nonsensical. Consider
D = 1, E = 5, for which the true p-value is Q(101 4)
which can be evaluated as 0 0404 [= e 5(1 +5) also].
The exact 90% confidence limits on the SMR are
found to be 0-0103 and 0-9488, the latter a little less
than unity in conformity with the (one-tailed) p-
value; these limits can easily be validated from the
first one and two terms of the relevant Poisson series,
provided all possible dp are carried in the calculation.
Even the 99% confidence limits on the SMR-that is,
0-0010 and 1-4860-remain exact, as can be
confirmed similarly. The square-root transformation
is much too liberal, yielding P = 0-0067 and 90%
confidence interval 0-0063 to 0-6643. The
calculated value of "SMRL" would be meaningless
were z>2/D, or with bd = 1 when 4a<0-0228. The
approximations based on sd(D) = /D are ridiculously
liberal and with negative, hence impossible, "SMRL":
P = 0.00003; and SMRU = 0 5290. The p-value
(0.0368) and SMRu(0.9356) based on sd(D) = /E
might seem more acceptable in this example, but the
"SMR " is also negative. On the other hand, even
when = 0, the p-value, that is Q(2E 12) = eE,
and SMRU can be evaluated precisely, while
SMRL 0.

Discussion

This paper has been concerned solely with the
situation in whichE can be taken as without sampling
error, perhaps the most important circumstance in
the study of SMRs, but certainly not the only one.
(The recent statemente that Ederer and Mantel12 had
taken account of the possibility of errors in E as well
as in D is misleading.)
All the theory for simple comprehensive exact

procedures has long been available. Even
expressions (la), (2a), (3a), and (4a) have been
quoted,1' but only as an unpublished communication
(from Byar), and without derivation, while there is
some confusion over one-tailed and one-sided tests.
Mulder" has recently drawn attention to part of the
material of reference (1) and to table 40 (and the
discussion) in BTS1. However, the theory never
seems to have been presented together. This note has
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shown how it is entirely practicable in all
circumstances, except-unimportantly-for finding
confidence limits with quite unusual (1 - a) when
D<15. To avoid any possible confusion, the one
approach (through the link between Poisson and x2)
has been adopted throughout. For small enough D,
however, the test by means of the Poisson tail area
can be "quicker." The term "exact" is not strictly
applicable when the Wilson/Hilferty approximation
is used, but the lack of precision is considered
negligible, unless D is smaller than say 5. It is
substantially less than with the best of the
approximate methods.
Where D< 15, there are no difficulties in practice.

For largerD, all the expression (la) or (2a), (3a), and
(4a) can be evaluated on a pocket calculator in about
90 seconds, provided that it has a means of providing
cube-roots. A program for the HP-67 to provide (in
40 seconds) both test statistic and confidence
intervals can be made available by the author on
request; it is obviously more attractive than one
proposed elsewhere which, for one process, requires
several minutes of iteration.13
For D< 15, the approximate methods are all

"dirty" and not even as "quick" as the exact
methods.For larger D, the only approximate method
that is reasonably reliable is the one based on the
square-root transformation of D; this is "quicker"
than the use of the exact methods only when each of
the three expressions has to be calculated without
program. Even so, such calculation is not excessively
"slow." Thus there seem no good reasons for not
adopting the exact methods.

Finally, it should be remembered that tests should
almost always be two-sided8; also that even when D
is close to E, this does not necessarily obtain in every
stratum over which standardisation has been carried
out. The misleading nature of an SMR calculated in
any inappropriate circumstances cannot be
overemphasised.13

I thank Dr James A Hanley for many helpful
discussions during the preparation of this paper.

F D K Liddell

Requests for reprints: Professor F D K Liddell,
Department of Epidemiology and Health, McGill
University, 3775 University Street, Montreal, PQ,
Canada H3A 2B4.

References

Bailar JC, Ederer F. Significance factors for the ratio of a
Poisson variable to its expectation. Biometrics 1964; 20:
639-43.

2Vandenbroucke JP. A shortcut method for calculating the
95 per cent confidence interval of the standardized
mortality ratio. [Letter.] Am J Epidemiol 1982; 115:
303-4.

sFrentzel-Beyme, R. Re: 'A shortcut method for
calculating the 95 per cent confdence interval of the
standardized mortality ratio'. [Letter.] Am J Epidemiol
1982; 116: 873-4.

'Fisher RA. The mathematical distributions used in
common tests of significance. Econometrica 1935; 3:
353-65.

Pearson ES, Hartley HO. Biometrika tables for
statisticians. Vol I. 3rd ed. London: BiQmetrika Trust,
1976.

6Wilson EB, Hilferty MM. The distribution of chi-square.
Proc Natl Acad Sci 1931; 17: 684-8.

7Liddell FDK. On the distributions of x2 and F. Bulletin in
Applied Statistics 1983; 10: 240-3.

8Armitage P. Statistical methods in medical research.
Oxford: Blackwell, 1971.

9Registrar General. Decennial supplement England and
Wales 1951. Occupational mortality part 1I. Vol 1.
Commentary. London: HMSO, 1958: 18-9.

"Diem K, ed. Documenta Geigy: scientific tables. 6th ed.
Montreal: Geigy Pharmaceuticals, 1962: 36-9.

'Dement JM, Harris RL, Symons MJ, Shy CE. Estimates
of dose-response for respiratory cancer among
chrysotile asbestos textile workers. Ann Occup Hyg
1982; 26: 869-87.

Ederer F, Mantel N. Confidence limits on the ratio of two
Poisson variables. Am J Epidemiol 1974; 100: 165-7.

"Rothman KJ, Boice JD. Epidemiologic analysis with a
programmable calculator. Washington: US Government
Printing Office, 1979: 29-31.

14 Mulder PGH. An exact method for calculating a
confidence interval of a Poisson parameter. [Letter.]
Am J Epidemiol 1983; 117: 377.

1"Liddell FDK. The measurement of occupational
mortality. Br J Ind Med 1960; 17: 228-33.


