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Supplementary materials 
Supplementary Text including Figs. S1 to S11. Movies 

M1 to M3. 

1. Real-time X-ray microscopy movies of the acoustic waves 
Movie M1: Gallery of 120 randomly selected raw images for a time delay of 77.97 ns. This 

illustrates the intensity fluctuations between individual X-ray pulses. 

Movie M2: DFXM movie of the structural changes in observation plane during the first 100 

ns after the ultrafast heating of the Au foil. 

Movie M3: DFXM movie of the structural changes in observation plane during the first 

1800 ns after the ultrafast heating of the Au foil. Shown are snapshots acquired at times 5.5 

ns + n∆tp, where n is an integer and ∆tp = 72.47 ns is the period corresponding to the fast strain 

wave travelling from the Au coated surface to the free surface and back. 

2. Geometry of the experiment 
The geometry of the experiment is sketched in Fig.1. The X-ray beam illuminates a 2D-sheet 

(the observation plane) of the diamond crystal, while the strain waves have an anisotropic 

three dimensional structure. In Figure S1 we provide a schematic of the hypothesized 3D 

profiles of the two strain waves, for a given time delay, assuming the waves travel in a 

homogeneous media.  The figure illustrates that the waves are near planar within the central 

part of the field of view - consistent with the DFXM images. 

Figure S2 displays the evolution of the intensity profiles (averaged over yℓ) of the two strain 

waves in Fig. 2 during the initial 30 ns. The intensity profiles are seen to be relatively constant 

over the initial 150 µm, corresponding to the diameter of the laser spot on the surface. After 

150 µm, the strain wave intensity decreases as zℓ−2, consistent with the energy being 

distributed over a spherical surface. 
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Figure S1: 3D Schematic of the geometry of the experiment. The coordinate systems are the 

same as in Fig. 1. (a) The transparent blue and aquamarine surfaces represent the transverse 

and longitudinal acoustic strain waves, respectively. The red area represents the 150 µm 

optical laser spot on the Au-coated surface. Within a region given by the optical laser spot size 

the strain waves travel as planar waves. (b) Top-down view on the the diamond crystal, which 

is oriented such that Bragg-scattering occurs from the (11̅1̅)-planes. Hence, the angle 

between the observation plane (the layer illuminated by the incident X-ray beam; yellow 

transparent surface in this figure) and the (11̅1̅)-planes is θ = 17.52◦. The angle between 

(11̅1̅)-planes and the (1̅10)-planes is 35.26◦. Thus, the relation between the observed 

distance in the observation plane zℓ  and the actual distance zsw the waves travel along [1̅10] 

is given by zsw = zℓ · sin(52.78◦). 
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Figure S2: (a) Intensity curves (averaged over yℓ) as function of distance zℓ (same data as in Fig. 

2). (b,c) Gaussian fits (red curves) to the experimental data for strain waves B and A, 

respectively. (d) The areas of the Gaussian fits to peak B and peak A are plotted as function of 

distance (dots). In both cases data are normalised to 1. The dashed lines are best fits to 

models, where areas are constant in the initial 150 µm, and then decreases as zℓ−2 for larger 

zℓ. 

3. Transfer of energy from the longitudinal to the transverse wave 

We observe that for all periods n, the strain wave A is reflected upon the Au-deposited surface, 

and generating a new slow strain wave Bn in the process (the same process may occur on the 

opposite surface, but this was outside of the field of view, and thus not directly observed). As 

the intensity profiles of the Bn waves are identical as function of time delay since their creation, 

we infer that they are all transverse waves of the same type as B1. 
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We make the hypothesis that the creation of transverse waves in each period is associated 

with a transfer of a fixed fraction of energy from the longitudinal wave to the new transverse 

waves. As illustrated in Fig. S3 a combined fit to the decay of the longitudinal wave and the 

decaying relative intensities of the new transversal waves corroborates this hypothesis. The 

fitted values are provided in Table S1. The fitted decay rate b = 0.116 corresponds to a 

constant transfer of energy from the longitudinal to the transverse waves and a "reflectivity" 

for each period of R = e−b = 0.89. 

 

Figure S3: (a) Intensity profiles for 26 equi-distant time delays of ∆t = 5.5 ns +n∆tp, where n is 

an integer and ∆tp = 72.47 ns is the time period it takes for the longitudinal strain wave A to 

travel from the Au-coated surface to the free surface and back. The curves are offset by 

2n*a.u. for ease of visualisation. The curves are integrated within the regions zℓ ∈ [39 95] µm 

and zℓ ∈ [105 161] µm for peak B and A, respectively (indicated by color). (b) The resulting 

integrated intensities as a function of number of periods, n (dots). The two dashed lines 

represent a simultaneous fit to functions Ii = aie−bn + ci, i = A, B with ci being background terms. 

The quality of this fit corroborates a hypothesis that both peaks exhibit exponential decays 

with the same constant b = 0.116. 

 

Table S1: The optimised parameters ai, b and ci, based on the fit illustrated in Fig. S3. 

i A B 

ai 646.2 163.2 
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b 0.116 0.116 

ci 89.8 67.5 

4. Mapping strain components 

DFXM is sensitive to the individual components of the displacement gradient tensor field 

F(𝑟,t) (Ref. 1), which can be expressed in terms of an orientation field Ω(𝑟,t),  characterizing 

grains and domains, and an elastic strain tensor field, ϵ(𝑟,t), related to the local stresses by 

Hooke’s law. 

With the set-up illustrated in Fig. 1, where we diffract from the �⃗⃗�  = (11̅1̅) lattice planes, 

contrast can be provided in three ways (see Fig. 1): 

• Rotation around yℓ by angle ϕ. Known as a rocking scan, this probes a shear strain: the 

displacement of �⃗⃗�,  along the [1̅12̅] direction. (For a longitudinal wave along [1̅10] the 

component of the strain ϵL that displaces �⃗⃗� along direction [1̅12̅] is ϵL cos(54.74◦), ◦ is 

the angle between [1̅10] and [11̅2]. This is the contrast mode used in Figs. 1-3, S2-S3, 

and S7-S10). 

• Rotation around zℓ by angle χ. Known as a rolling scan, this probes another shear strain: 

the displacement of �⃗⃗�  along the [110] direction. 

• Variation of axial strain. A combined 2θ − ϕ scan probes the axial strain (the elongation) 

in direction �⃗⃗�. 

A longitudinal wave travelling in direction [1̅10] will exhibit strain in the same direction. If 

the instrumental blurring is negligible this is visible in both ϕ and axial strain scans, while χ-

scans are not sensitive to this strain component. The same is true for a transverse wave 

travelling in direction [1̅10] with a strain in direction [001̅]. On the other hand a transverse 

wave travelling in direction [1̅10] with a strain in direction [110] provides only contrast when 

χ is offset from 0. With a more quantitative description1 it appears that DFXM can identify 

both the direction of propagation and the direction of the displacement of the acoustic waves. 

Due to mechanical constrains in the ad hoc setup, χ and 2θ could not be varied. What can 

be deduced is that the observation by ϕ-contrast of the two strain waves is consistent with a 

longitudinal wave and a slow transverse wave (with a displacement in direction [001̅]) as 

suggested by the speed of sound values. From this follows that a third fast transverse wave 

(with displacement in direction [110]) might be created, but is invisible with the configuration 

used. 
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5. Comparing experimental and simulated strain-wave profiles 
In this section we will compare experimental DFXM images to geometrical-optics-based 

forward modelling projections. The forward model takes a thermomechanical model of the 

strainwave as its input. The thermomechanical model for ultrafast dynamics applied, 

udkm1Dsim2, is one-dimensional and represents a longitudinal wave. The strain profile arising 

for a 300 nm Au film on 15 nm Ti on diamond, excited by a 100 µJ optical laser pulse with a 

150 µm FWHM diameter spotsize on the sample surface, is presented in Fig. S4. Once the 

strain wave is formed its profile does not change with time in this model (no dispersion). 

 

Figure S4: Strain-wave profile in a diamond single crystal as a function of time delay from laser 

pulse heating, as computed using a 1D thermomechanical model. (a) 2D map of strain versus 

depth and time delay. (b) 1D plots of the strain profile in diamond at different time delays 

(indicated with dashed lines in (a)). The spatial extent of the part of the strain wave that is 

visible in DFXM at 459 ps (indicated in transparent green) is about 3.5 µm. 

The DFXM forward projection model used is a simple adaptation of the geometrical optics 

code presented in Ref. 1. This uses a synchrotron convention for the laboratory coordinate 

system1,3. Its relation to the XFEL laboratory coordinate systems used in this work can be seen 

by comparing Figs. 1 (a,b) and S5 (a,e), and is given by 

 rℓ,XFEL = [
0 0 1
0 −1 0
1 0 0

] rℓ,sync. (1) 

 

In the geometrical optics formalism, several coordinate systems are used1,3. The sample 

and the grain coordinate systems are defined in Fig. S5. The sample coordinate system is 

rotated an angle θ relative to the laboratory coordinate system. The grain coordinate system 

is defined according to the crystallographic directions in the diamond crystal. An additional 
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strain-wave coordinate system is defined to have zsw along the propagation direction of the 

strain wave, [1̅10]g, and xsw along [001]g. 

Let us assume a longitudinal wave propagating along [1̅10]g. Given the 1D 

thermomechanical model the displacement gradient field, F(𝑟,t) has only one non-trivial 

component: 

 Fsw  = [
1 0 0
0 1 0
0 0 1 + 𝑓(𝑧sw)

] , (2) 

 

Figure S5: Coordinate systems used, with reference to the conventions used in Ref. 1. (a) 

Experimental geometry (horizontal plane) with �⃗⃗�  the diffraction vector and Iinc, Id and It being 

the incoming, diffracted and transmitted beams, respectively. (e) The laboratory coordinate 

in the synchrotron convention used in Ref. 1. (In the rest of the paper, outside this section, 

with direct reference to the geometrical optics model, we use the XFEL convention.) (b) The 

associated sample coordinate system rotated θ around the yℓ-axis relative to the laboratory 

coordinate system. (c) The grain coordinate system projected down on the plane of the figure 

(the x- and y-axes go 45◦ into the page). (d) The grain coordinate system, with directions 

parallel to the diamond crystal’s facets. (f) An additional strain-wave coordinate system, with 

xsw along [001]g and zsw along [1̅10]g. 

where f(zsw) is the strain-profile in Fig. S4. Fsw is related to Fg by equation (75) in Ref. 1: 

 Fg = UswFswUTsw, (3) 

with the coordinate transform 

 rg = Uswrsw. (4) 



8 

Figure S5 shows the relation between the grain coordinate system and the strain wave 

coordinate system. xsw lies along [001]g, ysw lies along [110]g and zsw lies along [1̅10]g. The 

columns of Usw are the basis vectors in the strain-wave coordinate system expanded in the 

basis of the grain coordinate system. Hence, 

 Usw  = [

0
1

√2
−

1

√2

0
1

√2

1

√2

0 0 0

]. (5) 

The orientation of the diamond crystal U enters into the formalism by the definition of the 

"grain" system Ref. 1: 

 rs = Urg. (6) 

 

In Fig. S5, it can be seen that xs is parallel to [110]g × [11̅1̅]g = [1̅12̅]g, ys is parallel to [110]g 

and zs is parallel to [11̅1̅]g. The columns of U are the basis vectors in the grain coordinate 

system expanded in the basis of the sample coordinate system. Hence, 

 Usw  =

[
 
 
 
 −

1

√6

1

√6
−

2

√6
1

√2

1

√2
0

1

√3
−

1

√3
−

1

√3]
 
 
 
 

. (7) 

Both U and Usw satisfy AT = A−1 and det(A) =1. 

Angular and Spatial resolution 

The geometrical optics formalism introduced above simulates the 6D reciprocal space-direct 

space resolution function1. This was used to optimize the set up prior to actual beamtime4. 

For reference, we here provide results for the parameters actually used during experiment. 
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Figure S6: Reciprocal space resolution function for the DFXM set up at LCLS. The simulation 

presented (for visualisation purposes) involved 10000 simulated rays. Dark blue cloud at 

center: 3D scatter plot for the resolution function expressed in the imaging coordinate system. 

The purple, orange and yellow symbols correspond to 2D projections onto the qxi-qyi plane, qyi-

qzi plane and the qxi-qzi plane, respectively. (xi,yi,zi) denotes the imaging coordinate system 

(see text, and Refs. 1,3). 

Reciprocal space resolution function. A Monte Carlo ray simulation of the reciprocal space 

resolution function is visualised in Fig. S6. (The imaging coordinate system is used, which 

corresponds to the laboratory coordinate system rotated by 2θ around yℓ (Refs. 1, 3)). 10000 

rays were used in Fig. S6 to visualize the anisotropy. Comparison of the projection shown in 

orange with those in yellow and purple shows a large anisotropy in the resolution function. To 

first order, the resolution function is a disc, with a “thin dimension” parallel to the optical axis 

of the objective. The dimensions of the two wide axes are defined by the acceptance functions 

set by the numerical aperture of the objective, NA, producing a nearly planar distribution. The 

NA is larger than the maximum strain in the acoustic waves. In the actual simulations, 100 

million rays were used for accuracy, filling 500 points in a range of 2.5E-3 along the three axes 

in reciprocal space. The energy band width (FWHM) was ∆E/E ∼ 10−4, the divergence (FWHM) 

∆ζ = 30 µrad in both horizontal and vertical directions. In the objective CRL, the lenslets had a 

radius of curvature of R = 50 µm, and a center-to-center distance between successive lenslets 

T = 1 mm. The sample-to-objective-entry plane distance was d1 = 0.23 m. The NA was 3.598E-

04 (root-mean-square). 
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The majority of the crystal is strain free and will therefore give rise to diffraction at the 

Origo with �⃗⃗� = �⃗⃗�0. The sound wave may be visible in this “strong beam” but dynamical 

diffraction makes it difficult to quantify such images. For this reason, in this experiment "weak 

beam contrast" is applied, implemented by a rotation in ϕ. The range of the strong beam 

condition is given by the width (FWHM) of the plate - this is according to the simulations ∆ϕ < 

10−4, as shown in Fig. S10 (c). 

Direct space resolution function. The spatial resolution function is anisotropic, dominated 

by the beam width. To illustrate the effect, Fig. S7 shows the intensity-profile across a 

strainwave (integrated over yℓ) resulting from having a Heaviside step-function along zsw in the 

geometrical optics simulation. The offset in ϕ was set to +0.0764 mrad (the offset in ϕ is 

defined relative to the center of mass of the rocking curve in the bulk; see Fig. S9 (c) below). 

Fsw  = [
1 0 0
0 1 0
0 0 1 − 𝐴 ∙ 𝐻(𝑧sw)

] , (8) 

where A is the amplitude of the perturbation, here chosen to be 2E-4 to reflect Fig. S4. In Fig. 

S7, the negatively strained part of the crystal (for zsw > 0) comes into the Bragg condition for 

ϕ > 0, an observation that will be important in the analysis of rocking scans below. 

The derivative of the step-function represent the instrumental blurring associated with a 

strain wave propagating along zsw. In the two orthogonal directions the spatial resolution is to 

a first approximation given by the effective pixel size within the sample, as the angular 

contributions arising from the divergence of the incident beam and the energy bandwidth are 

small. 

Comparison of intensity profiles at fixed offset in ϕ 

Figure S8 (a) shows a simulated DFXM image for an angular offset in ϕ of +0.0764 mrad (the 

offset in ϕ is defined relative to the center of mass of the rocking curve in the bulk; see Fig. S9 

(c) below). A comparison of this and a line-out representing an integration in the vertical 

direction of the image with the experimental data in Fig. S8 (b) shows a satisfactory 

correspondence. The maximum intensity in the raw individual images is about 200 

counts/pixel, cf. Movie 1. The maximum intensity in Fig. S8 (a) is ∼210 counts/pixel (using the 

noise model in Ref. 4, and assuming a third of the 1.6mJ/10.1keV = 9.9e11 photons make it 

past the monochromator). The strain wave in Fig. S8 (b) was taken from a position within the 

first 150 µm to avoid probing the curved part of the wave-front in Fig. S1. 
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Figure S7: Simulated instrumental blur along zℓ for ϕ = +0.0764 mrad. Modelling the 

deformation gradient tensor field as a Heaviside function in zsw the geometrical optics forward 

simulator produces an intensity profile shown with red dots. A sigmoid function was fitted to 

this intensity profile (blue line). The FWHM of the derivative (green line) is 3.5 µm. 

 

Figure S8: Comparison of profiles of the fast strain wave for an offset in ϕ from the strong 

beam condition by +0.0764 mrad. (a) As simulated by a combined thermomechanical and X-

ray geometrical optics forward simulation4. The simulation relates to a planar longitudinal 

acoustic wave travelling in direction [1̅10]g. The integrated line profile of the peak is shown. 

The inset shows the full DFXM image with the zℓ-axis marked by a dashed line. Here yellow 

signifies maximum intensity and dark blue minimum intensity. (b) Corresponding 

experimental DFXM data. 
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Comparison of rocking scans 

By varying ϕ we probe one shear strain component. The strain sensitivity is essentially given 

by the "thin" direction of the reciprocal space resolution function introduced in Fig. S6. 

Experimentally a ϕ rocking-scan was performed at a delay of ∆t = 5.5 ns, in steps of 

∆ϕ = 1.309 · 10−5 rad. The resulting movie is summarised in Fig. S9, displaying the intensity 

(averaged over yℓ) as function of zℓ horizontally and ϕ vertically. The rocking curve at distances 

far from the strain wave is seen as representing the combined Darwin width and instrumental 

resolution function, and we set ϕ = 0 at center of mass position (Fig. S9 (c)). In the vicinity of 

the fast strain wave, the distribution is asymmetric with two lobes, see Fig. S9 (a). The center 

of mass of these are separated by ∼1 µm along zℓ and by and ∼0.05 mrad in ϕ. 

Notably the minimum intensity between these two is shifted by 1.963 · 10−5 rad in relation 

to ϕ = 0, as defined by Fig. S9 (c). We speculate this is caused by a slight rotation of the lattice. 

We also note that the maximum intensity in sub-figure (a) is much higher than in (c). We 

attribute this to dynamical diffraction effects, to be explored in future studies. 

To further understand the data in Fig. S9, we forward simulated DFXM images of the strain 

waves at different ϕ values (100 values in the range ± 0.2 mrad; ∆ϕ = 4.04·10−6 rad) using the 

1D thermomechanical model to generate the strain waves in Fig. S4 and the geometrical optics 

simulation tools already described. From these simulations, we generated 2D plots similar to 

those of Fig. S9. The result can be seen in Fig. S10. 

Figure S10 (a) is scaled to a maximum of 415 counts per pixel. Two lobes can be seen, with 

centers of mass that are displaced in a qualitatively similar fashion to the lobes in the 

experimental data. However, quantitatively the separation-distances between the centers of 

mass of ∼0.1 mrad in ϕ, and ∼2 µm along zℓ, are both significantly larger than the separation 

between the centers of mass in the experimental data in Fig. S9 (a). We speculate that this 

reflects effects of dynamical diffraction, uncertainties in the model parameters and/or 

inadequacies related to using a 1D thermomechanical strain-wave model for a 3D process (see 

Fig. S1). 

Figure S10 (b) is scaled to a maximum of 1000 counts per pixel, corresponding to the 

strongbeam condition. In the simulation, the position of ϕ = 0 (defined by taking the center of 

mass of the rocking-curve in Fig. S10 (c)) is symmetric between the two strain-wave maxima. 
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Figure S9: Experimental ϕ -scan across a longitudinal strain-wave. (a) Zoom-in on the position 

of the strain-wave, showing two horizontally displaced strain-wave positions for different 

values of ϕ. (b) Zoomed out overview. (c) Zoom-in on the bulk region marked with dashed 

green lines in (b), showing the bulk rocking-curve. The dashed white line describes the center 

of mass of the bulk rocking-curve, which we take as ϕ = 0. 

 

Figure S10: Geometrical optics simulated plot of ϕ-scan across a longitudinal strain-wave. (a) 

Scaled to show the weak-beam. (b) Scaled to show the strong-beam. (c) Plot of rocking curve 

in bulk averaged over zℓ in the region marked with green dashed lines in (b). 

Smearing due to beam-thickness 

The aim of this section is to provide an intuitive understanding of the effect of the beam 

thickness on the strain-wave measurements. The FWHM thickness along xℓ is 3.9 µm. 

Projected onto the [1̅10]g direction this corresponds to 3.9 · cos(52.78◦) µm ≈ 2.4 µm. 

Assume a box shaped smearing function with this FWHM. In Fig. S11 (a) we plot a 

histogram of the resulting strain values as function of position for a simple strain wave model 

(red curve), 



14 

 , (9) 

where A is the amplitude of the strain wave, s a parameter describing its spatial width, and z0 

the central position. The overlaid colormap is a plot of the histograms. Next, the same 

histogram representation is made based on the one-dimensional thermomechanical model in 

Fig. S4, resulting in Fig. S11 (b). 

Figure S11 shows that when the strain-profile is convoluted with the beam-thickness, a 

given part of the strain-wave profile can be detected in multiple positions of the box-beam, 

and when the strain-profile becomes flat, e.g. at the extreme positions, similar strain-values 

add up, leading to a maximum in the histograms. In the experimental data, this would manifest 

as maxima in the rocking-curve data, such as those seen in Figs. S9 (a) and S10 (a) (when the 

comparison is made it must be remembered that negative (positive) strain along [1̅10]g leads 

to the Bragg-condition shifting to ϕ > 0 (ϕ < 0), as noted in the discussion of Fig. S7). 

 

Figure S11: Effect of beam width on strain profile using as models for the longitudinal strain 

wave (red lines) (a) an idealized model, see text, and (b) a 1D thermomechanical simulation. 

In both cases the profiles are smeared out by a box-function of width 2.4 µm. The overlaid 

colormaps are the resulting intensity profiles. 

 

 

 

 

 

 

 



15 

6. Calculating the velocities of the acoustic waves 

The sound velocity for strain wave A can be determined with high accuracy by the time ∆t it 

takes to perform 25 periods and the sample thickness (660 μm).  
 

𝑣 =  
(660  μm ∙ 2) ∙ 25 

(1817.25−5.5) ns
= 18.21 km/s  

 

 

From the slopes in Fig. 2, it is established that the velocity of strain wave B is 48.6 % of the 

velocity of strain wave A, that is to say 8.86 km/s. 
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