

Supplementary Figure 1. Short-term Emre deletion affects mitochondrial Ca^{2+} uptake but not the expression of mitochondrial Ca^{2+} efflux proteins. Analyses were performed 3 weeks post-tamoxifen. A) Relative *Emre* mRNA expression in heart tissue from MCM^+ : 1.00 ± 0.02, $Emre^{fl/fl}$: 0.98 ± 0.03 and *Emre*^{*cKO*}: 0.07 \pm 0.04. Values represent mean \pm SD. **p<0.0001, n = 4 per group. One-way ANOVA test was used for statistical analysis. B) Relative Mcu mRNA expression in heart tissue from MCM^+ : 1.00 ± 0.11, $Emre^{fl/fl}$: 1.01 ± 0.08 and $Emre^{cKO}$: 0.97 ± 0.03. Values represent mean ± SD. n = 4 per group. C) Quantification of MICU1 protein levels from Western blot (Fig. 1A), where bars represent mean \pm SD. pvalues were not significant. n = 3 per group. One-way ANOVA test was used for statistical analysis. **D**) Western blot of LETM1, NCLX, and VDAC in cardiac mitochondria from MCM⁺, Emre^{fl/fl}, and Emre^{cKO} mice at 3 weeks post-tamoxifen. Quantification is shown below, where bars represent mean \pm SD. p-values were not significant. n = 3 per group. One-way ANOVA test was used for statistical analysis. E) Representative Ca²⁺ retention capacity (CRC) assay in isolated heart mitochondria from *Emre*^{fl/fl} (purple line) and *Emre^{cKO}* (green line) mice. Mitochondria were energized with 10 mM glutamate/5 mM malate. The fluorescent Ca²⁺ indicator Calcium Green-5N was used to monitor extramitochondrial Ca²⁺. The arrows represent 15 μ M Ca²⁺ additions. Traces are representative of n = 4 independent experiments. F) Ca²⁺ retention capacity calculated from independent traces as shown in (E). The estimated mean Ca^{2+}/mg protein was for $Emre^{fl/fl}$: 93.8 ± 7.5 and $Emre^{cKO}$: 18.8 ± 7.5 nmol. Values represent mean ± SD. **p<0.0001, n = 4 in each group. Student's t-test was used for statistical analysis. G) Quantitative analysis of swelling calculated via loss of absorbance (%) 15 minutes after Ca²⁺ addition. MCM^+ : 24.48% ± 8.29, $Emre^{fl/fl}$: $26.32\% \pm 2.52$ and $Emre^{cKO}$: 12.04% \pm 3.12. Values represent mean \pm SD.**p<0.0001, n = 4-5 in each group. One-way ANOVA test was used for statistical analysis.

Supplementary Figure 2

+

20 µM Ca2+

_

+

Supplementary Figure 2. Effects of short-term Emre deletion on bioenergetic capacity. Analyses were performed 3 weeks post-tamoxifen. A-B) Seahorse analysis of oxygen consumption rate (OCR) in cardiac mitochondria was measured following sequential injections: 4 mM ADP (state III), 2.5 µg/mL oligomycin (state IV₀), 6 μ M FCCP (state III_u) and 4 μ M rotenone/4 μ M antimycin A. Mitochondria were supplied with 5 mM pyruvate/0.5 mM malate (A) or 40 µM palmitovlcarnitine/0.5 mM malate (B). C) Respiratory control ratio (RCR; OCR in state III_u/stateIV_o) in mitochondria supplied with 5 mM pyruvate/0.5 mM malate: $Emre^{fl/fl}$: 7.8 ± 2.08 and $Emre^{cKO}$: 10.02 ± 5.16. Values represent mean ± SD., n = 5 per group (combined males and females). Student's t-test was used for statistical analysis. D) RCR in mitochondria supplied with 40 µM palmitovlcarnitine/0.5 mM malate, $Emre^{fl/fl}$: 3.38 ± 1.37 and $Emre^{cKO}$: 3.77 ± 1.06. Values represent mean \pm SD, n = 4 per group (combined males and females). Student's t-test was used for statistical analysis. E) Western blot for CPT1B in cardiac tissue: MCM^+ : 1.00 ± 0.22, Emre^{fl/fl}: 1.18 ± 0.04 and $Emre^{cKO}$: 1.18 ± 0.17, n = 3 in each group. F-G) Complex I (NADH ubiquinone oxidoreductase) activity (F) and Complex II (succinate dehydrogenase) activity (G) normalized to citrate synthase (CS) activity. Values represent mean \pm SD, n = 6 per group, Student's t-test was used for statistical analysis. H) ATP production rate in isolated heart mitochondria stimulated with 50 µM ADP and 10 mM glutamate/5 mM malate $\pm 20 \,\mu\text{M Ca}^{2+}$, $Emre^{fl/fl}$: $3.39 \pm 0.47 \, vs \, Emre^{fl/fl} + 20 \,\mu\text{M Ca}^{2+}$: 5.35 ± 1.28 , and $Emre^{cKO}$: 3.71 ± 0.63 vs $Emre^{cKO}$ + 20 µM Ca²⁺: 4.56 ± 1.01 nmol ATP/(min*mg) protein. Values represent mean ± SD. *p<0.05, n = 5 per group (combined males and females). One-way ANOVA was used for statistical analysis.

Supplementary Figure 3

0.0

Supplementary Figure 3. Effects of short-term Emre deletion on body and heart weight and protein expression. Analyses were performed 3 weeks post-tamoxifen. **A-B**) Body weight (A) and heart weight (B) from MCM^+ , $Emre^{fl/fl}$, and $Emre^{cKO}$ mice at 3 weeks post-tamoxifen. Values represent mean \pm SD, n = 6 per group. **C**) Western blot for phosphorylated CaMKII level relative to total CaMKII δ from cardiac tissue, quantified to the right in MCM^+ : 1.00 \pm 0.23, $Emre^{fl/fl}$: 0.84 \pm 0.16 and $Emre^{cKO}$: 0.87 \pm 0.10. Values represent mean \pm SD, n = 3 in each group. **D**) Western blot for Cyclophilin D (CypD) expression from cardiac mitochondria, quantified to the right in MCM^+ : 1.00 \pm 0.22, $Emre^{fl/fl}$: 0.96 \pm 0.19 and $Emre^{cKO}$: 1.08 \pm 0.15. Values represent mean \pm SD, n = 5/8/8 in each group. One-way ANOVA was used for statistical analysis in (A)-(D); p-values were not significant.

Supplementary Figure 4. Long-term Emre deletion affects mitochondrial Ca^{2+} uptake but not the expression of mitochondrial Ca^{2+} efflux proteins. Analyses were performed 3 months post-tamoxifen. A) Relative *Emre* mRNA expression in heart tissue from MCM^+ : 1.00 ± 0.22, $Emre^{fl/fl}$: 1.25 ± 0.15 and *Emre*^{*cKO*}: 0.09 ± 0.06 . Values represent mean \pm SD. **p<0.0001, n = 3-4 per group. One-way ANOVA test was used for statistical analysis. **B**) Relative Mcu mRNA expression levels in heart tissue from MCM^+ : 1.00 ± 0.03 , *Emre^{fl/fl}*: 1.15 ± 0.04 and *Emre^{cKO}*: 1.00 ± 0.13 . Values represent mean \pm SD. n = 3-4 per group. C) Quantification of MICU1 expression from Western blot (Fig. 5A), where bars represent mean ± SD. pvalues were not significant. n = 3 per group. One-way ANOVA test was used for statistical analysis. **D**) Western blot of LETM and NCLX in cardiac mitochondria. Quantification is shown below, where bars represent mean \pm SD. p-values were not significant. n = 3 per group. One-way ANOVA test was used for statistical analysis. E) Representative Ca²⁺ retention capacity (CRC) assay in isolated heart mitochondria from Emre^{fl/fl} (purple line) and Emre^{cKO} (green line) mice. Mitochondria were energized with 10 mM glutamate/5 mM malate. The fluorescent Ca²⁺ indicator Calcium Green-5N was used to monitor extramitochondrial Ca^{2+} . The arrows represent 15 μ M Ca^{2+} additions. Traces are representative of n = 4 independent experiments. F) Ca^{2+} retention capacity calculated from independent traces as shown in (E). The estimated mean Ca²⁺/mg protein was for $Emre^{fl/fl}$: 105 ± 21.21 and $Emre^{cKO}$: 3.75 ± 7.5 nmol. Values represent mean \pm SD.**p<0.0001, n = 4 in each group. Student's t-test was used for statistical analysis. G) Quantitative analysis of swelling calculated via loss of absorbance (%) 15 minutes after Ca^{2+} addition. MCM^+ : 25.25% ± 9.04, $Emre^{fl/fl}$: 28.91% ± 12.91 and $Emre^{cKO}$: 8.74% ± 5.68. Values represent mean ± SD.**p < 0.0001, n = 4-6 in each group. One-way ANOVA test was used for statistical analysis.

Supplementary Figure 5. Effects of long-term Emre deletion on bioenergetic capacity. Analyses were performed 3 months post-tamoxifen. A-B) Seahorse analysis of oxygen consumption rate (OCR) in cardiac mitochondria was measured by sequential injections: 4 mM ADP (state III), 2.5 µg/mL oligomycin (state IV_{o}), 6 μ M FCCP (state III_u) and 4 μ M rotenone/4 μ M antimycin A. Mitochondria were supplied with 5 mM pyruvate/0.5 mM malate (A) or 40 µM palmitoylcarnitine/0.5 mM malate (B). C) Respiratory control ratio (RCR; OCR in state III_{u} /stateIV_o) in mitochondria supplied with 5 mM pyruvate/0.5 mM malate: MCM^+ : 10.44 ± 2.26, $Emre^{fl/fl}$: 8.76 ± 1.12 and $Emre^{cKO}$: 8.46 ± 1.84. Values represent mean ± SD, n = 5 per group (combined males and females). One-way ANOVA test was used for statistical analysis. D) RCR in mitochondria supplied with 40 μ M palmitovlcarnitine/0.5 mM malate, MCM^+ : 3.99 \pm 0.85, $Emre^{fl/fl}$: 4.07 \pm 1.22 and *Emre^{cKO}*: 3.97 \pm 0.58. Values represent mean \pm SD, n = 5 per group (combined males and females). One-way ANOVA test was used for statistical analysis. E) Western blot for CPT1B in cardiac tissue: MCM^+ : 1.00 ± 0.18, $Emre^{fl/f}$: 0.80 ± 0.01 and $Emre^{cKO}$: 0.86 ± 0.21, n = 3 per group. F-G) Complex I (NADH ubiquinone oxidoreductase) activity (n = 8 per group) (F) and Complex II (succinate dehydrogenase) activity (n = 6 per group) (G) normalized to citrate synthase (CS) activity. Values represent mean \pm SD, Student's t-test was used for statistical analysis. H) ATP production rate in isolated heart mitochondria stimulated with 50 μ M ADP and 10 mM glutamate/5 mM malate \pm 20 μ M Ca²⁺, *Emre*^{fl/fl}: 5.38 ± 0.99 vs $Emre^{fl/fl}$ + 20 µM Ca²⁺: 7.13 ± 0.94, and $Emre^{cKO}$: 5.19 ± 0.93 vs $Emre^{cKO}$ + 20 µM Ca²⁺: 5.43 ± 1.38 nmol ATP/(min*mg) protein. Values represent mean \pm SD. *p<0.05, n = 7 per group (combined males and females). One-way ANOVA was used for statistical analysis.

Supplementary Figure 6

MCM⁺ Emre^{fl/fl} Emre^{cKO}

Supplementary Figure 6. Effects of long-term Emre deletion on body and heart weight and protein expression. Analyses were performed 3 months post-tamoxifen. **A-B**) Body weight (A) and heart weight (B) from MCM^+ , $Emre^{I/R}$, and $Emre^{cKO}$ mice at 3 months post-tamoxifen. Values represent mean \pm SD, n = 5-6 per group. **C**) Western blot for phosphorylated CaMKII level relative to total CaMKII δ from cardiac tissue, quantified to the right in MCM^+ : 1.00 ± 0.20 , $Emre^{I/R}$: 0.91 ± 0.08 and $Emre^{cKO}$: 0.89 ± 0.17 . Values represent mean \pm SD, n = 3 in each group. **D**) Western blot for Cyclophilin D (CypD) expression from cardiac mitochondria, quantified to the right in MCM^+ : 1.00 ± 0.19 , $Emre^{I/R}$: 0.98 ± 0.24 and $Emre^{cKO}$: 1.02 ± 0.22 . Values represent mean \pm SD, n = 8 in each group. One-way ANOVA was used for statistical analysis in (A)-(D); p-values were not significant.

Supplementary Figure 7

Supplementary Figure 7. Short-term and long-term Emre deletion have little effect on mitochondrial H_2O_2 production. **A**) H_2O_2 production rates measured by Amplex Red in short- and long-term $Emre^{fl/fl}$ and $Emre^{cKO}$ cardiac mitochondria supplied 10 mM glutamate/5 mM malate. For short-term, $Emre^{fl/fl}$: 16.38 ± 3.83, $Emre^{cKO}$: 14.64 ± 5.96, and for long-term, $Emre^{fl/fl}$: 14.69 ± 3.98, $Emre^{cKO}$: 15.70 ± 5.47 pmol $H_2O_2/(\min*mg \text{ protein})$. Values represent mean ± SD, n = 7-8 in each group. One-way ANOVA was used for statistical analysis. **B**) Representative traces obtained by measuring Amplex Red fluorescence in long-term $Emre^{fl/fl}$ (purple line) and $Emre^{cKO}$ (green line) mitochondria. Arrow denotes the addition of 10 mM glutamate/5 mM malate. **C**) Representative traces confirming the sensitivity of Amplex Red to mitochondrial ROS production, using long-term $Emre^{fl/fl}$ mitochondria alone (purple line), with 500 nM antimycin A (AA, red line) as a positive control, or with 10 nM 2,4-dinitrophenol (DNP, blue line) as a negative control. A blank well without mitochondria is also shown (dashed black line).