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Web Appendix A

More Details on Phase 1 EHR Data

We received data for 20,684 mothers and 25,284 linked children. For mothers who delivered

more than one child in separate pregnancies, we selected the first delivered child; in the case

of multiple births from a single pregnancy, we randomly picked one child for inclusion. A

small number of mothers (n = 38) with weight exceeding 180 kg (400 lbs) or whose weight

was reported in the EHR to have changed more than 70 kg (150 lbs) during pregnancy were

excluded.

Children’s weight and height measurements during their first 6 years of life were cleaned

using a validated algorithm developed by Daymon et al. (2017). A total of 12.3% (27,934

out of 226,272) of heights and 14.7% (85,919 out of 583,489) of weights were excluded using

Daymon’s method. Children’s body mass index (BMI) was computed using heights and

weights measured on the same day. If there were no same day measurements, then we used

the nearest height measurement within ±3, ±7, ±14, and ±30 days for weights measured when

children’s ages were< 90 days, 90-119 days, 120-729 days, and≥ 730 days, respectively; 35% of

children’s heights were imputed in this manner. A total of 1.5% (2,946 out of 198,338 of heights

and 39.5% (196,747 out of 497,570) of weights were excluded because of no corresponding

weight/height measurement. Children’s BMI percentile was calculated using the R package

childsds (Vogel, 2019). Maternal BMI was computed using each mother’s median height;

measurements before the age of 15 years and extreme values ≤ 50 cm or ≥ 200 cm were

excluded.

If the EHR indicated the mother had any smoking history prior to delivery, she was

categorized as an ever smoker, otherwise, as never smoker.
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Web Appendix B

FPCA Details

In this section we describe the FPCA procedure used to estimate maternal weight gain

during pregnancy. Let W1(t), . . . ,WN(t) denote a random sample of women’s weights W (t)

at time t on a common domain T = [−365, 272] days, where t = 0 represents the date of con-

ception and t = 273 is the date of birth. We assume measurements are independent between

subjects and that W (t) is smooth over T . It follows from the Karhunen-Loève expansion

that time-varying variations can be decomposed into linear combinations of eigenfunctions,

the FPCA, such that

Wi(t) = µ(t) +
∑
k≥1

ξikϕk(t), (1)

where µ(t) = EW1(t) and ξik are uncorrelated mean zero random variables with variance λk

satisfying λk ≥ λk+1 for any k ≥ 1 (Ramsay and Silverman, 2007).

In our study, weights are measured at different time points such that the i-th mother has

{Wi(ti1), . . . ,Wi(timi
)} at time points ti1 < · · · < timi

, where the number of measurements

mi also varies between mothers. In addition, we allow observed weight measurements to be

contaminated by additive measurement errors W̃ij = Wi(tij)+ ϵij, where ϵij is an independent

Gaussian error with mean zero, and W̃ij is the error-prone weight phase 1 record of the i-th

mother measured at the gestational age tij.

Yao et al. (2005) proposed the principal components analysis through conditional expec-

tation (PACE) such that the best linear estimate of the FPC score ξik is given by

ξ̂ik = λ̂kϕ̂
⊤
ikΣ̃

−1
i (W̃i − µ̂i), (2)

where W̃i = (W̃i1, . . . , W̃imi
)⊤ are mi-longitudinal observations, µ̂i = {µ̂(ti1), . . . , µ̂(timi

)}⊤
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are estimates of EW̃i = {µ(ti1), . . . , µ(timi
)}⊤, and Σ̃i is themi×mi variance-covariance matrix

estimate of W̃i. Here, λ̂k and ϕ̂ik = {ϕ̂k(ti1), . . . , ϕ̂k(timi
)}⊤ are estimates of the eigenvalue λk

and the evaluation of eigenfunction ϕk(t), respectively, where the pair {λk, ϕk(t)} is defined

as the solution of the functional eigenequations given by Yao et al. (2005). We approximate

the functional representation of the true time-varying trait Wi(t) in (1) with the first leading

K components of FPC scores ξ̂ik and eigenfunctions ϕ̂k(t) as

Ŵi(t) = µ̂(t) +
K∑
k=1

ξ̂ikϕ̂k(t). (3)

We refer to Yao et al. (2005) for technical details and confidence band estimation, and Ramsay

and Silverman (2007) for an overview of functional data analysis. We used the R package

fdapace (Carroll et al., 2021) for numerical implementation.

The FPCA results applied to the phase 1 data W1 suggested that mothers’ weight trajec-

tories can be well approximated using (3) with K = 3; the first three eigenfunctions explained

99.9% of the variance. Web Figure 1 shows the estimated mean function µ̂(t), the estimated co-

variance function, and the first three eigenfunctions. Web Figure 2 depicts weight trajectories

of six mothers constructed by the FPCA with the phase 1 data. The phase 1 weight at concep-

tion for mother i was estimated as Ŵi(0), and the phase 1 exposure of interest, the maternal

weight gain per week during pregnancy was given by X∗
i =

{
Ŵi(272)− Ŵi(0)

}
/(273/7).

Web Figure 1: Estimation results of FPCA with the phase 1 data with mean function (left),
covariance function (middle), and the first three eigenfunctions which explain 99.9% of func-
tional variations in the data (right).
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Web Figure 2: Weight trajectory estimates for six randomly chosen mothers.
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Web Appendix C

More Details on Phase 2 Data Validation

The research nurse entered validation data into two spreadsheets and an electronic case

report form using the Research Electronic Data Capture (REDCap) software (Harris et al.,

2009). The two spreadsheets were used to reduce the data entry burden and number of button

clicks to record audit findings for repeated values. The first spreadsheet contained maternal

weights extracted from the EHR and the second spreadsheet contained children’s heights

and weights. All other phase 2 data were entered into the REDCap forms. We initially

performed a pilot validation of 12 mother-child dyad records to refine our procedures and

forms; validated data from the pilot was excluded from analyses. In the pilot validation, we

realized that manual entry of dozens of weights per mother-child dyad would be extremely

time-consuming, yield a small proportion with errors that needed to be fixed, and could

result in validation data entry errors. Therefore, for our phase 2 sample, the research nurse

only validated the following phase 1 measurements: children’s heights/weights closest to their

birthdays, children’s heights/weights that led to a first diagnosis of obesity, maternal weight

closest to but prior to delivery, maternal weight closest to but prior to 272 days before delivery,

and any maternal weights flagged as potential outliers due to being outside the 95% confidence

bands for the FPCA-predicted trajectories.
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Web Appendix D

More Details on Multi-wave Sampling for Asthma Endpoint

Of the 750 records already validated for the obesity study, 582 met inclusion criteria for

the asthma study. Our strategy was to 1) to use this already collected phase 2 data to build an

imputation model for the validated data, 2) to impute “validated data” from that model for

all mother-child records that had not been validated, 3) to fit a working analysis model to the

complete data from which the influence function for the maternal weight gain log odds ratio

was obtained, 4) to repeat this across multiple imputations to obtain the average influence

function per mother-child dyad, and 5) to perform Neyman allocation based on these estimated

average influence functions, refining strata so the allocation was approximately balanced across

strata.

With regards to 1)-2), the validated estimated gestational age was first imputed using the

R package mice; from this, the estimated maternal weight gain during pregnancy and BMI

at conception were obtained from the FPCA. Then maternal asthma and child asthma were

imputed using logistic regression models.

With regards to 3), our working outcome model was a logistic regression model with the

outcome asthma (yes/no) based on the validated/imputed data; the exposure variable was the

validated/imputed maternal weight change; validated/imputed covariates BMI at conception,

estimated gestational age, and maternal asthma; and unvalidated covariates maternal race,

maternal ethnicity, cesarean section, maternal age at delivery, and child sex.

We performed a total of 100 imputation replications, and computed the average influence

functions per mother-child dyad across these imputation replications.
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Web Appendix E

Additional Analysis of Obesity Endpoint Permitting Non-Linear Association

We performed an additional set of analyses that allowed for a non-linear relationship be-

tween maternal weight gain during pregnancy and childhood obesity. Although our primary, a

priori specified analysis assumed a linear relationship, there is some thought that this relation-

ship could be non-linear. Cox models which permitted this potential non-linear relationship

were fit to both the error-prone phase 1 data and the validated phase 2 data. In both models,

weight change during pregnancy was expanded using natural splines with two knots (same

knot locations in both models corresponding to the 1/3 and 2/3 quantiles in the phase 1 data).

All other covariates were included in these models as described in the main text. The model fit

to the phase 2 data used generalized raking with inverse probability weights calibrated using

estimates of the influence function for the three spline terms plugging in the phase 1 data

(i.e., raking on the naive influence functions) and strata. Non-linearity of the associations

were assessed using likelihood ratio tests.

Using the error-prone phase 1 data alone, there was little evidence of a non-linear associa-

tion between maternal gain during pregnancy and the hazard of childhood obesity (p=0.87).

However, our generalized raking estimator using the validated data suggested that there was

a non-linear association (p=0.007). Web Table 1 shows estimates of the adjusted hazard ratio

comparing specific values of maternal weight gain during pregnancy to 0.2 kg/wk. For context,

the median maternal weight gain per week during pregnancy was 0.28 kg/wk (interquartile

range 0.24, 0.35). The model suggested that after holding all other variables constant, a child

from a woman who gained 0.6 kg/wk during pregnancy had a hazard of developing obesity

that was approximately 66% higher than a woman who gained 0.2 kg/wk.
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Web Table 1: Adjusted hazard ratios for childhood obesity based on maternal weight gain
per week during pregnancy.

Hazard Ratio 95% Confidence Interval
Average maternal weight gain per
week during pregnancy (kg/wk)

0 1.12 0.88, 1.43
0.1 1.02 0.93, 1.12
0.2 (reference) 1
0.3 1.06 0.99, 1.14
0.4 1.20 1.03, 1.39
0.5 1.39 1.14, 1.70
0.6 1.66 1.32, 2.09
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Analysis Code

Our analysis code can be found in the Biometrics website on Wiley Online Library. It is also

posted at https://biostat.app.vumc.org/ArchivedAnalyses. We are unable to share our data.
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