SUPPLEMENTAL FIGURES

Figure S1: Fragment distribution of GRAIL cohort samples stratified by ctDNA fraction.

(A) Distribution of cfDNA fragments from individual samples colored by low ctDNA (< 10% ctDNA fraction) or high ctDNA (ctDNA fraction >= 10%). Red line represents the median of all normal healthy samples. (B) Proportion of fragments below 150 bp in healthy, low ctDNA, and high ctDNA samples. A Kruskal-Wallis test was performed to compare all three categories, and a Wilcoxon rank sum test was performed for individual comparisons (*p < 0.05; ****p < 0.0001)

Figure S2: Relative fragment coverage in first coding exon by gene expression decile.

Average plasma cell-free DNA fragment coverage near the exon 1 coding sequence (CDS) of 11748 genes annotated in MANE version 0.93, calculated across 41 whole genome sequenced ctDNA-positive samples from the NCT02125357 trial (Herberts et al. Nature 2022). Genes were separated into ten quantile groups based on their average expression in prostate cancer tissue samples. Fragment coverage is normalized relative to 1kb distant flanks. Only multi-exon genes with a CDS containing exon 1 were included in the analysis. Gene orientation and exon 1 CDS length were normalized between the genes for visualization. One kilobase of upstream and downstream flanking region is also shown (without normalization).

Figure S3: Exon 1 Shannon entropy of the AR by cancer type.

Normalized Shannon entropy was calculated for the first coding exon of the androgen receptor gene (AR) for all samples in the GRAIL cohort (A) and UW cohort (B). AR E1SE displays significantly higher normalized Shannon entropy in prostate cancer samples compared to other cancer types and healthy normal samples. Two-sided Student's t-test was used for significance testing (****p < 0.0001).

Figure S4: Normalized AR Shannon entropy stratified by ctDNA fraction

Within each cancer type, samples were stratified into low and high ctDNA fraction using the median ctDNA fraction as the cutoff. Normalized Shannon entropy at the first coding exon of AR was calculated and plotted by cancer type and ctDNA level. High ctDNA fraction prostate cancer samples were found to have significantly higher AR E1SE compared to low ctDNA fraction prostate cancer samples only. Two-sided Student's t-test was used for significance testing (*p < 0.05; n.s. – non significant)

Figure S5: Model performance using alternative exons.

Model performance was assessed using Shannon entropies calculated from reads overlapping either the first, middle (mid), or last exons of the genes in each panel (see bottom schematic). For genes with an even number of exons, the exon closest to the TSS of the two middle exons was used. Accuracy was calculated for the UW cohort (left) and the GRAIL cohort (right). In both cohorts, Shannon entropies calculated from the first exon had the highest accuracy.

SUPPLEMENTAL METHODS

Summary of differences between GRAIL and UW cohorts:

Patients:

GRAIL: Patients with metastatic cancer who were progressing on stable doses of treatment. The normal (non-cancer) blood samples were obtained from the San Diego Blood Bank.

UW: Patients with metastatic cancer. While in general, patients who were treatment naïve or progressing were preferred, this also included patients who were responding to treatment. Neuroendocrine prostate cancer and bladder cancer were also included, which were not in the GRAIL dataset. No normal blood samples were included, as this was not allowed on the institutional blood collection protocol.

Sample tubes:

GRAIL: Streck tubes were used **UW**: EDTA or CellSave tubes were used

<u>cfDNA extraction</u>: **GRAIL**: QIAamp Circulating Nucleic Acid Kit (Qiagen) **UW**: QIAamp Circulating Nucleic Acid kit (Qiagen)

<u>Library preparation</u>: **GRAIL**: Illumina TruSeq DNA nano protocol with 6mer UMIs (Illumina) **UW**: xGen Prism DNA library preparation kit with 8mer UMIs (Integrated DNA Technologies)

Target capture:

GRAIL: Custom 2.1Mb panel with 508 cancer genes using Illumina Nextera Rapid Capture protocol (Illumina)

UW: Custom 2.4Mb panel with 822 cancer genes using the xGen hybridization capture kit (Integrated DNA Technologies)

<u>Sequencing Depth</u>: **GRAIL**: average raw cfDNA sequencing depth 71,749X **UW**: average raw cfDNA sequencing depth 3,042X

SUPPLEMENTAL TABLES

 Table S1: cfDNA fraction of samples with available germline sequencing.

ID	Phenotype	ctDNA fraction
BL_1	Bladder	0.0080
BL_2	Bladder	0.0119
BL_3	Bladder 0.0080	
BL_4	Bladder 0.0421	
BL_5	Bladder	0.1516
BL_6	Bladder	0.6395
BL_7	Bladder	0.6537
BL_8	Bladder	0.6250
BL_9	Bladder	0.6362
BL_10	Bladder	0.6193
BL_11	Bladder	0.6408
BL_12	Bladder	0.6390
BR_1	Breast	0.0040
BR_2	Breast	0.2788
BR_3	Breast	0.0040
BR_4	Breast	0.0344
BR_5	Breast	0.3264
BR_6	Breast	0.1421
BR_7	Breast	0.0149
BR_8	Breast	0.0769
BR_9	Breast	0.1843
BR_10	Breast	0.0040
BR_11	Breast	0.0208
BR_12	Breast	0.0373
BR_13	Breast	0.0080
BR_14	Breast	0.0070
BR_15	Breast	0.0139
BR_16	Breast	0.0139
BR_17	Breast	0.0469
BR_18	Breast	0.0383
BR_19	Breast	0.0139
BR_20	Breast	0.0070
BR_21	Breast	0.0188
BR_22	Breast	0.0070
BR_23	Breast	0.6395
BR_24	Breast	0.6357
BR_25	Breast	0.6418
BR_26	Breast	0.6343
BR_27	Breast	0.0247
BR_28	Breast	0.0090
BR_29	Breast	0.0325

DD 20		0.0100	
BR_30	Breast	0.0109	
BR_31	Breast	0.1326	
BR_32	Breast	0.0090	
BR_33	Breast	0.0564	
BR_34	Breast	0.0109	
BR_35	Breast	0.1575	
BR_36	Breast	0.0090	
BR_37	Breast	0.0060	
BR_38	Breast	0.0554	
BR_39	Breast	0.0889	
BR_40	Breast	0.0421	
BR_41	Breast	0.0198	
BR_42	Breast	0.0060	
BR_43	Breast	0.6092	
BR_44	Breast	0.2847	
BR_45	Breast	0.0305	
BR_46	Breast	0.3871	
BR_47	Breast	0.2222	
BR_48	Breast	0.5185	
BR_49	Breast	0.0188	
BR_50	Breast	0.0354	
BR_51	Breast	0.0129	
BR_52	Breast	0.1843	
BR_53	Breast	0.1876	
BR_54	Breast	0.0478	
BR_55	Breast	0.0658	
BR_56	Breast	0.1793	
BR_57	Breast	0.0139	
BR_58	Breast	0.0440	
BR_59	Breast	0.0601	
LU_1	Lung	0.0109	
LU_2	Lung	0.0119	
LU_3	Lung	0.0100	
LU_4	Lung	0.0080	
LU_5	Lung	0.2293	
LU_6	Lung	0.0050	
LU_7	Lung	0.0169	
LU_8	Lung	0.2159	
LU_9	Lung	0.0276	
LU_10	Lung	0.6702	
LU_11	Lung	0.1456	
LU_12	Lung	0.0100	
LU_13	Lung	0.0149	
LU_14	Lung	0.0159	
LU_15	Lung	0.0198	
LU 16	Lung	0.5385	

NE 1	NEPC	0.3812	
 PR 1	Prostate	0.2087	
 PR 2	Prostate	0.0060	
PR 3	Prostate	0.0149	
PR 4	Prostate	0.3008	
PR 5	Prostate	0.0169	
PR 6	Prostate	0.0237	
PR 7	Prostate	0.0178	
 PR 8	Prostate	0.0227	
 PR 9	Prostate	0.0450	
PR_10	Prostate	0.5130	
PR_11	Prostate	0.0354	
PR_12	Prostate	0.0129	
PR_13	Prostate	0.0159	
PR_14	Prostate	0.0198	
PR_15	Prostate	0.0080	
PR_16	Prostate	0.0526	
PR_17	Prostate	0.0686	
PR_18	Prostate	0.4019	
PR_19	Prostate	0.4436	
PR_20	Prostate	0.4550	
PR_21	Prostate	0.3819	
PR_22	Prostate	0.4544	
PR_23	Prostate	0.5866	
PR_24	Prostate	0.1079	
PR_25	Prostate	0.0227	
PR_26	Prostate	0.1007	
PR_27	Prostate	0.5856	
PR_28	Prostate	0.2087	
PR_29	Prostate	0.0129	
PR_30	Prostate	0.6550	
PR_31	Prostate	0.0276	
PR_32	Prostate	0.1061	
PK_33	Prostate	0.3122	
PK_34	Prostate	0.3165	
PK_35	Prostate	0.0852	
rк_36 гс аа	Prostate	0.1020	
PK_3/	Prostate	0.3580	
PK_38	Prostate	0.2766	
PK_39	Prostate	0.0218	
PK_40	Prostate	0.0038	
PK_41	Prostate	0.3532	
rκ_42	Prostate	0.1481	
PR_43	Prostate	0.3040	
DD /C	Prostate	0.1309	
rn 4J	riusiale	0.1401	

	I	I
PR_46	Prostate	0.0497
PR_47	Prostate	0.6283
PR_48	Prostate	0.5658
PR_49	Prostate	0.3580
PR_50	Prostate	0.0188
PR_51	Prostate	0.0257
PR_52	Prostate	0.2127
PR_53	Prostate	0.0169
PR_54	Prostate	0.5846
PR_55	Prostate	0.2095
PR_56	Prostate	0.6320
PR_57	Prostate	0.1635
PR_58	Prostate	0.1958
PR_59	Prostate	0.6418
PR_60	Prostate	0.0159
PR_61	Prostate	0.2935
PR_62	Prostate	0.0080
PR_63	Prostate	0.0119
PR_64	Prostate	0.0030
PR_65	Prostate	0.0050
PR_66	Prostate	0.0100
PR_67	Prostate	0.5658
PR_68	Prostate	0.7707
PR_69	Prostate	0.3607
PR_70	Prostate	0.0611
PR_71	Prostate	0.0080
PR_72	Prostate	0.2533
PR_73	Prostate	0.1282
PR_74	Prostate	0.0714
PR_75	Prostate	0.0276
PR_76	Prostate	0.0070
PR_77	Prostate	0.0227
PR_78	Prostate	0.4797
PR_79	Prostate	0.5343