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Figure S1. Comparison of Pst DC3000 WT-3xmCherry and Pst DC3000 ΔhopQ1-3xmCherry 
during infection in Arabidopsis. Related to Figure 1. 
(A) Bacterial populations in wild type Arabidopsis Col-0 leaves using syringe infiltration. Four-week-
old A. thaliana leaves were syringe infiltrated with a bacterial suspension of OD600 = 0.0002. Left:
Representative images of bacterial colonization at different time points. Pictures are maximum
projections from confocal Z stacks. Right: Bacterial growth curve over time. Log10 CFU/cm2, log10
colony forming units per cm2 of leaf tissue. Data are means ± SD (at least 5 plants used for each
strain at each time point). (B) Bacterial populations in wild type Arabidopsis Col-0 leaves using flood
inoculation. Two-week-old Arabidopsis seedlings grown on Murashige-Skoog plates were flood-
inoculated with mCherry-tagged Pst DC3000 at concentration of 1 x 107 colony forming units/ml
(CFU/ml). Left: Representative images of bacterial colonization at different time points. Right:
Bacterial growth curve over time. Log10 CFU/mg, log10 colony-forming units per milligram leaf tissue.
Data are means ± SD (at least 6 plants used for each strain at each time point). Pictures are
maximum projections from confocal Z stacks. Chlorophyll autofluorescence is shown in gray. Scale
bars: 50 µm.
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Figure S2. Data quality of single-cell datasets. Related to Figure 1-2.
(A-B) Summary statistics of single-cell datasets. Transcript (A) and Gene (B) counts were 
summarized across all 11,895 cells in the integrated single-cell dataset. Median transcript 
counts were ~ 17,000 unique molecular identifier (UMI) per cell for both datasets, while median 
gene counts were ~ 3,500. (C) Comparison with bulk RNA-seq. For Mock- and DC3000-
treated single-cell datasets, a “pseudobulk” profile was calculated as the sum of counts per 
gene for all cells within that dataset. These profiles were compared to mRNA-seq data derived 
from whole leaves (Bulk Tissue) and pooled protoplasts (Protoplast) isolated in the same 
manner as those used for single-cell profiling). (D) Cell numbers from Arabidopsis leaves 
infiltrated with Pst DC3000 or 10 mM MgCl2 (Mock) in each cluster. (E) The protoplast 
signature score is depicted in the UMAP of the combined scRNA-seq datasets. A module 
score (Protoplast Signature Score) was computed based on genes up- and down-regulated by 
protoplasting (identified from bulk/protoplast RNA-seq). While heterogeneous, protoplasting 
does not appear to strongly impact cells within immune/transition/susceptibility clusters. (F-N) 
Integration of five leaf single-cell datasets from Arabidopsis preserves the unique identity of 
pathogen-treated cells. We integrated Arabidopsis leaf single-cell datasets (eight total, over 
five distinct studies: Kim et al. [S1]; Liu et al. [S2]; Lopez-Anido et al. [S3]; Procko et al. [S4]; 
Zhang et al. [S5]) together to determine whether pathogen-treated cells remain distinct relative 
to other sources of cell-cell variation. (F) Cell type distribution in UMAP space for the 
integrated dataset. (G-N) Proportion of cells in UMAP space belonging to each individual 
dataset. While the combination of all datasets largely preserved clustering with respect to cell 
type (F), a region in UMAP space still appeared to be distinct for having Pst DC3000-treated 
identity (H). Heatmap represents proportion of cells for each dataset overlaid onto the 
integrated UMAP.
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Figure S3. Clusters M1 – M5 are pathogen-responsive clusters. Related to Figure 2. 
(A) Single Cell Uniform Manifold Approximation and Projection (UMAP) plots from mock-treated
samples (Mock) and Pst DC3000-treated samples, colored according to treatment. (B) Proportion
of DC3000-treated cells is depicted in the UMAP of the combined single-cell RNA-seq datasets.
These cells likely represent those that are responsive to pathogen infection. (C) A Pst DC3000
signature score was computed as a composite metric quantifying the overall impact that P.
syringae has on each cell (Methods). The pathogen signature score is depicted in the UMAP of
the combined scRNA-seq datasets. (D) GO-term enrichment (number of significant genes divided
by the number of expected genes for each term) shows many terms specific to immunity and
defense (bold, red) are associated with clusters M1-3, while terms specific to jasmonic acid,
wounding and water stress (blue) are associated with clusters M4-5.
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Figure S4. Re-clustering of Mock- and DC3000-treated cells and differentially expressed 
genes in pathogen responsive clusters. Related to Figure 2.
(A) UMAP plots of re-clustering for mock-treated samples (left) and Pst DC3000-treated
samples (right). (B) Overlap among genes identified as differentially expressed among different
pathogen-responsive mesophyll cell types in single-cell data (log2-fold change > 0.5, adjusted p-
value < 0.01, and negative binomial test using DESeq2).
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Figure S5. Variation of characterized and uncharacterized pathogen-responsive genes 
along pseudotime. Related to Figure 2 and Table S1C. 
(A) Expression is shown for genes known to be involved in pathogen responsiveness. Known 
genes are organized based on their suspected involvement in immunity (top) or in disease 
susceptibility (bottom) and expression in individual cells are depicted varying along pseudotime 
on the X-axis. (B) Additional clusters of genes exhibiting similar expression patterns that vary 
with pseudotime were identified using monocle3. Additional genes are organized based on a 
hierarchical clustering of scaled expression profiles over pseudotime. Y-axis represents 
individual genes within a cluster, and the X-axis represents expression in individual cells 
organized along pseudotime.
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Figure S6. Visualization of immune and susceptible cellular markers during disease 
progression. Related to Figure 3-5. 
(A-B) Expression of immune marker FRK1 and susceptible marker EXPA10 at early infection 
stages. Two-week-old transgenic Arabidopsis seedlings grown on Murashige-Skoog plates were 
surface-inoculated with mCherry-tagged Pst DC3000 at concentration of 1 x 107 colony forming 
units/ml (CFU/ml). Left: Representative images of marker gene expression at different infection 
stages. Mock images are taken at 24 h. Pictures are maximum projections from confocal Z 
stacks. Right: Mean florescence intensity (FI, mean gray values) per nucleus was calculated and 
boxplot shows median with minimum and maximum values indicated (n = 6 images from 3 
plants). Different letters indicate statistically significant differences (p < 0.0001, ANOVA with 
Tukey test). Scale bars: 50 µm. Experiments were repeated two times with similar results. (C-F) 
Data represent experiments with a second, independent transgenic line for promoter-reporter 
constructs (line 2). (C) The immune marker LipoP1 is highly expressed during infection. The 
promoter-reporter line for this immune marker was generated with fusion to 3xfluorophore 
possessing a nuclear localization signal (NLS). Plants were inoculated as described in (A). (D, E 
and F) The susceptible markers EXPA10 (D), PIP1;4 (E) and ILL5 (F) are highly induced at late 
infection stages. Promoter-reporter lines for each susceptible marker were generated as 
mentioned in (C). 
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Figure S7. Feature plots of marker genes and expression pattern of immune markers. 
Related to Figure 3-5. 
(A-B) Feature plots of immune (A) and susceptible (B) markers in all cell clusters. (C) Expression 
of the immune marker LipoP1 (line 19-15-1) is proximal to bacterial colonies. Two-week old 
Arabidopsis pLipoP1::NLS-3xmCitrine seedlings were flood-inoculated with mCherry-tagged Pst 
DC3000. Left: Maximum projections of Z stack of mVENUS and mCherry signals. Each yellow dot 
indicates a single nucleus. Scale bar: 20 µm. Right: Percentage of LipoP1 expressing cells that 
are proximal (<15 µm) or distal (>15 µm) to a bacterial colony 24 hpi. Boxplot shows median with 
minimum and maximum values indicated (n = 6 images from 3 plants). *p < 0.05 analyzed by two-
tailed, unpaired Student’s t-test. (D) Expression of LipoP1 in bundled and marginal patterns was 
significantly higher than in uncolonized regions. Data are means ± SD (n = 9 images from 6 
plants). Different letters indicate statistically significant differences (p < 0.0001, ANOVA with 
Tukey test). (E) Expression patterns of different CBP60g lines (22-1, 22-4, 22-18 and 22-23) at 
24 hpi. Two-week old Arabidopsis pCBP60g::NLS-3xmCitrine seedlings were flood-inoculated 
with mCherry-tagged Pst DC3000. Pictures are maximum projections from confocal Z stacks of 
mCitrine, mCherry and chlorophyll autofluorescence signals. Chlorophyll autofluorescence is 
shown in gray. Scale bars: 20 µm



Table S3. Primers used in this study. Related to Figures 3 and 4.

TAIR/AGI Group Gene
symbol Direction Sequence (5’-3’) Source

AT3G18250 Immune LipoP1 
Forward CCCCTTCACCAGAAGCTGTACAAGAAAGTCG

This study
Reverse CTCTTCTTCTTTGGCATCTCTCTTTCTCTAGTTAATGTGG

AT5G26920 Immune CBP60g 
Forward GCCCCCTTCACCTGGCTCGATCAAACTTAGATATCAATC This study

Reverse CTTCTTCTTTGGCATTGATCACTTTTAGGTTTAGAG

AT1G26770Susceptible EXPA10 
Forward GCCGCCCCCTTCACCCGTATAGATAATAATTAAATGAATC This study

Reverse CTCTTCTTCTTTGGCATGGGTGATATAAAATCAATTACTT

AT4G00430Susceptible PIP1;4 
Forward CCCCCTTCACCCGAACTTTACTAGTTACTATCTACC This study

Reverse TTCTTCTTTGGCATTTCTCTCCCTCTCCCTC

AT1G51780Susceptible ILL5 
Forward CGCCCCCTTCACCTCTCACAGTATTAG This study

Reverse CTTCTTCTTTGGCATCGTGAATCAAGAGATTGC
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