Cell Reports, Volume 42

Supplemental information

Entry receptor LDLRAD3 is required for Venezuelan

equine encephalitis virus peripheral infection

and neurotropism leading to pathogenesis in mice

Natasha M. Kafai, Hana Janova, Matthew D. Cain, Yael Alippe, Stefanie Muraro, Alan Sariol, Michelle Elam-Noll, Robyn S. Klein, and Michael S. Diamond

Figure S1. *Ldlrad3*-deficient mice survive high-dose VEEV challenge but succumb to MADV infection, related to Figure 1. (A) Cartoon schematic of *Ldlrad3* mRNA generated using BioRender. *Ldlrad3* mRNA and corresponding LDLRAD3 proteins with 14-nucleotide frameshift deletion site in exon 2 indicated with a red arrow. (B) Seven to 11-week-old male or female wild-type or *Ldlrad3*^{Δ 14/ Δ 14} mice were inoculated subcutaneously in the footpad with 10² FFU (wild-type, n = 14; *Ldlrad3*^{Δ 14/ Δ 14}, n = 12) or 10⁵ FFU (wild-type, n = 9; *Ldlrad3*^{Δ 14/ Δ 14}, n = 8) of VEEV ZPC738 and monitored daily for weight change (symbols represent mean ± SD) and survival. Red and blue stars indicate a statistically significant difference in weight loss or survival between wild-type and *Ldlrad3*^{Δ 14/ Δ 14} mice inoculated with 10² FFU or 10⁵ FFU, respectively. Data are from two

independent experiments. (**C**) Representative flow cytometry gating scheme of leukocytes isolated from peripheral blood of a naïve, wild-type C57BL6/J mouse and stained with immune cell markers. (**D**) Analysis of leukocyte cell subsets in the peripheral blood of naïve wild-type C57BL6/J (n = 9) and *Ldlrad3*^{Δ 14/ Δ 14} (n = 8) mice using flow cytometry. Cells counts are normalized to volume of blood. Data are from two independent experiments. (**E**) Six to seven-week-old male or female wild-type or *Ldlrad3*^{Δ 14/ Δ 14} mice (n = 9) were inoculated subcutaneously in the footpad with 10³ FFU of MADV, a South American lineage of EEEV, and monitored daily for weight change (symbols represent mean ± SD) and survival. Data are from two independent experiments. For weight changes, area under the curve analysis was performed (unpaired t-test). To avoid survivor bias in weight curves, statistical significance was calculated at timepoints when all mice were alive (**B and E,** *left*). Survival data were analyzed by log-rank test (**B and E,** *right*), and flow cytometry data were analyzed by Mann-Whitney test (ns, not significant; *****P* < 0.0001).

B Wild-type cerebral cortex: subcutaneous inoculation with 10² FFU of VEEV at 5 dpi

Wild-type cerebral cortex: mock subcutaneous inoculation

C Wild-type cerebral cortex: subcutaneous inoculation with 10² FFU of VEEV at 5 dpi

Figure S2. Viral RNA after subcutaneous inoculation at 1 and 14 dpi and FISH staining controls at 5 dpi, related to Figure 2. (A) Wild-type (n = 7-9) or *Ldlrad3*^{Δ 14/ Δ 14} (n = 7-12) mice were inoculated subcutaneously with 10² FFU of VEEV ZPC738. At 1 (for wild-type and *Ldlrad3*^{Δ 14/ Δ 14} mice) and 14 dpi (*Ldlrad3*^{Δ 14/ Δ 14} mice only), indicated tissues and samples were

assessed for viral RNA by described in **Fig 1** (peripheral blood leukocytes [PBL]); draining lymph node [DLN]; spinal cord [SC]; olfactory bulb [OB]; cerebral cortex [CTX]; hippocampus [HPC]; cerebellum [CBL]; brainstem [BS]; subcortical/midbrain regions [ScMb]). Mean values are shown. The LOD for each tissue is indicated by a dashed line, and numbers in black or red enumerate samples with titers at the LOD. Data are from two or three independent experiments per timepoint and analyzed by Mann-Whitney test (**P < 0.01 and ***P < 0.001). (**B**) FISH staining controls for VEEV RNA visualization. Images of the cerebral cortex from a wild-type mouse five days after subcutaneous inoculation with 10² FFU of VEEV ZPC738 and stained by FISH with a negative control probe, IHC for cell-specific antigen, and DAPI counterstaining for nuclei visualization (*top panels*). Images of the cerebral cortex from a mock-inoculated mouse stained by FISH with the VEEV-specific probe, IHC for cell-specific antigen, and DAPI counterstaining for nuclei visualization (*bottom panels*) (scale bar: 250 µm). (**C**) Image from the cerebral cortex of a VEEVinfected wild-type mouse at 5 dpi from **Fig 2C** highlighting lack of co-localization between GFAP/SOX9⁺ and VEEV⁺ cells (scale bar: 250 µm).

Subcutaneous inoculation with 10² FFU of VEEV: 3 dpi

Figure S3. Fluorescence *in situ* hybridization (FISH) of VEEV RNA in wild-type and *Ldlrad3*^{Δ 14/ Δ 14} brains at 3 and 5 dpi after subcutaneous inoculation, related to Figure 2. Images of sagittal skull and brain sections from different wild-type or *Ldlrad3*^{Δ 14/ Δ 14} mice at 3 (A;

n = 4) or 5 (**B**; n = 4) days after subcutaneous inoculation with 10^2 FFU of VEEV ZPC738 and FISH staining for VEEV RNA and DAPI counterstaining for nuclei visualization. Data are from two experiments. (**C**) FISH staining negative controls for VEEV RNA visualization. Sagittal sections of a wild-type mouse brain 5 days after subcutaneous inoculation with PBS (mock) or 10^2 FFU of VEEV ZPC738 and staining by FISH with a VEEV-specific probe or negative control probe, respectively, before counterstaining with DAPI for nuclei visualization. Scale bars: 5 mm.

Figure S4. *Ldlrad3* mRNA expression in wild-type mouse brains, related to Figure 4 (A) Representative images from sagittal brain sections of a wild-type C57BL/6J mouse brain (scale

bars: 100 μ m) stained with a combination of FISH probe for *LdIrad3* RNA, or negative control probe, immunohistochemical staining of NeuN⁺ neurons, and DAPI counterstaining for nuclei visualization. Data are representative of two experiments (n = 3). (**B**) Mouse Cell Atlas Database search results for cell type clusters in the adult mouse brain represented as t-distributed Stochastic Neighbor Embedding (t-SNE) plots (*left*) and corresponding differential expression of *LdIrad3* RNA in each cell cluster (*right*).

Figure S5. Viral RNA after intracranial inoculation at 1, 10, and 14 dpi and FISH staining controls at 5 dpi, related to Figure 5. (A) Wild-type or $LdIrad3^{\Delta 14/\Delta 14}$ (n = 8) mice were inoculated intracranially with 10² FFU of VEEV ZPC738. At 1 (for wild-type and $LdIrad3^{\Delta 14/\Delta 14}$ mice) and 10

and 14 dpi (*LdIrad3*^{Δ 14/ Δ 14} mice only), indicated tissues and samples were assessed for viral RNA as described in **Fig 1** (olfactory bulb [OB]; cerebral cortex [CTX]; hippocampus [HPC]; cerebellum [CBL]; brainstem [BS]; subcortical/midbrain regions [ScMb]; spinal cord [SC]; peripheral blood leukocytes [PBL]); lymph node [LN]). Mean values are shown. The LOD for each tissue is indicated by a dashed line, and numbers in black or red enumerate samples with titers at the LOD. Data are from two or three independent experiments per timepoint and analyzed by Mann-Whitney test (***P* < 0.01 and ****P* < 0.001). (**B**) FISH staining controls for VEEV RNA visualization. Images of the cerebral cortex from a wild-type mouse five days after intracranial inoculation with 10² FFU of VEEV ZPC738 and stained by FISH with a negative control probe, IHC for cell-specific antigen, and DAPI counterstaining for nuclei visualization (*top panels*). Images of the cerebral cortex from a DAPI counterstaining for nuclei visualization (*top panels*). Images of the cerebral cortex from a DAPI counterstaining for nuclei visualization (*top panels*). Images of the cerebral cortex from a DAPI counterstaining for nuclei visualization (*top panels*). Images of the cerebral cortex from a mock intracranially-inoculated mouse stained by FISH with the VEEV-specific probe, IHC for cell-specific antigen, and DAPI counterstaining for nuclei visualization (*bottom panels*) (scale bar: 250 µm). (**C**) Image from VEEV-infected wild-type mouse cerebral cortex at 5 dpi from **Fig 2C** highlighting lack of co-localization between GFAP/SOX9⁺ and VEEV⁺ cells (scale bar: 250 µm).

Α

Intracranial inoculation with 10² FFU of VEEV: 3 dpi

В

Intracranial inoculation with 10² FFU of VEEV: 5 dpi

DAPI VEEV

Wild-type

with 10² FFU of VEEV: 5 dpi

Figure S6. Fluorescence in situ hybridization (FISH) of VEEV RNA in wild-type and LdIrad3^{Δ14/Δ14} brains at 3 and 5 dpi after intracranial inoculation, related to Figure 5. Images of sagittal skull and brain sections from different wild-type or Ldlrad3^{Δ 14/ Δ 14} mice 3 (**A**; n = 4) or 5

(**B**; n = 4) days after intracranial inoculation with 10^2 FFU of VEEV ZPC738 and FISH staining for VEEV RNA and DAPI counterstaining for nuclei visualization. Data are from two experiments. (**C**) FISH staining controls for VEEV RNA visualization. Sagittal sections of a wild-type mouse brain 5 days after intracranial inoculation with PBS (mock) or 10^2 FFU of VEEV ZPC738 and staining by FISH with a VEEV-specific probe or negative control probe, respectively, before counterstaining with DAPI for nuclei visualization. Scale bars: 5 mm.

Figure S7. VEEV infection of Olig2⁺ cells in LDLRAD3-deficient mixed neuron-glia primary culture, related to Figure 6. (A-C) Immunofluorescence analysis of VEEV-EGFP- or SINV-VEEV TrD-GFP-infected NeuN⁺ neurons in mixed neuron-glia cultures isolated from E17 embryos of wild-type and *Ldlrad3*^{Δ 14/ Δ 14} mice and infected 11 to 14 days after plating at a MOI 20 for 7 h. (A) Representative confocal microscopy images of mixed neuron-glia cultures derived from wild-type (left panels) or *Ldlrad3*^{Δ 14/ Δ 14} (right panels) mice highlighting nuclei (DAPI⁺), neurons (NeuN⁺), oligodendrocyte progenitor cells (Olig2⁺), and VEEV infection (GFP⁺). Orange boxes indicate enlarged insets, and orange arrows indicate examples of infected oligodendrocyte lineage cells (Olig2⁺GFP⁺ co-localization) (low magnification, scale bars: 100 µm and high magnification, scale bars: 270 µm). Quantification of VEEV-infected Olig2⁺ cells is represented per image area (425 µm²) as the percentage of Olig2⁺ cells that are GFP⁺ for cultures infected with (B) VEEV ZPC738-EGFP or (C) SINV-VEEV TrD-GFP. The mean percentage of infected oligodendrocyte lineage cells is indicated above each data set, and total number of Olig2⁺ cells counted is indicated below.

Data are from two independent experiments each with two technical replicates and analyzed by Mann-Whitney test (****P < 0.0001).