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Supplementary Fig. S1: Efficacy of viral strategy to express GCaMP6s in different IN 

populations in P15 mice. (Related to Fig. 1) 

A. Example field of view of PV-Cre+-tdTom+ (magenta) expressing GCaMP6s (green) in PV-

Cre;Ai14+/-; Fmr1 KO mice at P15. 

B.  An injection of rAAV-CAG-DIO-GCaMP6s virus in S1 at P10 resulted in a high proportion of PV-

INs also expressing GCaMP6s by P15 (79.8± 7%, n=3 mice). This pertains to Fig. 1A-F. Scale= 

20 µm. 

C. Example field of view of Nkx2.1-Cre+-tdTom+ (magenta) expressing GCaMP6s (green) in Nkx2.1-

Cre;Ai14+/- Fmr1 KO mice at P15. 

D.  An injection of rAAV-CAG-DIO-GCaMP6s virus in S1 at P1 resulted in 43.4± 1.6% of Nkx2.1-INs 

also expressing GCaMP6s (n=4 mice). Note that the density of Nkx2.1-Cre+- GCaMP6s+ cells is 

comparable to other reports1. This pertains to Fig. 1G-L. Scale= 20 µm. 

E. Representative image of Nkx2.1-INs expressing GCaMP6s (arrowheads, following injection of 

rAAV-CAG-DIO-GCaMP6s virus in S1 at P1) and immunostained for SST at P6. Scale= 50 µm. 

F. Percentage of Nkx2.1-Cre+;GCaMPs+ INs that co-express SST at P6 (2.1± 0.2% in L1-L3 and 

14.2± 1.9% in L4-6).  

G. Representative image of Nkx2.1-Cre+;tdTom+ INs immunostained for SST at P6. Arrowheads 

depicts the co-expressing cells. Yellow dotted line indicates uneven stitching by Zeiss Apotome. 

Scale= 50 µm. 

H. Percentage of Nkx2.1-Cre+;tdTom+ INs that co-express SST at P6 (4.7± 0.3% in L1-L3 and 31.3± 

1.2% in L4-6).  
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Supplementary Fig. S2: Activity of SST INs in S1 of P15 Fmr1 KO mice is not different from WT 

controls. (Related to Fig. 1) 

A. Top: Cartoon of experimental design for calcium imaging recordings in SST-INs. Bottom: Example 

field of view of SST-INs expressing GCaMP6s in SST-FlpO mice at P15.  

B. Example traces of calcium transients for spontaneous and whisker-evoked activity in both SST-

FlpO ; WT and SST-FlpO; Fmr1 KO mice (we show traces from 2 different SST-INs of 2 different 

animals). The vertical blue bars represent the 20 whisker stimulations.  

C. Mean Z-scores for spontaneous activity of SST-INs in Fmr1 KO and WT mice at P15 (2.56± 0.38 

for WT vs. 3.08± 0.62 for Fmr1 KO, n=6 and 7 mice, respectively; p=0.602, MW t-test). 

D. Mean Z-scores for whisker-evoked activity of SST-INs in Fmr1 KO and WT mice at P15 (2.56± 

0.25 for WT vs. 3.51± 0.94 for Fmr1 KO, p=0.628, MW t-test). 

E. Percentage of whisker-responsive SST-INs in Fmr1 KO and WT mice at P15 (53.8± 11.0% for WT 

vs. 19.6± 7.6% for Fmr1 KO, p= 0.051, M-W t-test). 
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Supplementary Fig. S3: Controls for optogenetic experiments to stimulate Nkx2.1-INs in an 

attempt to modulate Pyr neurons in neonatal Fmr1 KO mice at P10. (Related to Fig. 2) 

A. Example field of view in S1 of Nkx2.1-Cre;Sst-FlpO; Fmr1 KO expressing ChRmine (magenta), 

using AAV-EF1-CreON/FlpOFF-ChRmine-oScarlet- virus) and immunostained for SST (green).  

B. Quantification of ChRmine+ cells that also express either PVALB or SST (by 

immunohistochemistry). As expected almost none of the ChRmine-labeled cells were SST 

immunoreactive (1.2± 0.4%, n= 6 mice), confirming the intersectional strategy worked as intended 

to target Nkx2.1+ but SST-FlpO+ cells at P10.  

C. Example field of view in S1of Nkx2.1-Cre;Sst-FlpO; Fmr1 KO expressing ChRmine (same as in b) 

and immunostained for SST (green). White arrowheads indicate double labeled cells. 

D. Quantification of ChRmine+ cells that are also immunoreactive for PVALB. Overall, 34.9± 2.1% the 

ChRmine-labeled also expressed PVALB (n= 6 mice). This is consistent with the fact that at this 

developmental stage (P10-P12) not all future PV-IN have started expressing PVALB.  

E.  The percentage of active Pyr cells is significantly reduced upon laser stimulation of ChRmine-

expressing future PV-INs in WT mice but is unchanged in Fmr1 KO mice (29.1± 6.0 pre laser vs. 

18.3± 4.0 laser On, p=0.025 in WT mice vs. 30.9± 5.9 pre laser vs. 25.2± 5.2 laser On in Fmr1 KO 

mice, p=0.296, two-way ANOVA post-hoc Tukey). 

F. Change in pairwise correlation coefficients after optogenetic Nkx2.1-IN activation in Nkx2.1-

Cre;Sst-FlpO mice for individual pairs of neurons (Spearman r=0.71, n=1,449 neuron pairs from 

n=6 WT mice; Spearman r=.0.61, n=1,842 neuron pairs from n=5 Fmr1KO.mice). Note that 

correlation coefficients are significantly reduced by laser stimulation in WT mice, but not in Fmr1 

KO mice, as shown by the frequency distribution (p<0.001, Kolmogorov-Smirnov test).  

G. Mean frequency of Pyr cell calcium transients remained unchanged upon optogenetic stimulation 

in Nkx2.1-Cre;Sst-FlpO WT and Fmr1 KO mice that do not express the opsin ChRmine (mCherry 

controls; 0.67± 0.13 pre laser vs. 0.86± 0.25 laser On, p=0.312 in WT mice; 0.78± 0.32 pre laser 

vs. 0.81± 0.4 laser On, p=0.500, n=5 WT and n=3 Fmr1 KO , two-way ANOVA, post-hoc Tukey). 
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Supplementary Fig. S4: Pyr cell activity at P10 in Fmr1 KO is hypersynchronous. (Related to 

Fig. 2) 

A. Representative calcium traces of 10 example Pyr neurons in S1 of P10 WT and Fmr1KO. 

B. Raster plots of Pyr cell activity in a representative WT and Fmr1 KO mouse. Note the higher 

synchrony of network Fmr1 KO.  

C. Mean frequency of Pyr cell calcium transients is not significantly different in WT and Fmr1 KO mice 

(0.63± 0.09 in WT mice; 1.60± 0.21, n=6 WT and n=5 Fmr1 KO mice, p=0.537 MW test). 

D. Mean amplitude of Pyr cell calcium transients is not significantly different in WT and Fmr1 KO mice 

(23.6± 2.00 in WT mice; 27.5± 4.0, n=5 WT and n=6 Fmr1 KO mice, p=0.125, MW test). 

E. Mean pairwise correlation coefficients is higher in Fmr1 KO mice as compared to WT (0.51± 0.05 

in n=6 WT mice; 0.67± 0.04, and n=5 Fmr1 KO mice, p=0.052, MW test). 
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Supplementary Fig. S5: Reduced PV-IN density in Fmr1 KO mice at P15 and at 9-10 months. 

(Related to Fig. 3) 

A. Example coronal sections through S1 from PV-Cre;tdTom+/- mice (WT and Fmr1KO) at P15 showing 

the range of PV-IN density in Fmr1 KO mice across the dorsal brain. Notably some Fmr1 KO mice 

(example 2) exhibit a dramatic loss of PV-INs in neocortex and hippocampus (HPC), while other 

bran regions, such as the reticular thalamic nucleus (RTN) are much less affected. S2: secondary 

somatosensory cortex. Scale=100 m. 

B. Coronal sections through the barrel field of S1 from PV-Cre;tdTom+/- mice (WT and Fmr1 KO) at 

9-10 months (corresponding approximately to age of human tissue in Fig. 3C-D). Scale= 50 m. 

C. Mean density of PV-tdTom+ INs in S1 is significantly lower in adult Fmr1 KO mice (top), even 

across individual cortical layers (bottom). (all layers: 241± 8 cells/mm2 for WT vs. 132± 2 for Fmr1 

KO; p=0.002, MW t-test; L2/3: 136± 23 vs. 69± 10, p=0.049, L4: 512± 26 vs. 339± 43, p=0.026; 

L5/6: 358± 24, two-way ANOVA, post-hoc Holm-Sidak test, p=0.013, n=7 per genotype).  

  



NT FXS
0

50

100

150

200 p= 0.5045

CB
+ 

ce
lls

 p
er

 b
in

NT FXS
0

100

200

300

400

CR
+ 

ce
lls

 p
er

 b
in

p= 0.279

0

40

80

120

160

CR
+  c

el
l d

en
si

ty
  p

er
 m

m
2

Density of  Calretinin- and Calbindin-expressing interneurons in human samples

Density of Calretinin- and Calbindin-expressing interneurons subtypes in adult  adult WT and Fmr1-/- mice

Supplementary Fig. S6

WT
*p= 0.029

WT
(4) (4)

(8) (9)(8) (9)

L1

L2/3

L4

L5/6

Calretinin (CR)

L1

L2/3

L4

L5/6

0

50

100

150

200

SS
T+  c

el
l d

en
si

ty
  p

er
 m

m
2

SS
T+  c

el
l d

en
si

ty
  p

er
 m

m
2

0

50

100

150

200

WT
(4) (6)

*p= 0.009

B

WT
(4) (4)

Adult mice (S1) 

*p= 0.029

P15 mice (S1) 
C

Fmr1 KO WT
SST

L1

L2/3

L4

L5/6

L1

L2/3

L4

L5/6

SST-IN density in 15 day-old and adult WT and Fmr1 KO mice

A

ED

G

H

pia pia

pia pia

F

I

Fmr1 KO Fmr1 KO 

Fmr1 KO 

Fmr1 KO 

Fmr1 KO 

Fmr1 KO 

Fmr1 KO 



Supplementary Fig. S6: Density of SST, Calbindin, and Calretinin INs in FXS human cases and 

Fmr1 KO mice. (Related to Fig. 3) 

A. Representative images of SST immunostaining in S1 in P15 WT and Fmr1 KO mice.  

B. Quantification of total SST-immunoreactive cell density in the barrel field of S1 in WT and Fmr1 

KO mice in P15 (WT: 121.9± 3.7 cells/mm2, Fmr1 KO: 150.5± 5.9, n= 4 and 6, respectively; 

p=0.009, MW test).  

C. Quantification of total SST-immunoreactive cell density in adult (4-5 months old) WT and Fmr1 KO 

mice in and adult mice (WT: 93.14± 8.6 cells/mm2, Fmr1 KO: 149.1± 5.3, n= 4 per group; p=0.029, 

MW test) 

D. Representative images of Calretinin immunostaining in S1 in adult WT and Fmr1 KO mice.  

E. Quantification of Calretinin-immunoreactive INs from adult WT and Fmr1 KO mice (81± 3.6 for WT 

vs. 136± 5.9 for Fmr1 KO, n=4 mice per group; p=0.029 MW t test).  

F. Representative images of Calbindin immunostaining in S1 in adult WT and Fmr1 KO mice. Note 

that the CB immunoreactivity is similar to previous reports. 2,3 

G. Quantification of Calbindin-immunoreactive INs in WT and Fmr1 KO mice. The distribution and 

intensity of fluorescence is comparable in between WT and Fmr1 KO mice in the supragranular 

layers (AUC= 48,036± 704 for WT vs. 42,093± 578 for Fmr1 KO, n=4 mice per group; p=0.539, 

MW t test). The density of CB+ INS in infragranular layers is similar between WT and Fmr1 KO 

mice (192.6± 30.2 for WT vs. 257.7± 24.2 for Fmr1 KO; p=0.200, MW t test). 

H. Quantification of Calbindin-immunoreactive INs in human FXS and neurotypical control (NT) cases 

(59± 14 for NT vs. 76± 20 for FXS, n=8 and 9, respectively; p=0.279 MW t test).  

I. Quantification of Calretinin-immunoreactive INs in FXS human and control (NT) cases (144± 33 

for NT vs. 100± 36 for FXS; p=0.279 MW t test).  
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Supplementary Fig. S7: Evidence of apoptotic cell death of Nkx2.1-tdTom+ INs in neonatal Fmr1 

KO mice. (Related to Fig. 3) 

A. Coronal sections through S1 from Nkx2.1-Cre mice (WT and Fmr1 KO) at P6 immunostained for 

cleaved Caspase-3 (cyan) showing rare double-labeled cells (arrowheads). Scale= 100 m.  

B. Mean density of Nkx2.1+-tdTom+-INs that co-express Caspase-3 was significantly higher in Fmr1 

KO mice (1.85± 0.35 cells/mm2 for WT vs. 4.87± 1.16 for Fmr1 KO; p=0.007, M-W test). 

C. Representative maximum intensity projection (~20 µm) of Nkx2.1-tdTom+ IN image stacks acquired 

by in vivo 2P microscopy of the same FOV at P6 and 6-12h later in 3 example Nkx2.1-Cre;Ai14 +/-

; Fmr1 KO mice. Yellow dotted contours indicate Nkx2.1-tdTom+ INs present at P6 but absent at 

P7. Purple dotted contours indicate pyknotic Nkx2.1+-tdTom+-INs, indicative of apoptosis. Scale= 

50 µm. 

D. Cartoon representing developmental sequence of events related to differentiation of MGE-derived 

INs into SST and PV populations in WT (left) and Fmr1 KO mice (right). Note that in WT mice, 

SST-INs differentiate before PV-INs, that naturally occurring cell death of SST-INs and PV-INs 

occurs roughly between P5 and P10, and that additional differentiation of PV-INs from MGE-

derived precursors goes on after P15. In contrast, in Fmr1 KO mice, there is 1. A lower density of 

PV-INs (due to an excess cell death), and 2. a higher density of SST-INs (presumably due to less 

cell death and/or greater differentiation from MGE-INs) compared to WT mice. 
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Supplementary Fig. S8: Chronic chemogenetic activation of Nkx2.1-INs (P5-P9) increases the 

density of PVALB+ cells at P21. (Related to Fig. 4)  

A. Coronal section through the barrel field of S1 in a P15 Nkx2.1-Cre;WT mouse expressing mCherry 

in Nkx2.1+-IN (see Methods). Note the overlap in expression of mCherry (purple) in Nkx2.1+-IN 

and PVALB immunoreactivity (green) across cortical layers (white arrowheads). As expected 

based on the low efficiency of viral transduction, only a small proportion of PVALB+ cells co-

express mCherry (and the Gq DREADD construct) (blue arrowheads). Scale= 50µm. 

B. Percentage of PVALB+ INs that also express mCherry. (25.8± 3.5 cells/mm2, n=5 mice). 

C. Left: Quantification of PVALB+ INs density across cortical layers at P15. (161± 6 cells/mm2 for WT-

mCherry vs. 87± 6 for Fmr1 KO-mCherry, p= 0.003; and 119± 9 for Fmr1 KO-h3MDq, p= 0.040, 

n=6, 7 and 8, respectively). Right: the chronic DREADD manipulation did not significantly change 

the density of PV-INs in L4 or L5/6. 
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Supplementary Fig. S9: Gene ontology (GO) analysis for DE genes in Fmr1 KO-hM3Dq mice 

compared to WT-mCherry mice, and effect of Gq DREADD manipulation. (Related to Fig. 5) 

A. Whisker plots comparing the expression of several MGE-derived markers in the bulk 

transcriptome. Markers shown for PV-INs, including fast-spiking basket cells and chandelier cells, 

and SST-INs markers; Wilcoxon signed-rank test.  

B. Number of DE genes in S1 cortex at P15 Fmr1 KO-mCherry from the bulk transcriptome that 

overlap with previously reported differentially expressed in the hippocampus of adult Fmr1 KO 

mice (see Methods). Heatmaps represent the changes of expression expressed as Z-scores 

among the up- and downregulated genes.  

C. Top 10 GO terms (using the biological process package) enriched among downregulated (blue) 

and upregulated (red) genes from the bulk cortical transcriptome in Fmr1  -hM3Dq vs. WT-mCherry 

mice. Scale bars represent the number of genes in each category. Note that “Synapse 

organization” and “Neuronal apoptosis” categories are less different (reduced number of genes 

and adjusted p value) than in the comparison shown in Fig. 5D between Fmr1 KO (mCherry) and 

WT (mCherry) mice, suggesting they were ‘improved’ by the chemogenetic activation of Nkx2.1-

INs. 

D. Density plot showing how the log2 fold change was affected by the DREADD manipulation in the 

Nkx2.1-IN specific translatome. Note that differences with WT mice were accentuated by the 

DREADD intervention in both down- ad upregulated categories. 

E. Top 10 GO terms for DE genes from the Nkx2.1-specific translatome in Fmr1 KO -hM3Dq vs. WT-

mCherry mice. Only a few GO terms were modestly improved by DREADDs (e.g., Protein 

catabolism and Autophagy). 
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Supplementary Fig. S10: Gene expression levels changed by C21 treatment in Fmr1 KO-hM3Dq 

mice. (Related to Fig. 6) 

A. List of upregulated or downregulated genes among the GO term Synapse organization in Fmr1 

KO-mCherry and hM3Dq groups (as compared to WT-mCherry) within the bulk cortical 

transcriptome. Heatmaps represent the average for each treatment/genotype group in (log2 CPM). 

Note that, while DREADD treatment reduced differences for many genes. The expression of other 

genes was either unhanged or worsened after C21 treatment. 

B. Same as in panel A but for GO term “Neuronal apoptosis.” In both bulk transcriptome (left) and 

Nkx2.1-IN specific translatome (right). 
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Supplementary Fig. S11: Acute chemogenetic activation of Nkx2.1-INs at P10 or chronic 

activation from P5 to P9, fails to modulate Pyr cell activity. (Related to Fig. 7)  

A. Experimental design for acute chemogenetic activation of Nkx2.1-INs at P10 in Fmr1 KO mice to 

assess cortical circuit activity using in vivo calcium imaging at P10. 

B. Example FOV of Pyr cells expressing GCaMP6s and Nkx2.1-hM3Dq+ IN in S1 of Nkx2.1-Cre; Fmr1 

KO mouse (scale=100µm). 

C. Mean Z-scores of Nkx2.1-INs before (-C21) and 30-40min after s.c. injection of C21 (+C21) in P10 

Fmr1 KO-hM3Dq mice. Mean activity of Nkx2.1-INs is significantly higher following C21 injection 

(-C21: 6.61± 0.19 and +C21: 7.83± 0.23, n= 182 cells from 3 mice; p<0.0001, Wilcoxon matched-

pairs signed rank test).  

D. Left: Mean Z-scores of Pyr cells before (-C21) and 30-40min after (+C21) s.c. injection of C21 

(1mg/kg) in P10 Fmr1 KO-hM3Dq mice. Acutely increasing the activity of Nkx2.1-INs had no effect 

on Pyr cell activity (-C21: 11.52± 2.82 and +C21: 12.16± 1.55, p=0.437, Wilcoxon matched-pairs 

signed rank test). Right: the mean frequency of synchronous network events (Pyr cells) remained 

unchanged after C21 in P10 Fmr1 KO-hM3Dq mice. (-C21: 1.48± 0.11 and +C21: 1.83± 0.26 

events/min, n= 4 mice; p=0.125, Wilcoxon matched-pairs signed rank test).  

E. Experimental design for chronic chemogenetic activation of Nkx2.1-INs (from P5 to P9) in Fmr1 

KO mice to assess cortical circuit activity using in vivo calcium imaging at P10. 

F. Left: Mean frequency of Pyr cell calcium transients at P10 was not significantly different Nkx2.1-

Cre; Fmr1 KO -hM3Dq mice after chronic C21 injections from P5 to P9 compared to Fmr1 KO mice 

(1.11± 0.18 in Fmr1 KO n=6 vs. 1.48± 0.11 events per min in Fmr1 KO-hM3Dq mice n=4, p=0.257, 

MW test test). Right: Mean pair-wise correlation coefficients of Pyr cell calcium transients is 

unchanged in Fmr1 KO-hM3Dq mice following chronic C21 injection from P5 to P9 (0.66± 0.03 in 

Fmr1 KO n=6, and 0.62± 0.05 in Fmr1 KO-hM3Dq mice n=4, p=0.476 MW test). Note that 1 animal 

was a new Fmr1 KO-mCherry control, while the other 5 mice are Fmr1 KO from Fig S4C-E. 
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Supplementary Fig. S12: Acute chemogenetic or optogenetic activation of INs reduces Pyr 

cell activity at P15 in Fmr1 KO mice. (Related to Figs. 7 and 8) 

A. Experimental design for in vivo calcium imaging recordings in Pyr cells after acute chemogenetic 

activation of PV-INs at P15. Calcium imaging was performed at P15 before and 30-40min after s.c 

injection of C21.  

B. Mean Z-score for spontaneous activity of L2/3 Pyr cells is reduced upon C21 injection in Fmr1 KO 

-hM3Dq mice but not in Fmr1 KO mCherry controls (before/after C21: 3.9± 0.7 vs. 4.0± 0.6 in 

mCherry group, p=0.843; and 2.3± 0.3 vs. 1.6± 0.3, p=0.004 in hM3Dq group; n=6 and 10 mice, 

respectively; Wilcoxon matched pair signed rank test).  

C. Experimental design for optogenetic experiments. Nkx2.1-Cre mice (Fmr1 KO or WT) were 

injected with a CreOn/FlpOff-ChRmine virus at P1 to express the opsin ChRmine in Nkx2.1-Cre+; 

Sst-FlpO- INs. Calcium imaging was done at P15 before, during, and after 20 laser pulses of orange 

light (1 s-long, 3 s I.S.I., =1,040 nm), just as in Fig. 2.  

D. Representative calcium traces for 6 Pyr cells (black) upon 2P laser stimulation.  

E. Mean Z-score of activity in Pyr cells before (pre) and during optogenetic stimulation (laser) in Fmr1 

KO mice. Each line in the panel represents an individual field of view. We observe a significant 

reduction of Pyr cell activity upon laser stimulation in ChRmine-expressing mice but not in control 

mCherry mice (2.32± 0.32 pre vs. 2.03± 0.18 with laser; p= 0.125; n=4 FOV from 2 control mice) ; 

4.12± 0.83 pre vs. 2.18± 0.87 with laser; n=6 FOV from 3 ChRmine-expressing mice ; p= 0.019. 

Wilcoxon matched-paris signed rank test). 

F.  Mean event frequency of calcium transients of Pyr cells before (pre) and during optogenetic 

stimulation (laser) in P15 Fmr1 KO mice. We observe a significant reduction of Pyr cell activity 

upon laser stimulation in ChRmine-expressing mice but not in control m-Cherry mice (0.28± 0.02 

pre vs. 0.25± 0.02 with laser; p= 0.250 in control mice; 4.12± 0.83 pre vs. 2.18± 0.87 with laser for 

ChRmine-expressing mice; p= 0.031, Wilcoxon matched-pairs signed rank test). 

G. Experimental design for calcium imaging recordings in Pyr cells after acute chemogenetic 

activation of PV-INs at P15 with the hM3Dq DREADD agonist C21 (same as Suppl. Fig. S12A-B).  

H. The percentage of whisker-responsive Pyr cells at P15 was significantly higher in upon C21 

injection in Fmr1 KO-hM3Dq mice (n=10) but not in Fmr1 KO mCherry controls (n=6). (hM3Dq 

group before/after C21: 23.5± 2.8% vs. 33.9± 3.9%; p=0.021; and mCherry group before/after C21: 

15. 9± 2.3% vs. 14.5± 2.1%; p=0.983; two-way ANOVA with post-hoc Tukey).  

I. Neuronal adaptation was not affected by the DREADD manipulation (mCherry group before/after 

C21: -0.02± 0.09 vs. -0.05± 0.03, hM3Dq group: 0.02± 0.05 vs. 0.03± 0.05, p>0.99; two-way 

ANOVA with post-hoc Tukey).  
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Supplementary Fig. S13: Intrinsic properties of PV-INs and Pyr cells are unchanged by 

AG00563 (and relative proportions of grabbing/grooming in AG00563 treated mice).  

(Related to Fig. 8)  

A. Resting membrane potential (Vm) of PV-INs is unchanged by bath application of AG00563 during 

current clamp recordings of PV-tdTom+ cells (-73.4± 1.2 mV vs. -73.2± 1.8 mV, p= 0.805, paired 

t-test, n=15 cells from 6 Fmr1 KO mice at P15-16).  

B. Input resistance (Rm) of PV-INs is unchanged by AG00563 (164.6± 9.2 MΩ vs. 161.2± 10.1 MΩ, 

p= 0.608, paired t-test).  

C. Cumulative input-output curves during baseline (red) or bath application of AG00563 (gray) (n=9 

Pyr cells from 6 PV-Cre;tdTom+/-;Fmr1 KO mice, two-way RM ANOVA).  

D. Vm of Pyr cells is unchanged by AG00563 (-79.5± 2.1 mV vs -79.3± 2.5 mV, p=0.805, paired t-

test).  

E. Rm of Pyr cells is unchanged by AG00563 (214.0± 21.4 MΩ vs. 215.4± 22.0 MΩ, p=0.608, paired 

t-test).  

F. Experimental design for the acute administration of AG00563 (3 mg/kg, s.c.) and calcium imaging 

at P15, before and 30 min after injection.  

G. The percentage of whisker-responsive Pyr cells in Fmr1 KO mice was significantly higher after 

AG00563 injection compared to baseline (17.1± 4.3% baseline vs. 21.9± 5.1% ~30-40 min after 

AG00563, p=0.033; paired t-test, n=8 mice).  

H. The neuronal adaptation index of Pyr cells was not changed by AG00563 (0.05± 0.01 baseline vs. 

0.01± 0.03 after AG00563, p=0.033; paired t-test, n=8 mice). 

I. A smaller percentage of mice showed defensive behavior (grabbing) at least once during whisker 

stimulation in the AG00563-treated group than among vehicle controls (5/15 mice vs. 8/13, 

respectively). The opposite was true for adaptive healthy behavior (grooming) (9/15 mice vs. 5/13, 

respectively). 

  

  



 

Case 
ID 

Sex Age PMI 
(Hours) 

Diagnosis CGG 
Repeat 
Count 

Hemisphere Cause of Death 

UCD 
14-15 

M 60 80 Control NA Right Pulmonary Emboli 

UCD 
18-05 

M 62 37 Control NA Left Cardiopulmonary 
Arrest 

UCD 
15-07 

F 64 NK Control NA Left NK 

UCD 
18-07 

M 65 240 Control NA Left Cardiac Arrest 

UCD 
14-01 

M 66 48.5 Control NA Right Acute Renal Failure 

UCD 
18-08 

M 68 168 Control NA Left Hypoxic Respiratory 
Failure 

UCD 
14-12 

M 68 NK Control NA Left Cardiac Arrest 

UCD 
19-12 

M 81 72 Control NA Left NK 

1031-
08-
GP 

M 57 20 FXS 436 Left Multiple System 
Organ Failure 

1031-
09-
LZ 

M 64 11.5 FXS 429 Left NK 

1061-
19-
JB 

F 64 30 FXS 629,780 Left NK 

1005-
14-
JC 

M 65 60 FXS 600-
700 

Right Congestive Heart 
Failure 

1013-
10-
SK 

M 76 NK FXS & 
FXTAS 

447,540 Left Respiratory Failure 

1001-
18-
LD 

M 78 6 FXS 235 Right NK 

1033-
08-
WS 

M 79 17.5 FXS   Left NK 

1007-
18-
RF 

M 80 NK FXS 1,000 Right NK 

Table S1. Clinical characteristics of postmortem neurotypical and Fragile X cases. 

(Related to Figure 3). 

 (NK: not known; NA: not applicable; M: male; F: female; PMI: post-mortem interval; FXS: Fragile X 

syndrome; FXTAS: Fragile X-associated tremor/ataxia syndrome).  

  



SUPPLEMENTAL VIDEOS 

 

Supplementary video 1 (Related to Fig. 2). Example of in vivo calcium imaging of Pyr cells before, 

during, and after optogenetic stimulation of presumed future PV-IN s in Nkx2.1-Cre;SST-Flp+/- mice 

at P10. Data was acquired at 15 fps and is played back at 2x speed. 

 

Supplementary video 2 (Related to Fig. 4). Example of in vivo calcium imaging of Pyr cells during 

whisker-evoked activity in Nkx2.1-Cre mice at P2. Data was acquired at 15 fps and is played back 

at 1x speed. 
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