Supplementary Figures and Tables

Alphafold-multimer predicts cross-kingdom interactions at the plant-pathogen interface Felix Homma, Jie Huang, Renier A. L. van der Hoorn

Supplementary Figure 1 MSA depth of SSPs and hydrolases used in Fig. 2.

The mean non-gap multiple sequence alignment (MSA) depth is shown for the tomato hydrolases (left) and the 1,879 SSPs (right), ranked by MSA depth. The dash line indicates the desired minimum of 100 MSA depth.

Supplementary Figure 2 Production of candidate inhibitors and P69B for inhibition assays. a Candidate inhibitors lacking their endogenous signal peptides were codon-optimized for expression in *E. coli* and cloned in-frame with a 6-His purification tag; the maltose binding protein (MBP) and the cleavage site of tobacco etch virus (TEV) protease. Fusion proteins were expressed in E. coli and purified on HisPur[™] Ni-NTA resin and amylose resin, subsequently. Fusion proteins were detected at their predicted molecular weight (MW, *) by SDS-PAGE and Coomassie staining. Purification of candidate inhibitors was repeated at least once for each candidate independently. **b** Putative inhibitors were released from their purification tags upon incubation with His-TEV protease. This experiment was repeated at least once for each inhibitor independently. c Purified inhibitor candidates after removal of their purification tags and TEV proteins, stained with Sypro Ruby. This experiment was repeated at least once for each inhibitor independently. d P69B-His is efficiently expressed by agroinfiltration. P69B with a C-terminal His tag and an empty vector (EV) control were transiently expressed by agroinfiltration. Apoplastic fluids were isolated, labeled with FP-TAMRA, separated on SDS-PAGE and scanned for fluorescence (right) and stained with Coomassie (left). Expression of P69B was repeated at least twice to similar effect. e Purification of P69B-His on Ni-NTA. I, input sample; FT, flow through; E, eluate. The MW marker is presented in kDa on the left of the gels. Purification of P69B was repeated twice with similar results.

lycop pimpi chees habro corne neori arcan huayl chile penne peruv	1 MGLLKILLVF MGLLKILLVF MGLLKILLVF MGLLKILLVF MGLLKILLVF MGLLKILLVF MGLLKILLVF MGLLKILLVF	IFCSFQWPTI IFCSFQWPTI IFCSFQWPTI IFCSFPWSTI IFCSFPWPTI IFCSFQWPTI IFCSFPWTTI IFCSFPWTTI IFCSFPWTTI	QSNLETYIVH QSNLETYIVH QSNLETYIVH QSNLETYIVH QSNLETYIVH QSNLETYIVH QSNLETYIVH QSNLETYIVH QSNLETYIVH	VESPESLVTT VESPESLVTT VESPESLVTT VESPESLVTT VESPESLVTT VESPESLVTT VESPESLVTT VESPESLVTT VESPESLVTT	QSLLTDLGSY QSSLTDLGSY QSSLTDLDSY QSSLTDLDSY QSSLTDLDSY QSSLTDLDSY QSSLTDLDSY QSSLTDLDSY QSSLTDLDSY QSSLTDLDSY	YLSFLPKTAT YLSFLPKTAT YLSFLPKTAT YLSFLPKTAT YLSFLPKTAT YLSFLPKTAT YLSFLPKTAT YLSFLPKTTT YLSFLPKTTT YLSFLPKTTT	TISSSGNEEA TISSSGNEEA TISSSGNEEA TISSSGNEEA TISSSGNEEA TISSSGNEEA TISSSGNEEA TISSSGNEEA TISSSGNEEA	ATMIYSYHNV ATMIYSYHNV ATMIYSYHNV ATMIYSYHNV ATMIYSYHNV ATMIYSYHNV ATMIYSYHNV ATMIYSYHNV ATMIYSYHNV ATMIYSYHNV ATMIYSYHNV	MTGFAARLTA MTGFAARLTA MTGFAARLTA MTGFAARLTA MTGFAARLTA MTGFAARLTA MTGFAARLTA MTGFAARLTA MTGFAARLTA	100 EQVKEMEKKH EQVKEMEKKH EQVKEMEKKH EQVKEMEKKH EQVKEMEKKH EQVKEMEKKH EQVKEMEKKH EQVKEMEKKH
lycop pimpi chees habro corne neori arcan huayl chile penne peruv	101 GFVSAQKQRI GFVSAQKQRI GFVSAQKQRI GFVSAQKQRI GFVSAQKQRI GFVSAQKQRI GFVSAQKQRI GFVSAQKQRI GFVSAQKQRI GFVSAQKQRI	LSLHTTHTPS LSLHTTHTPS LSLHTTHTPS LSLHTTHTPS LSLDTTHTPS LSLDTTHTPS LSLHTTHTPS LSLHTTHTPS LSLHTTHTPS	FLGLQQNMGV FLGLQQNMGV FLGLQQNMGV FLGLQQNMGV FLGLQQNMGV FLGLQQNMGV FLGLQQNMGV FLGLQQNMGV FLGLQQNMGV	WKDSNYGKGV WKDSNYGKGV WKDSNYGKGV WKDSNYGKGV WKDSNYGKGV WKDSNYGKGV WKDSNYGKGV WKDSNYGKGV WKDSNYGKGV	IIGVIDTGII IIGVIDTGII IIGVIDTGII IIGVIDTGII IIGVIDTGII IIGVIDTGII IIGVIDTGII IIGVIDTGII IIGVIDTGII IIGVIDTGII	PDHPSFSDVG PDHPSFSDVG PDHPSFSDVG PDHPSFSDVG PDHPSFSDVG PDHPSFSDVG PDHPSFSDVG PDHPSFSDVG PDHPSFSDVG PDHPSFSDVG	MPPPPAKWKG MPPPPAKWKG MPPPPAKWKG MPPPPAKWKG MPPPPAKWKG MPPPPAKWKG MPPPPAKWKG MPPPPAKWKG MPPPPAKWKG	VCESNFTNKC VCESNFTNKC VCESNFTNKC VCESNFTNKC VCESNFTNKC VCESNFTNKC VCESNFTNKC VCESNFTNKC VCESNFTNKC	NNKLIGARSY NNKLIGARSY NNKLIGARSY NNKLIGARSY NNKLIGARSY NNKLIGARSY NNKLIGARSY NNKLIGARSY	200 QLGNGSPIDS QLGNGSPIDS QLGNGSPIDS QLGNGSPIDS QLGNGSPIDS QLGNGSPIDS QLGNGSPIDS QLGNGSPIDS QLGNGSPIDS QLGNGSPIDS
lycop pimpi chees habro corne neori arcan huayl chile penne peruv	201 IGHGTHTAST IGHGTHTAST NGHGTHTAST NGHGTHTAST NGHGTHTAST NGHGTHTAST NGHGTHTAST NGHGTHTAST NGHGTHTAST	AAGAFVKGAN AAGAFVKGAN AAGAFVKGAN AAGAFVKGAN AAGAFVKGAN AAGAFVKGAN AAGAFVKGAN AAGAFVKGAN AAGAFVKGAN	VYGNADGTAV VYGNADGTAV VYGNADGTAV VYGNADGTAV VYGNADGTAV VYGNADGTAV VYGNANGTAV VYGNADGTAV VYGNADGTAV VYGNADGTAV	GVAPLAHIAI GVAPLAHIAI GVAPLAHIAI GVAPLAHIAI GVAPLAHIAI GVAPLAHIAI GVAPLAHIAI GVAPLAHIAI GVAPLAHIAI GVAPLAHIAI	YKVCNSVGCS YKVCNSVGCS YKVCNSVGCS YKVCNSVGCS YKVCNSVGCS YKVCNSVGCS YKVCNSVGCS YKVCNSVGCS YKVCNSVGCS YKVCNSVGCS	ESDVLAAMDS ESDVLAAMDS ESDVLAAMDS ESDVLAAMDS ESDVLAAMDS ESDVLAAMDS ESDVLAAMDS ESDVLAAMDS ESDVLAAMDS	AIDDGVDILS AIDDGVDILS AIDDGVDILS AIDDGVDILS AIDDGVDILS AIDDGVDILS AIDDGVDILS AIDDGVDILS AIDDGVDILS	MSLSGGPIPF MSLGGGPIPF MSLGGGPIPF MSLGGGPIPF MSLGGGPIPF MSLGGGPIPF MSLGGGPIPF MSLGGGPIPF MSLGGGPIPF	HRDNIAIGAY HRDNIAIGAY HRDNIAIGAY HRDNIAIGAY HRDNIAIGAY HRDNIAIGAY HRDNIAIGAY HRDNIAIGAY HRDNIAIGAY HRDNIAIGAY	300 SATERGILVS SATERGILVS SATERGILVS SATERGILVS SATERGILVS SATERGILVS SATERGILVS SATERGILVS
lycop pimpi chees habro corne neori arcan huayl chile penne peruv	301 CSAGNSGPSF CSAGNSGPSF CSAGNSGPSF CSAGNSGPSF CSAGNSGPSF CSAGNSGPSF CSAGNSGPSL CSAGNSGPSL CSAGNSGPSL	ITAVNTAPWI ITAVNTAPWI ITAVNTAPWI ITAGNTAPWI ITAGNTAPWI ITAGNTAPWI ITAGNTAPWI ITAGNTAPWI ITAGNTAPWI ITAGNTAPWI	LTVGASTLDR LTVGASTLDR LTVGASTLDR LTVGASTLDR LTVGASTLDR LTVGASTLDR LTVGASTLDR LTVGASTLDR LTVGASTLDR LTVGASTLDR	KIKATVKLGN KIKATVKLGN KIKATVKLGN KIKATVKLGN KIKATVKLGN KIKATVKLGN KIKATVKLGN KIKATVKLGN KIKATVKLGN KIKATVKLGN	GEEFEGESAY GEEFEGESAY GEEFEGESAY GEEFEGESAY GEEFEGESAY GEEFEGESAY GEEFEGESAY GEEFEGESAY GEEFEGESAY	RPKISNATFF RPKISNATFF RPKISNSSFF RPKISNSTFF RPKISNSTFF RPKISNSTFF RPKISNSTFF RPKISNSTFF RPKISNSTFF RPKISNSTFF	TLFDAAKNAK TLFDAAKNAK TLYDAAKNAK TLYDAAKNAK TLFDAAKNAK TLFDAAKNAK TLFDAAKNAK TLFDAAKNAK TLFDAAKNAK	DPSETPYCRR DPSETPYCRR DPSETPYCRR EQSKTPYCRP DPSETPYCRR DPSETPYCRR DPSETPYCRR DPSETPYCRP DPSETPYCRP	GSLTDPAIRG GSLTDPAIRG GSLTDPAIRG GSLTDPAIRG GSLTDPAIRG GSLTDPAIRG GSLTDPAIRG GSLTDPAIRG GSLTDPAIRG	400 KIVLCSALGH KIVLCSALGH KIVLCSALGH KIVLCSAFGG KIVLCSAFGG KIVLCSAFGG KIVLCLAFGG KIVLCLAFGG KIVLCLAFGG
lycop pimpi chees habro corne neori arcan huayl chile penne peruv	401 VANVDKGQAV VANVDKGQAV VANVDKGQAV VANVDKGQAV VTNVDKGQAV VTNVDKGQAV VANVDKGQAV VANVDKGQAV VANVDKGQAV	KDAGGVGMII KDAGGVGMII KDAGGVGMII KDAGGVGMIV KDAGGVGMII KDAGGVGMII KDAGGVGMII KDAGGVGMII KDAGGVGMII KDAGGVGMII	INPSQYGVTK INPSQYGVTK INPSQYGVTK INPSQYGVTK INPSQYGVTK INPSQYGVTK INPSQYGVTK INPSQYGVTK INPSQYGVTK	SADAHVLPAL SADAHVLPAL SADAHVLPAL SADAHVLPAL SADAHVLPAL SADAHVLPAL SADAHVLPAL SADAHVLPAL SADAHVLPAL	VVSAADGTKI VVSAADGTKI VVSAADGTKI VVSAADGTKI VVSAADGTKI VVSAADGTKI VVSAADGTKI VVSAADGTKI VVSAADGTKI	LAYMNSTSSP LAYMNSTSSP LAYMNSTSSP LAYMNSTSSP LAYMNSTSSP LAYMNSTSSP LAYMNSTSSP LAYMNSTSSP LAYMNSTSSP LAYMNSTSSP	VATIAFQGTI VATIAFQGTI VATIAFQGTI VATIAFQGTI VATIAFQGTI VATIAFQGTI VATIAFQGTI VATIAFQGTI VATIAFQGTI VATIAFQGTI	IGDKNAPMVA IGDKNAPMVA IGDKNAPMVA IGDKNAPMVA IGDKNAPMVA IGDKNAPMVA IGDKNAPMVA IGDKNAPMVA IGDKNAPMVA	AFSSRGPSRA AFSSRGPSRA AFSSRGPSRA AFSSRGPSRA AFSSRGPSRA AFSSRGPSRA AFSSRGPSRA AFSSRGPSRA AFSSRGPSRA	500 SPGILKPDII SPGILKPDII SPGILKPDII SPGILKPDII SPGILKPDII SPGILKPDII SPGILKPDII SPGILKPDII SPGILKPDII
lycop pimpi chees habro corne neori arcan huayl chile penne peruv	501 GPGANILAAW GPGANILAAW GPGANILAAW GPGANILAAW GPGANILAAW GPGANILAAW GPGANILAAW GPGANILAAW	PTSVDDNKNT PTSVDDNKNT PTSVDDNKNT PTSVDDNKNT PTSVDDNKNT PTSVDDNKNT PTSVDDNKNT PTSVDDNKNT PTSVDDNKNT	KSTFNIISGT KSTFNIISGT KSTFNIISGT KSTFNIMGT KSTFNINGGT KSTFNIISGT KSTFNIISGT	SMSCPHLSGV SMSCPHLSGV SMSCPHLSGV SMSCPHLSGV SMSCPHLSGV SMSCPHLSGV SMSCPHLSGV SMSCPHLSGV SMSCPHLSGV	AALLKCTHPD AALLKCTHPD AALLKCTHPD AALLKCTHPD AALLKCTHPD AALLKCTHPD AALLKCTHPD AALLKCTHPD AALLKCTHPD	WSPAVIKSAM WSPAVIKSAM WSPAIKSAM WSPAIKSAM WSPAVIKSAM WSPAVIKSAM WSPAVIKSAM WSPAAIKSAM	MTTADTINLA MTTADTINLA MTTADTINLA MTTADTINLA MTTADTINLA MTTADTINLA MTTADTINLA MTTADTINLA MTTADTINLA	NSPILDERLL NSPILDERLL NSPILDERLL NSPILDERLL NSPILDERLL NSPILDERLL NSPILDERLL NNPILDERLL NSPILDERLL	PADIYAIGAG PADIYAIGAG PADIYAIGAG PADIYAIGAG PADIYAIGAG PADIYAIGAG PADIYAIGAG PADIYAIGAG PADIYAIGAG PADIYAIGAG	600 HVNPSRANDP HVNPSRANDP HVNPSRANDP HVNPSRANDP HVNPSRANDP HVNPSRANDP HVNPSRANDP HVNPSRANDP HVNPSRANDP HVNPSRANDP
lycop pimpi chees habro corne neori arcan huayl chile penne peruv	601 GLVYDTPFED GLVYDTPFED GLVYDTPFED GLVYDTPFED GLVYDTPFED GLVYDTPFED GLVYDTPFED GLVYDTPFED GLVYDTPFED	YVPYLCGLKY YVPYLCGLKY YVPYLCGLKY YVPYLCGLNY YVPYLCGLNY YVPYLCGLKY YVPYLCGLKY YVPYLCGLKY YVPYLCGLKY	TDQQVGNLIQ TDQQVGNLIQ TDQQVGNLIQ TDQQVGNLIQ TDQQVGNLIQ TNRQVGNLIQ TDQQVGNLIQ TDQQVGNLIQ TDQQVGNLIQ	RRVNCSEVKS RRVNCSEVKS RRVNCSEVKS RRVNCSEVKS RRVNCSEVKS RRVNCSEVKS RRVNCSEVKS RRVNCSEVKS RRVNCSEVKS	ILEAQLNYPS ILEAQLNYPS ILEAQLNYPS ILEAQLNYPS ILEAQLNYPS ILEAQLNYPS ILEAQLNYPS ILEAQLNYPS ILEAQLNYPS	FSIFGLGSTP FSIFGLGSTP FSIFGLGSTP FSIFGLGSTP FSIFGLGSTP FSIFGLGSTP FSIFGLGSTP FSIFGLGSTP	QTYTRTVTNV QTYTRTVTNV QTYTRTVTNV QTYTRTVTNV QTYTRTVTNV QTYTRTVTNV QTYTRTVTNV QTYTRTVTNV QTYTRTVTNV QTYTRTVTNV	GDATSSYKVE GDATSSYKVE GDATSSYKVE GDATSSYKVE GDATSSYKVE GDATSSYKVE GDATSSYKVE GDATSSYKVE GDATSSYKVE GDATSSYKVE	VASPEGVAIE VASPEGVAIE VASPEGVAIE VASPEGVAIE VASPEGVAVE VASPEGVAVE VASPEGVAVE VASPEDVVVE VASPEDVVVE VASPEGVAIE	700 VEPSELNFSE VEPSELNFSE VEPSELNFSE VEPAELNFSE VEPAELNFSE VEPAELNFSE VEPAELNFSE VEPAELNFSE VEPSELNFSE
lycop pimpi chees habro corne neori arcan huayl chile penne peruv	701 LNQKLTYQVT LNQKLTYQVT LKQKLTYQVT LKQKLTYQVT LKQKLTYQVT LKQKLTYQVT LKQKLTYQVT LKQKLTYQVT LKQKLTYQVT	FSKTTNSSNP FSKTTNSSNP FSKTSSSSNI FSKSSSSSNI FSKSSSSSNI FSKSSSSSNI FSKTSSSSNI FSKTSSSSNI	EVIEGFLKWT EVIEGFLKWT EVVEGFLKWT EVVEGFLKWT EVVEGFLKWT EVVEGFLKWT EVVEGFLKWT EVVEGFLKWT	SNRHSVRSPI SNRHSVRSPI SNRHSVRSPI SNRHSVRSPI SRHSVRSPI SSRHSVRSPI SNRHSVRSPI SNRHSVRSPI SNRHSVRSPI	745 AVVSA AVVSA AVVSA AVVFA AVVFA AVVFA AVVFA AVVFA AVVFA AVVFA AVVFA					

Supplementary Figure 3 Amino acid alignment of P69B orthologs from wild tomato species. P69B orthologs were extracted from genomes from wild tomato species and aligned. Residues that are different from P69B of cultivated tomato are highlighted in light grey, dark grey or red for n = 2, 3 and 4 variant residues, respectively. Note that only position 400 has 4 different residues.

Supplementary Figure 4 Two candidate inhibitors interact with positively selected sites in Class-I chitinases.

Positively selected sites reported previously (Bishop et al., 2000) were plotted onto the AFM-predicted models of tomato Class-I chitinase in complex with inhibitors from *Ralstonia solanacearum* (**a**) and *Fusarium oxysporum f. sp. lycopersici* (**b**).

Supplementary Figure 5 Expression and variation of the ten P69 paralogs of tomato. **a** Genomic P69 cluster contains ten paralogs. Sequence was extracted from the genome of cv. Heinz (Tomato Genome Consortium, 2012). **b** Expression levels in reads per kilobase per million (RPKM) of *P69* genes in three different cultivars infected with *Ps* (cv. Ailsa Graig, Rosli et al., 2013); *Pi* (cv. Heinz, Hwang et al., 2020) and *Cf* (cv. Money Maker, Ilyas et al., 2016). **c** Protein sequences of the ten P69 paralogs of tomato (P60A-I) were aligned and the number of variant residues at each position was plotted on the model of the P69B structure. The variation (purple) is surrounding the active site (red) in the substrate binding groove (dashed line) as a 'ring-of-fire'.

AFM model	Structure	Comparison of monomers	RMSD (Å)	TM
Pip1-EpiC2B	3IMA	Pip1 - Papain	0.94	0.9517
(compatible)		EpiC2B - Tarocystatin	2.37	0.7827
		Interface*	0.85	0.89
P69B-Epi1a	1YU6	P69B - Subtilisin	1.74	0.9217
(compatible)		Epila - OMTKY3	1.44	0.5541
		Interface*	1.12	0.83
Pip1-Epi1a	3IMA	Pip1 - Papain	0.96	0.9509
(incompatible)	1YU6	Epila - OMTKY3	1.72	0.5252
P69B-EpiC2B	1YU6	P69B - Subtilisin	1.77	0.9220
(incompatible)	3IMA	EpiC2B - Tarocystatin	2.47	0.7687

Supplementary Table 1 RMSD and TM scores for control complexes.

*, Calculated from the PDB files by identifying residues that have differential solvent exposure when the complex partner is omitted.

DALI was used to identify experimentally-resolved structures with similarity to AFM-predicted control complexes: tarocystatin-papain (3IMA) for Pip1-EpiC2B and subtilisin-OMTKY3 (1YU6) for P69B-Epi1a. TMalign was used to calculate TM and RMSD values for the monomers in the AFM model compared to the resolved structures. The interface was determined by selecting the residues that show different solvent exposure when the complex partner is omitted. Scores that are above the set threshold are printed in green bold and below the threshold in red.

SRA run ID	Pathogen	Tomato cultivar	Tissue/time
SRR5467166	Rs GMI1000 WT	'Bonny Best'	Petiole/3dpi
SRR5467167	Rs GMI1000 WT	'Bonny Best'	Petiole/3dpi
SRR5467168	Rs GMI1000 WT	'Bonny Best'	Petiole/3dpi
SRR6924534	<i>Bc</i> B05.10 WT	'Marmande'	Leaf/1dpi
SRR6924535	<i>Bc</i> B05.10 WT	'Marmande'	Leaf/1dpi
SRR6924536	<i>Bc</i> B05.10 WT	'Marmande'	Leaf/1dpi
SRR6050413	<i>Fol</i> 4287 WT	'Moneymaker' (S)	Root/1dpi
SRR6050414	<i>Fol</i> 4287 WT	'Motelle' (R)	Root/1dpi
SRR1171035	Cf race-0WU	'Heinz Cf-0' (S)	Leaf/4dpi
SRR1171040	Cf race-0WU	'Heinz Cf-0' (S)	Leaf/8dpi
SRR1171043	Cf race-0WU	'Heinz Cf-0' (S)	Leaf/12dpi
SRR1171047	<i>Cf</i> IPO1979	'Moneymaker'	Leaf/6dpi

Supplementary Table 2 Analysed RNAseq samples

Clados	sporium fulvum	Day-6, susce	ptible tomato	Day-6, resistant tomato		
		(n=3) M	ean±SD	(n=3) N	lean±SD	
name	Accession	Mock	Cf	Mock	Cf	
P69B	Solyc08g079870.3.1	352 ± 371	1111 ± 283	221 ± 56	2628 ± 117	
Pip1	Solyc02g077040.4.1	223 ± 263	661±304	118 ± 34	1358 ± 166	
A1P	Solyc08g067100.2.1	78 ± 8	88 ± 4	72 ± 9	116 ± 10	
C-I	Solyc09g098540.3.1	234 ± 14	195 ± 7	224 ± 12	168 ± 13	
C-III	Solyc05g050130.4.1	90 ± 103	232 ± 65	44 ± 18	377 ± 35	
C-V	Solyc07g005090.4.1	28 ± 9	51 ± 9	24 ± 7	61 ± 6	
Fusari	um oxysporum	Day 1, susce	ptible tomato	Day 1, resis	stant tomato	
		(n=	=1)	(n:	=1)	
name	Accession	Mock	Fo	Mock	Fo	
P69B	Solyc08g079870.1.1	3.69	17.09	1.49	5.00	
Pip1	Solyc02g077040.2.1	2.14	6.49	3.21	3.62	
A1P	Solyc08g067100.2.1	290.53	339.77	285.60	347.14	
C-I	Solyc09g098540.2.1	446.14	316.62	363.06	311.31	
C-III	Solyc05g050130.2.1	61.33	141.36	60.73	89.85	
C-V	Solyc07g005090.2.1	172.49	210.57	168.12	172.49	
Phytophthora infestans		Days 1/2/3, susceptible tomato, Pi (n=4) Mea			n±SD	
name	Accession	Mock	1dpi <i>Pi</i>	2dpi <i>Pi</i>	3dpi <i>Pi</i>	
P69B	Solyc08g079870.1.1	37 ± 1	107 ± 3	48 ± 2	46 ± 1	
Pip1	Solyc02g077040.2.1	39 ± 1	24 ± 1	19 ± 1	16 ± 1	
A1P	Solyc08g067100.2.1	48 ± 1	60 ± 1	40 ± 1	28 ± 1	
C-I	Solyc09g098540.2.1	140 ± 3	158 ± 5	76 ± 1	41 ± 1	
C-III	Solyc05g050130.2.1	13 ± 1	131 ± 5	92 ± 2	43 ± 2	
C-V	Solyc07g005090.2.1	10 ± 1	28 ± 1	32 ± 1	59 ± 1	
Botryti	s cinerea	Day 1, suscept	tible tomato, WT	<i>Bc</i> (n=3)		
name	Accession	Rep1	Rep2	Rep3	Mean±SD	
P69B	Solyc08g079870.1.1	5.77	2.74	10.18	6 ± 4	
A1P	Solyc08g067100.2.1	19.80	11.35	20.89	17 ± 5	
C-I	Solyc09g098540.2.1	10.95	4.75	17.27	11 ± 6	
C-III	Solyc05g050130.2.1	0	0	0	0	
C-V	Solyc07g005090.2.1	265.26	286.11	451.3	334 ± 102	
Ralsto	nia solanacearum	Day-3, suscep	tible tomato, Rs	(n=3)		
name	Accession	Rep1	Rep2	Rep3	Mean±SD	
P69B	Solyc08g079870.1.1	503.40	954.43	734.40	731±226	
A1P	Solyc08g067100.2.1	97.34	101.76	89.39	96±6	
C-I	Solyc09g098540.2.1	905.04	867.27	871.69	881±21	
C-III	Solyc05g050130.2.1	661.37	1111.08	865.27	879±225	
C-V	Solyc07g005090.2.1	54.25	56.65	45.60	52±6	

Supplementary Table 3 Transcript levels of six tomato genes in (non)infected plants

FPKM values of tomato genes, extracted from Ilyas et al., 2016 (*Cf*); Zhao et al., 2018 (*Fo*); Huang et al., 2020 (*Pi*); Müller et al., 2018 (*Bc*); Khokhani et al., 2017 (*Rs*).

Cf 4dpi SRR11710		1035	6dpi SRR1171047		8dpi SRR1171040	12d SRF	pi R1171043	Mean(±SD)
KAH3648627	212.485		436.287		578.257	691.	479.55 ± 2		6.34
(<i>Cf</i> Ecp36)									
Fo		Mone	yMaker (S)	N	lotelle (R)		Mean(±S	D)	
		SRR	6050413	S	RR6050414				
XP018243121 (1	FoTIL)	180		40	61		340.50 ± 198.70		
APP91304 (FoS	ix15)	270.03	034		144.81		207.42 ± 88.55		
XP018236493		204.90	204.966		227.051		216.01 ± 15.62		
XP018248187		5.3970	39765		5.71688		5.56 ± 0.23		
XP018241286		1.798	16		5.8976		3.85 ± 2.90	C	
Rs	SRR54	67166	SRR546716	67	SRR5467168	Me	ean(±SD)		
WP011000405	0		6.374		13.972	6.7	$'8 \pm 6.99$		
WP011001815 528.431			656.721		612.85	59	9.33 ± 65.20)	
WP011002292 2.7102			2.8454		3.11861	2.89 ± 0.21			
Bc SRR69245		24534	SRR692453	35	SRR6924536	Me	ean(±SD)		
XP001545484	2.47535		2.34842		2.50272	2.4	4 ± 0.82		
XP001560184	71.8476		79.0248		27.7998	59	59.56 ± 27.7		

Supplementary Table 4 RNA-seq values of SSPs in infected plants*

*, all values are in transcripts per million (TPM) <u>reads of the pathogen</u> during infection of tomato. Infection of Rs and Bc was at 72 and 24 hpi, respectively.

Hydrolase	SSP	PDB	Protein(s) in PDB	RMSD (Å)	ТМ
P69B	WP046932418- <i>Xp</i> Ssp	1YU6	Subtilisin-OMTKY3	1.7	0.92
P69B	KAH3648627-CfEcp36	1YU6	Subtilisin-OMTKY3	1.7	0.92
P69B	XP018243121-FoTIL	1YU6	Subtilisin-OMTKY3	1.7	0.92
P69B	APP91304-FoSix15	1YU6	Subtilisin-OMTKY3	1.7	0.92
P69B	XP001545484	1YU6	Subtilisin-OMTKY3	1.7	0.92
P69B	WP011000405	1YU6	Subtilisin-OMTKY3	1.8	0.92
P69B	WP008576433	1YU6	Subtilisin-OMTKY3	1.8	0.92
C-I	WP011001815	3IWR	Rice class-I chitinase	1.4	0.95
C-I	XP018236493	3IWR	Rice class-I chitinase	1.4	0.92
C-III	WP046931881	4TOQ	Class-III chitinase	0.75	0.97
C-III	XP001560184	4TOQ	Class-III chitinase	0.76	0.97
C-III	XP018248187	4TOQ	Class-III chitinase	0.79	0.97
C-III	XP018241286	4TOQ	Class-III chitinase	0.86	0.97
C-V	WP008572913	3ALG	Class-V chitinase	1.4	0.94
A1P	WP011002292	4ZL4	Plasmepsin	3.0	0.73

Supplementary Table 5 RMSD and TM scores for the hydrolases in 15 SPP-hydrolase complexes

DALI was used to identify the experimentally resolved structure that is closest to that of the hydrolase in the SPP-hydrolase complex and the RMSD and TM scores were calculated for each comparison with TMalign. Scores that are above the set threshold are printed in green bold and below the threshold in red.

$\label{eq:supplementary} \textbf{Supplementary Table 6} \ \textbf{RMSD} \ \textbf{and TM} \ \textbf{scores for the SSPs in 15 SPP-hydrolase}$

comple	xes
--------	-----

SSP	PDB	RMSD (Å)	TM
WP046932418- <i>Xp</i> Ssp	Х	Х	Х
KAH3648627-CfEcp36	6NK9	1.9	0.63
XP018243121-FoTIL	Х	Х	Х
APP91304-FoSix15	Х	Х	Х
XP001545484	1WPX	2.6	0.68
WP011000405	Х	Х	Х
WP008576433	Х	Х	Х
WP011001815	5UC0	4.7	0.53
XP018236493	4I1B	3.6	0.62
WP046931881	4MIS	2.2	0.70
XP001560184	3TC2	3.7	0.61
XP018248187	5FJQ	2.7	0.46
XP018241286	40WL	3.0	0.70
WP008572913	1Y34	2.8	0.66
WP011002292	2HOD	3.0	0.61

DALI was used to identify the resolved structure that is closest to that of the SSP in the SPPhydrolase complex and the RMSD and TM scores were calculated for each comparison with TMalign. Scores that are above the set threshold are printed in green bold and below the threshold in red. No good structures were identified for several complexes (x).

Supplementary Table 7 Synthesised nucleotide sequences

royb rragment-1
GAAGACATAATGGGATTTGTTCTCTTTTCACAATTGCCTTCATTTCTTGTCTCTACACTTCTTCTTATTCCT
AGTAATATCCCACTCTTGCCGTGCAGGAGGTAATTTAGAGACTTACATCGTCCACGTGGAGAGTCCAGAAT
CTTTGGTCACCACTCAATCACTCTTGACAGATTTGGGTAGTTACTATCTTTCCTTTCTGCCCAAAACGGCTAC
TACGATCTCCTCAAGTGGCAACGAGGAAGCCGCGACAATGATTTACTCATATCATAACGTAATGACTGGTT
TCGCAGCTAGATTAACTGCTGAGCAGGTCAAAGAAATGGAAAAGAAACATGGATTTGTGTCCGCACAGAA
GCAAAGAATCTTGAGCCTACATACTACACACACACTCCTAGTTTCCTTGGTTTACAGCAAAATATGGGCGTTTG
GAAGGACTCAAATTATGGTAAGGGAGTGATCATTGGTGTAATTGATACAGGTATCATTCCCGACCATCCCA
GCTTTAGTGATGTTGGCATGCCCCCCGCCACCTGCAAAATGGAAAGGTGTTTGCGAGTCTAATTTTACTAATA
AGTGTAATAACAAGCTTATAGGTGCCCGATCTTACCAACTAGGTAATGGTTCCCCAATTGATTCTATAGGGC
GAGICAGACGIACHIGCAGCAGCAGGACIACGACGACGACGAGGGGGGGGGAGACGACGACGACGACGA
GAATCAGCATATCGTCCTAAGATAAGCAATGCTACATTCTTTACACTCTTTGATGCGGCAAAAGAACGCTAA
AGACCCTAGCGAAACCCCCTATTGTCGCAGGGGAAGTCTAACAGACCCTGCTATCAGGGGTAAAATAGTTC
TCTGCAGTGCTCTGGGACATGTTGCAAAACGTTGATAAAGGACAGGCGGTAAAAGGACGCTGGTGGAGTTGGA
ATGATAATCATAAATCCAAGTCAGTATGGAGTAACCAAGTCTGCTGATGCTCATGTGTTGCCTGCTCTCGTA
GTGAGCGCCGCTGATGGTATGTCTTC
P69B Fragment-2
GAAGACATTGGTACTAAGATATTGGCATATATGAACTCTACTAGCTCTCCAGTAGCCACAATTGCATTTCAG
GGAACGATCATTGGTGACAAGAACGCACCGATGGTTGCGGCATTTAGTTCCCGAGGCCCTTCACGTGCATC
CCCTGGTATCCTCAAGCCTGATATCATTGGACCTGGCGCAAACATACTTGCCGCATGGCCTACTTCAGTGGA
TGACAATAAGAACACAAAGTCTACTTTTAATATAATTAGTGGTACAAGCATGTCCTGTCCCCACCTGTCTGG
AGTAGCTGCACTGCTTAAATGTACGCATCCAGATTGGTCACCAGCTGTTATAAAGAGCGCTATGATGACGA
CCGCTGACACCTTGAACCTCGCAAACTCTCCTATTCTTGACGAGCGTTTGCTTCCAGCTGACATCTATGCAA
TAGGCGCCGGACATGTGAATCCGAGTAGGGCTAATGACCCAGGGTTGGTGTACGATACTCCTTTCGAAGAT
TACGTCCCATATCTCTGTGGACTTAAATATACGGATCAACAGGTTGGTAATTTAATTCAAAGACGTGTAAAC
TGTTCCGAAGTTAAGAGCATCTTGGAAGCTCAACTGAATTATCCCAGTTTTTCTATTTTTGGACTAGGAAGT
ACTCCTCAGACTTATACAAGAACTGTGACTAATGTCGGAGATGCAACATCTTCCTACAAAGTTGAGGTTGC
CAGCCCTGAAGGGGTCGCAATCGAAGTTGAACCTAGCGAGCTTAACTTTTCCCGAGCTAAATCAGAAACTTA
CGTACCAAGTAACATTTTCAAAGACAACTAACTCTAGTAATCCAGAAGTAATCGAGGGGTTTTCTTAAATGG
CGATA & AGGCTATA ACGGTCTCGCTGA AGTCGGTA AGA AATTCGAGA AAGATACCGGGA ATTA AAGTCACC
GTTGAGCATCCGGATA A ACTGGA AGAGA A ATTCCCAC AGGTTGCGGC A ACTGGCGATGGCCCTGACATTAT
CTTCTGGGCACACGCCGCTTTGGTGGCTACGCTCAATCTGGCCTGTGGCTGAAATCACCCCGGACAAAG
CGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGTTACAACGGCAAGCTGATTGCTTACCCGA
TCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGATCTGCTGCCGAACCCGCCAAAAACCTGGGAAGAG
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGT
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGT ACTTCACCTGGCCGCTGATTGCTGCTGCCGGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATT
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGT ACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATT AAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAA
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCGC
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGT ACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATT AAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAA ACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACC ATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGAC
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCGC
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGT ACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATT AAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAA ACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACC ATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGAC CTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCGGCAGTCCGAACA AAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGACTGA
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGT ACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATT AAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAA ACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACC ATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGCACGACACA CTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACA AAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGACTGA
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGT ACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATT AAAGACGTGGGCGTGGATAACGCTGGCGGCGAAAGCGGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAA ACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACC ATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGAC CTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACA AAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGACTGA
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGT ACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATT AAAGACGTGGGCGTGGATAACGCTGGCGGCGAAAGCGGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAA ACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACC ATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGAC CTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGGCGCAGGTATTAACGCCGCCAGTCCGAACA AAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGACGGAGGGCAGGTATTAACGCCGCCAGTCCGAACA CAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGAAAGAGCCGCAGTTATGCCGCCA CTATGGAAAACGCCCAGAAAGGTGAAATCATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTG CGTACTGCGGTGATCAACGCCGCCAGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGAACGCCCAGACTA
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGT ACTTCACCTGGCCGCTGATTGCTGCTGCTGACGGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATT AAAGACGTGGGCGTGGATAACGCTGGCGGCGAAAGCGGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAA ACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACC ATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGAC CTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACA AAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGACTGA
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGT ACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATT AAAGACGTGGGCGTGGATAACGCTGGCGGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAA ACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACC ATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGAC CTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACA AAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGACTGA
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGT ACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATT AAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAA ACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACC ATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGAC CTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACA AAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGACTGA
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGT ACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATT AAAGACGTGGGCGTGGATAACGCTGGCGGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAA ACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACC ATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGAC CTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACA AAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGACTGA
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGT ACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATT AAAGACGTGGGCGTGGATAACGCTGGCGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAA ACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACC ATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGAC CTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACA AAGAGCTGGCAAAAAGAGTTCCTCGAAAACTATCTGCTGACTGA
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCGC
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCGC
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGT ACTTCACCTGGCCGCTGATTGCTGCTGCTGACGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATT AAAGACGTGGGCGTGGATAACGCTGGCGCGCGAAAGCGGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAA ACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACC ATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGCACGGCAGC CTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACA AAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGACTGA
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCGC
ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGT ACTTCACCTGGCCGCTGATTGCTGCTGCGGCGGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATT AAAGACGTGGGCGTGGATAACGCTGGCGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAA ACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACC ATCAACGGCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGCGAGCATGGCCGA CTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGGGCGTGAGCGCAGGTATTAACGCCGCCGACC AAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGACGAGAGGTATAACGCCGCAGTCCGAACA AAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGGAGGAGGGTTGGAAGGCGTTAATAAGA CAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAACATCCCGCAGGTGCGGAAGATCCACGTTATTAGCGCGC CTTATGGAAAACGCCCAGAAAGGTGAAATCATGCGGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTG CGTACTGCGGTGATCAACGCCGCCAGCGGTCGTCAGACTGTCGATGAAGGCCTGAAAGACCGCCAGACTA ATTCGAGCTCGAACAACAACAACAATAACAATAACAATAACAACAACCTCGGGATCGAGGAAAACCTGTATTTCCAG GGCGAATTCGGATCCTCTAGAGTCGACCTGCAGGCAAGCTT <i>XpSsp1-WP046932418.1-P3</i> GCTCCACCTACAGATACGGCAACTCCCCCCCCAGCGACGGGTTCCACCCGTGGTCCGGCGGCGGCGGCAGGCG GGTCGTGGTGACCACCACGTGCCGTACCGACGCGACCGAC

FoTIL-XP_018243121.1-P8

GCTCCCAAGTGTAAAGCAGGAGAACAATTTTTCGAGTGCGGCACCGCTTGCCCGTTGACGTGCGACAAACC GGAACCGCGTCCGTGTACCAAACAATGTGTTCCGGGTTGCTTTTGCAAGGAGGTGCGCATTCTGCGTCAAA GCCAGCAGGTTCTGTCGCCGCTCAAGGCGCTGTTGCTGCCGGTGAGCATCCACAACCGCCCAATCTCTGGT ATTTCCCATAGCCGTCACCTGTAG

FoSix15-APP91304.1-P9

ACAATATATTGTAGGGATGTATCACCACCCCGCGATACCCGTAGCTGGTGTAAAACGAACACCCCGGCGTG GCAAGGTTGCCAGCGTTTTTGCAGCGAGCACTGCCGCCCCACCCCGCGTGACTACCCGGACGGCTGCATGT ATCATCTGCAGGTTGGCGGTGATTACGACTGTTTCTGCAAGTAG

XP001545484.1-P6

AG

WP_011000405.1-P7

WP008576433.1-P4

CTGTATTTTCAGGGCGAATTCGGTTGTAATACAGTAGCTGGAGCAGGGAAAGACATGCAGGGTGCGGGTGATAAAGTTGAGAAGACCGCTGAAAAGTGCAGCGACGGCAAATGTTAGGAATTCGGATCCTCTAGAGTC

Plasmid	Description	Reference
pJK187	Binary vector (pL0V2-2x35S::SC)	This work
pET-32/28	Bacterial expression vector	Novinec et al., 2012
P19	Binary vector carrying p19 silencing inhibitor	Van der Hoorn et al., 2003
pFH20	Binary vector for P69B-His expression	This work
pHJ000	Bacterial expression vector pET-32/28-His-MBP-TEV	This work
pHJ028	Bacterial expression P3(WP046932418.1, <i>Xp</i> Ssp1)	This work
pHJ033	Bacterial expression P5(KAH3648627.1, CfEcp36)	This work
pHJ029	Bacterial expression P6(XP001545484.1,)	This work
pHJ032	Bacterial expression P7(WP011000405.1)	This work
pHJ030	Bacterial expression P8(XP_018243121.1, FoTIL)	This work
pHJ031	Bacterial expression P9(APP91304.1, FoSix15)	This work
pHJ043	Bacterial expression P4(WP008576433.1)	This work
pHJ046	Bacterial expression PiEpi1	This work
pHJ047	Bacterial expression <i>Pi</i> EpiC1	This work

Supplementary Table 8 Used plasmids

Supplementary	y Table 9 F	rimer sequences
---------------	--------------------	-----------------

Primer	Use	Nucleotide sequence (5'-3')
His-MBP-F	Cloning	AAGAAGGAGATATACCATGGGCAGCAGCCATCATCATCAT
		CATCATATG
His-MBP-R	Cloning	TGGTGGTGGTGGTGCTCGAGAAGCTTGCCTGCAG
Epi1-F	Cloning	CTGTATTTTCAGGGCGAATTCCAAAGCCCGCAAGTCATCAG
Epi1-R	Cloning	GACTCTAGAGGATCCGAATTCTTATCCCTCCTGCGGTGTC
EpiC1-F	Cloning	CTGTATTTTCAGGGCGAATTCCAAGTGGACGGCGGATACTC
EpiC1-R	Cloning	GACTCTAGAGGATCCGAATTCCTACTTAACTGGGGTAATCG
P3-F	Cloning	CTGTATTTTCAGGGCGAATTCGCTCCACCTACAGATACGG
P3-R	Cloning	GACTCTAGAGGATCCGAATTCCTAGTGAACGGTTTCCGTCGG
P4-F	Cloning	CTGTATTTTCAGGGCGAATTC
P4-R	Cloning	GACTCTAGAGGATCCGAATTC
P5-F	Cloning	CTGTATTTTCAGGGCGAATTCAAAAGGGGGGTCAGGTGGAGA
P5-R	Cloning	GACTCTAGAGGATCCGAATTCCTAGCAGCTGCAACCCGCAA
P6-F	Cloning	CTGTATTTTCAGGGCGAATTCTTCACACCACCCGGATTTGA
P6-R	Cloning	GACTCTAGAGGATCCGAATTCCTAGGTGCTGCTGCCGGTGG
P7-F	Cloning	CTGTATTTTCAGGGCGAATTCGCTGATGATGTTCCCGTAGC
P7-R	Cloning	GACTCTAGAGGATCCGAATTCCTACGGGCGGAACTGCACGT
P8-F	Cloning	CTGTATTTTCAGGGCGAATTCGCTCCCAAGTGTAAAGCAGG
P8-R	Cloning	GACTCTAGAGGATCCGAATTCCTACAGGTGACGGCTATGGG
P9-F	Cloning	CTGTATTTTCAGGGCGAATTCACAATATATTGTAGGGATGT
P9-R	Cloning	GACTCTAGAGGATCCGAATTCCTACTTGCAGAAACAGTCGT
PJK187-F	Sequencing	CTATCCTTCGCAAGACCCTTC
PJK187-R	Sequencing	CTCAACACATGAGCGAAACC
pet32a-F	Sequencing	TAATACGACTCACTATAGGG
pet32a-R	Sequencing	GCTAGTTATTGCTCAGCGG