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Supplementary Figure 1. An Integrative Systems Biology Approach Functionally Characterizes Pan-
Influenza A Virus (IAV)-Human Protein Interactions and Signaling Networks. An integrative systems
biology approach studying three IAV strains that impact human health, including 2009 swine flu pandemic
strain pH1N1, seasonal-circulating strain H3N2 and pandemic-potential strain HS5N1, in three human cell types
relevant for IAV infection and in an influenza patient cohort. Using global approaches, we mapped IAV-human
protein-protein interactions (PPIs) by affinity purification-mass spectrometry (AP-MS) and generated an IAV-
human interactome. By global proteomic profiling, we quantified changes in global protein abundance and
phosphorylation and identified kinases with IAV-modulated changes in activity. From a cohort of patients with
benign or severe influenza disease, whole exome sequencing revealed genes with pLOF variants associated
with severe influenza disease. Host factors identified in the systems approaches were functionally interrogated
to identify pan-viral host targets. siRNA knockdown of human proteins from PPl and PH approaches revealed
pro-viral and antiviral factors of IAV infection. Compounds targeting PPI and PH factors were screened against
pH1N1, H3N2 and H5N1 IAV infection, as well as SARS-CoV-2 infection, which identified compounds with
antiviral activity across influenza and coronavirus families. Bioinformatic analyses identified host factors at the
convergence of proteomic and patient datasets. Functional IAV host factors identified in this study represent
putative targets for future potential pan-viral HDT.
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Supplementary Figure 2. Summary of IAV AP-MS Data. A. Schematic of the 13 IAV proteins with N-



terminal, internal or C-terminal 2X-Strep tag (left) and their known biological functions (right), drawn to scale
and grouped by genomic RNA segment to show protein products from each segment. IAV proteins include:
virus surface proteins (HA, NA) and membrane-embedded ion channel (M2) involved in virus fusion and entry
(HA, M2) and virus budding and release (M2, NA); an RNA-binding protein involved in viral genome trafficking
(NP); proteins involved in viral genome transcription and replication (trimeric RNA-dependent RNA polymerase
subunits PA, PB1 and PB2); proteins that facilitate viral RNA export from the nucleus (NEP, M1) and
encapsidation of viral RNA during virus assembly (M1); proteins that modulate host immune response, host
shutoff, virus pathogenicity and virulence (NS1, PA-X, PB1-F2); and a protein needed for efficient replication
but whose cellular function is not well-characterized (N40)"23, B. AP-MS samples successfully collected and
analyzed across the 13 IAV proteins from three AV strains in three cell types (marked as X). pH1N1 does not
express PB1-F2*, therefore no samples were generated. GFP and empty vector (EV) control samples were
also collected in each cell type. Number of replicates for each 2X-Strep-tagged IAV and control protein in each
cell type are listed. C. Heatmap comparing percent amino acid sequence similarity across the total 38 IAV
proteins (12 from pH1N1 which excludes PB1-F2, 13 from H3N2 and 13 from H5N1). D. Heatmap comparing
PPI similarity expressed as Jaccard index for human proteins interacting with the total 38 IAV proteins. E-F.
Circos plots representing the human interacting proteins shared between IAV proteins of the three strains (E,
purple lines) or biological pathways of the human interacting proteins shared between IAV proteins of the three
strains (F, blue lines). Inner circle depicts the IAV proteins (bars for each IAV protein colored as in (A) and
scaled to the number of interactions). Outer circle depicts the IAV strain (pH1N1 blue, H3N2 green, H5N1
purple; bar scaled to the number of interactions). Circos plots were generated using Metascape®.
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Supplementary Figure 3. IAV Protein Expression. Western blots probing against the 2X-Strep tag to assay
IAV protein expression in three cell types. pH1N1 does not express PB1-F2*, therefore no samples were
generated. Samples that had cell toxicity upon IAV protein expression or no IAV protein expression were not
collected for MS analysis (marked as No Samples). Across the three cell lines, these include: pH1N1 HA 2X-
Strep (A549 cells); HA 2X-Strep from all strains and NA 2X-Strep from all strains (NHBE cells); and PB2 2X-
Strep from all strains, H3N2 PB1 2X-Strep, HA 2X-Strep from all strains, and NA 2X-Strep from all strains
(PMA-differentiated THP-1 cells). GAPDH loading controls were probed on the same blot for each IAV protein
(bottom row, paired with each IAV protein). Cells were untreated or treated with universal type | interferon
(+IFN), however there were few discernible differences in observed PPIs between untreated and treated
samples, therefore replicate sets were combined totaling six replicates (A549 and NHBE) or eight replicates
(THP-1) to increase statistical power (see also Methods). Sets of adjacent gel lanes are outlined by black
boxes and arranged by strain and cell treatment; borders demarcate non-adjacent lanes. Uncropped Western
blot scans are included as Source Data.
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Supplementary Figure 4. PPl Networks Specific to Each Cell Type. PPI networks specific to each cell type.
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76 total high-confidence IAV-human PPls across all strains in PMA-differentiated THP-1 cells are mapped
between eight IAV proteins and 56 human proteins (top, left). 130 total high-confidence IAV-human PPls
across all strains in NHBE cells are mapped between eight IAV proteins and 88 human proteins (top, right).
126 total high-confidence IAV-human PPIs across all strains in A549 cells are mapped between nine |IAV
proteins and 108 human proteins (bottom). IAV protein nodes and human protein nodes are colored as
described in Fig2. Human-human PPIs are identified as curated in CORUM® and labeled as described in Fig2.



Supplementary Figure 5. Validation of ATP6V1A and AHNAK PPIs in H5N1-Infected Cells, and PH and
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AB Dataset Analyses. A and C. Input and immunoprecipitation (IP) protein intensity measured by targeted
MS of (A) ATP6V1A and IAV M2 (Log2FC experimental/lgG from H5N1-infected A549 cells), and (C) AHNAK
and IAV NEP (Log2FC experimental/lgG1 from H5N1-infected NHBE cells). A549 cells or NHBE cells were
mock-infected or H5N1 IAV-infected (MOI 0.5, 24hr) prior to endogenous pulldown. B and D. Percent IAV NP-
positive (NP+) cells quantified from (B) ATP6V1A and IgG pulldowns from A549 cells in (A), or (D) AHNAK and
IgG1 pulldowns from NHBE cells in (C). Flow cytometry data was analyzed using the gating strategy in
Supplementary Figure 6A. E. Immunofluorescence staining against cell nuclei (Hoechst, cyan), AHNAK
(yellow) and IAV NEP (magenta) in NHBE cells that were mock-infected or H5N1 IAV-infected (MOI 0.5, 24
hours; performed in n=3 biologically independent samples; images from n=1 representative replicate). F. Venn
diagram of the total number of significantly changing phosphorylation events at 18 hours post-infection
(pH1N1, H3N2) and 12 hours post-infection (H5N1), unified across both cell types. G. Heatmap of GO
enrichments of the PH data at 18 hours post-infection (pH1N1, H3N2) and 12 hours post-infection (H5N1),
unified across cell types. Increasing shading intensity reflects increasing significance of the enrichment term.
Significant GO terms were defined as those with adjusted p-value < 0.05, and non-redundant terms were
selected by automated clustering procedure (see also Methods). The number of proteins per enriched cluster
are shown in white if significant (adjusted p-value < 0.05), and grey if not significant (adjusted p-value > 0.05).
H. Scatterplot of all significant log2FC in protein phosphorylation (Log2FC PH (IAV/Mock)) and corresponding
log2FC in protein abundance (Log2FC AB (IAV/Mock)) in IAV-infected cells compared to mock-infected
controls. Data points are colored as described in Fig3E. Each data point is an individual phosphosite or
combination of phosphosites when multiple phosphorylations were observed within single peptides, and all
significantly changing sites from the same protein were correlated against that protein’s Log2FC in AB.
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Supplementary Figure 6. Probing IAV Targets against SARS-CoV-2 Infection Identifies Factors that
Regulate both IAV and SARS-CoV-2. A. Flow cytometry gating strategy to quantify percent IAV-infected
(%IAV NP+) A549 or NHBE cells, using representative flow wells (cell samples) from the siRNA screen for IAV
NP-targeting siRNA and non-targeting siRNA controls. B. Distribution of log2 fold changes in SARS-CoV-2
infection for siRNA knockdown of 10 PH targets (from Fig5SE) compared to NT siRNA (black dot), plotted as the
median of nine replicates (n=3 biologically independent samples, each in n=3 technical replicates) per target.
The log2 fold change in SARS-CoV-2 infection was calculated for each experimental siRNA against a
replicate-matched NT siRNA (Methods). siRNA with median log2 fold change < -2 were labeled pro-viral
factors (blue dots) and siRNA with median log2 fold change > 2 were labeled antiviral factors (red dots). siRNA
in between these thresholds were labeled no/weak phenotype (grey dots). The median log2 fold change of
positive-control ACE2-targeting siRNA is represented (green dot). Error bars represent median absolute
deviations (MAD). C. Venn diagram comparing kinases with significant activity changes during IAV infection
(this study) and during SARS-CoV-2 infection’ (asterisk signifies data was derived from’). D. Heatmap of
kinase activity predictions from the phosphorylation data with IAV infection (at 18 hours post-infection (pH1N1,
H3N2) and 12 hours post-infection (H5N1); in NHBE and THP-1 cells) and SARS-CoV-2 infection (at 24 hours
post-infection; in Vero E6 and Calu-3 cells) from published studies’®° and thresholded at p-value < 0.05
(asterisk signifies data was derived from”%9). Kinase Z-score reflects predicted kinase activity, with increased
kinase activity in red and decreased kinase activity in blue.
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Supplementary Figure 7. Host-Directed Compound Dose-Response Curves for pH1N1, H3N2 and H5N1
IAV and Cell Viability. Dose-response curves for a total of 37 host-directed compounds, including: 16 IAV
PPI-targeting drugs (green background), 15 kinase-targeting drugs (blue background), and 8 kinase-targeting



drugs mined from a published study with antiviral activity against SARS-CoV-2’ (grey background). pH1N1
was not screened with PF-3644022. Dose-response curves are also included for a control compound, IAV
PB2-targeting Pimodivir (VX-787), which was run in two sets (red background). Assays were performed in n=3
biologically independent samples in A549 cells, with high throughput imaging and quantification of percent IAV-
infected cells (%NP+ cells) for each of the three IAV strains (blue line=pH1N1; green line=H3N2; purple
line=H5N1), and percent viable cells (black line). For each data point, the mean of three replicates is shown.
Error bars represent standard error of mean (SEM). Graph data points are also provided as Source Data.
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