

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Effect of robotic-assisted gait training on gait and motor function in spinal cord injury: a protocol of a systematic review with meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-070675
Article Type:	Protocol
Date Submitted by the Author:	05-Dec-2022
Complete List of Authors:	wang, lei; Hunan Provincial People's Hospital, peng, lin; Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology chen, lian; Hunan Provincial People's Hospital
Keywords:	REHABILITATION MEDICINE, NEUROSURGERY, Neurological injury < NEUROLOGY

SCHOLARONE[™] Manuscripts

Effect of robotic-assisted gait training on gait and motor function in spinal cord

injury: a protocol of a systematic review with meta-analysis

Name	Affiliation	Email
Lei Wang	Department of Rehabilitation Medicine, Hunan Provincial	wangleipx168@1
	People's Hospital, The First Affiliated Hospital of Hunan	63.com
	Normal University, Changsha 410005, Hunan Province,	
	China.	
Jin-lin Peng	Tongji Hospital, Tongji Medical College, Huazhong	pjlkim@163.com
	University of Science & Technology, Wuhan 430000,	
	Hubei Province, China.	
Ai-lian Chen	Department of Rehabilitation Medicine, Hunan Provincial	652326303@qq.c
	People's Hospital, The First Affiliated Hospital of Hunan	om
	Normal University	

First author:

Lei Wang, <u>wangleipx168@163.com</u>, Department of Rehabilitation Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan, Peoples R China Corresponding Author: Ai-lian Chen, <u>652326303@qq.com</u>, Department of Rehabilitation Medicine, Hunan Provincial

People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005,

Hunan, Peoples R China.

Effect of robotic-assisted gait training on gait and motor function in spinal cord injury: a protocol of a systematic review with meta-analysis

Abstract :

Introduction: Robotic-assisted gait training (RAGT) has been reported to be effective in the rehabilitation of patients with spinal cord injury (SCI). However, studies on RAGT showed different results because they varied in terms of the number of samples. Thus, summarizing studies based on robotic-related factors is critical for the accurate estimation of the effects of RAGT on SCI. This work aims to search for strong evidence showing that using RAGT is effective in the treatment of SCI and to analyze the deficiencies of current studies.

Methods and analysis: The following publication databases were electronically searched in December 2022 without restrictions on publication year: Medline, Cochrane Library, Web of Science, Embase, PubMed, and China National Knowledge Infrastructure. All articles on randomized controlled trials using RAGT to treat SCI that were published in English and Chinese and met the following criteria will be included. Outcomes included motor function, and gait parameters included those assessed by using instrumented gait assessment, the Berg balance scale, the 10 m walking speed test, the 6 min walking endurance test, the functional ambulation category scale, the Walking index of SCI, and the ASIA assessment scale. Research selection, data extraction, and quality assessment will be conducted independently by two reviewers to ensure that all relevant studies are free from personal bias. The Cochrane Bias Risk Assessment Tool will be used to assess the risk of bias. Review Manager V.5.3 software will be utilized to produce deviation risk maps and perform paired meta-analyses.

Strengths and limitations of this study

BMJ Open

1. This study will be the first meta-analysis to systematically evaluate the efficacy and safety of RAGT in the treatment of SCI.

2. The results of this study will provide evidence for the treatment of SCI patients, and help therapists and patients to choose appropriate treatment methods.

3.To ensure that all relevant studies are free from personal bias, two reviewers will independently conduct research selection, data extraction and quality assessment.

4. The language categories of the research search are only included in English and Chinese, and the final search results will have some bias.

Key words: Spinal Cord Injuries; Motor disorders; Rehabilitation; Robotics, Gait Analysis
Ethics and dissemination: Ethics approval is not required for systematic reviews and network
meta-analyses. The results will be submitted to a peer-reviewed journal or presented at a conference.
Trial registration number: PROSPERO (CRD42022319555).

Introduction

Spinal cord injury (SCI) is a serious disabling disease that often causes paraplegia or quadriplegia and affects the patient's sensory, motor, and autonomic nervous functions^[1]. SCI leads to a variety of complications, such as pressure ulcers, lung infections, and urinary tract infections^[2]. Moreover, it affects the quality of life and living standard of patients and imposes a heavy burden on families^[3] and society. It ultimately shortens the life expectancy of patients^[4]. National statistical data show that the incidence rate of SCI is increasing annually and that the incidence rate of TSCI per million residents is 9.3 persons/year^[5]. During the rehabilitation treatment of SCI, improving the walking ability, self-care ability, and self-esteem of patients is an important aspect that helps patients return to society and reduces their costs. Therefore, the rehabilitation of the lower limbs, which mainly

function in standing and walking, is crucial.

Robot-assisted gait training (RAGT) can improve the walking ability^[6], lower limb strength, and independence of patients with incomplete SCI^[7]. It can also improve balance function^[8]. RAGT has been gradually applied in patients with SCI. Some clinical evidence shows that in patients with SCI, robots for lower limb rehabilitation can effectively and safely improve walking ability; reduce pressure ulcers, lung infections, urinary tract infections, and other complications; improve dignity; and reduce costs. However, high-quality evidence-based medical studies that systematically evaluated the efficacy of RAGT in the treatment of SCI remain scarce.

Summarizing studies based on RAGT-related factors is critical for the accurate estimation of the effects of RAGT on SCI. This meta-analysis aims to evaluate systematically the efficacy of RAGT in alleviating motor dysfunction and restoring speech ability in patients with SCI according to randomized clinical trials (RCTs); find strong evidence demonstrating that using RAGT is effective in the treatment of SCI; and analyze the deficiencies of current studies.

Methods

The protocol of this systematic review was planned and conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols Guideline and Cochrane Collaboration^[9]. The review process is shown in Figure

Search strategy

Two reviewers (Jin-lin Peng and Lei Wang) electronically searched the following publication databases in December 2022 without restrictions on publication year: Medline, Cochrane Library, Web of Science, Embase, PubMed, and China National Knowledge Infrastructure. Various combinations of keywords, including "motor disorders," "robotics", "robotic assisted gait training,"

BMJ Open

"noninvasive brain stimulation," "SCI", and "gait analysis", were used as search terms. The key terms matched the appropriate Medical Subject Headings terms. Presearches were performed. Then, the final search was conducted follows: Relevant journals and references of review articles were manually searched online to identify papers that may have been missed in the electronic database searches.

Eligibility criteria

Inclusion criteria

(1) Study design: Only RCTs were included. (2) Selected population: Participants diagnosed with SCI, namely, individuals with any level of traumatic SCI, regardless of the time since injury, sex, and age, were included. (3) Type of intervention: The experimental groups received tDCS or tDCS combined with other physical therapies. The control group received sham tDCS or other types of physical therapy. (4) Comparison: The treated subjects were compared at baseline then with the control or sham-stimulated subjects. (5) Type of outcomes measured: Gait analysis indicators, including gait speed (m/s), step length (cm), double support phase (% walking cycle), single support phase (% walking cycle), and symmetry index; Berg balance scale; ASIA assessment scale; Holden walking ability classification (functional ambulation category scale); 10 m walking speed test; 6 min walking endurance test; and WISCI **II** score.

Exclusion criteria

Studies involving animal research, conference research, protocol studies, or computer model research and duplicate papers were excluded. Two reviewers (Jin-lin Peng and Lei Wang) independently screened titles and abstracts to identify articles reporting studies that met the inclusion criteria. Then, the full-text versions of the identified articles were obtained and separately

screened to ensure that they met the inclusion criteria. A third reviewer (Ai-lian Chen) made the final assessment regarding whether or not full-text papers met the inclusion criteria.

Data extraction

A reviewer (Lei Wang) prepared the general information and data collection process by another reviewer (Jin-lin Peng). The format of data collection included the following factors: research design, participants (number, diagnosis, age, and target population numbers in each group), eligibility criteria, intervention used on the research group and control group (i.e., site of stimulation, intensity, number of sessions, and time of each session), and outcomes of interest.

Quality assessment

The quality evaluation of the included studies was performed independently by two reviewers (Jinlin Peng and Lei Wang) and was revised by the third reviewer (Ai-lian Chen). The methodological quality of the intervention studies was assessed by using the Physiotherapy Evidence Database (PEDro) scale. The PEDro scale is a valid and reliable measure of the methodological quality of RCTs. This 10-item scale is based on the core criteria for RCT quality assessment^[10]. The quality of papers was classified as follows in accordance with the PEDro scale: Studies with scores of less than 6 points were considered low-quality studies, whereas those with scores equal to or greater than 6 points were considered high-quality studies (where scores of 6–7 indicate good quality and those of 8–10 indicate excellent quality)^[11].

The GRADEpro GDT online tool was used to evaluate the level of evidence quality of the outcome indicators. The tool is available at its official website <u>http://www.guidelinedevelopment.org/</u>. The GRADEpro GDT online tool for evaluating the quality of outcome indicators includes five degrading factors: risk of bias, inconsistency, indirectness, imprecision, and other considerations.^[12]

BMJ Open

The quality of evidence can be divided into four levels of "high", "moderate", "low", and "very low."^[13]

Risk-of-bias assessment of individual studies

The quality of the included studies was evaluated and their scores were compared in a consensus meeting between two independent authors (Jin-lin Peng and Lei Wang) to minimize errors and potential biases in the evaluation. In the event of any disagreement, a third author (Ai-lian Chen) was included in the discussion for a final consensus. The Cochrane risk-of-bias assessment tool outlined in Chapter 8 of the *Cochrane Hand-book for Systematic Reviews of Interventions* (Version 5.1.0) was used to assess the risk of bias of the articles. Each article was assessed for selection bias (random sequence generation and allocation concealment), performance bias (blinding of participants and personnel), detection bias (blinding of outcome assessment), attrition bias (incomplete outcome data reporting), and reporting bias (selective outcome reporting). Each domain was rated as high risk of bias, unclear of bias, or low risk of bias. The risk map of the biases of the studies' quality was prepared with RevMan 5.2 software.

Patient and public Involvement

No patient participated in writing the system review plan. However, the results will be disseminated to patients with SCI.

Statistical analysis

A meta-analysis will be conducted by using Review Manager 5.3. Heterogeneity between studies will be evaluated on the basis of the I² statistic for the quantification of the proportion of the total outcome attributable to variability among studies. The following ranges were defined: $I^2 = 0\%-30\%$ (no heterogeneity), $I^2 = 30\%-49\%$ (moderate heterogeneity), $I^2 = 50\%-74\%$ (substantial heterogeneity), and $I^2 = 75\%-100\%$ (considerable heterogeneity)^[14]. On the basis of heterogeneity, a random-effects model was used when $I^2 > 30\%$, and a fixed-effects model was utilized when $I^2 = 0\%-30\%$.

For the comparison of data from different scales, pooled statistics will be calculated by using standardized mean differences (SMDs). Means and standard deviations after intervention and follow-up evaluation for the RAGT and control groups (when relevant) will be applied to compute SMDs.

Addressing missing data

The original author will be contacted for additional information regarding missing data. In the absence of a reply, the data will be calculated on the basis of the availability factor. The potential effect of the missing data on meta-analysis results will be tested through sensitivity analysis.

Subgroup analysis

Grouping analysis will be performed to address potential heterogeneity and inconsistencies and will be conducted in accordance with age, gender, SCI plane, disease course, treatment prescription, and treatment duration. At the same time, meta-analysis will be conducted to explore the possible sources of heterogeneity.

Sensitivity analysis

For the verification of the robustness of the research conclusion, sensitivity analysis will be conducted on the main results to assess the effect of method quality, research quality, sample size, missing data, and analysis methods on the results of this review^[15].

Assessment of publication bias

Each included study will be evaluated in accordance with the PEDro scale. Funnel charts will be

used to assess the publication bias of the main results included in the study. If the funnel chart is found to be asymmetrical, attempts will be made to explain its asymmetry ^[16].

Discussion

RAGT can improve the walking ability of patients with incomplete SCI and can be used by patients with stable vital signs. For patients with complete SCI, RAGT acts mainly to maintain the range of motion of joints. In recent years, studies on using RAGT to improve walking ability in SCI have increased, and the new exoskeleton robot for lower limb rehabilitation has shown the advantage of safe transfer. Our current query shows that our work is the first systematic review and meta-analysis on RAGT for patients with SCI. The results of this meta-analysis can help patients and therapists select the appropriate treatment method for SCI and improve new options on the basis of the comparative evidence for effectiveness and safety. We hope that the results of this study will provide evidence for guideline recommendations.

Data Availability

The datasets used and analyzed in the current study are included in this article.

Ethical Approval

This research is a review, does not involve ethical issues, and did not apply for ethical approval.

Funding

This study has no funding support.

Disclosure

All authors have read and approved the final manuscript.

Contributors

WL and P-JL, as the first authors, have made equal contributions to this work. Research concept

and design: WL and C-AL. Data acquisition: WL and P-JL. Draft: WL and P-JL. Supervised by: C-

AL. All the authors approved the publication of the Protocol.

Conflicts of Interest

6 7

8 9 10

11 12

13 14

15

16

17

18 19

20

21

22

23 24

25

26

27 28

29

30

31 32

33

34

35

36 37

38

39

40 41

42

43

44

45 46

47

48

49 50

51

52

53 54

55

56

57

58 59

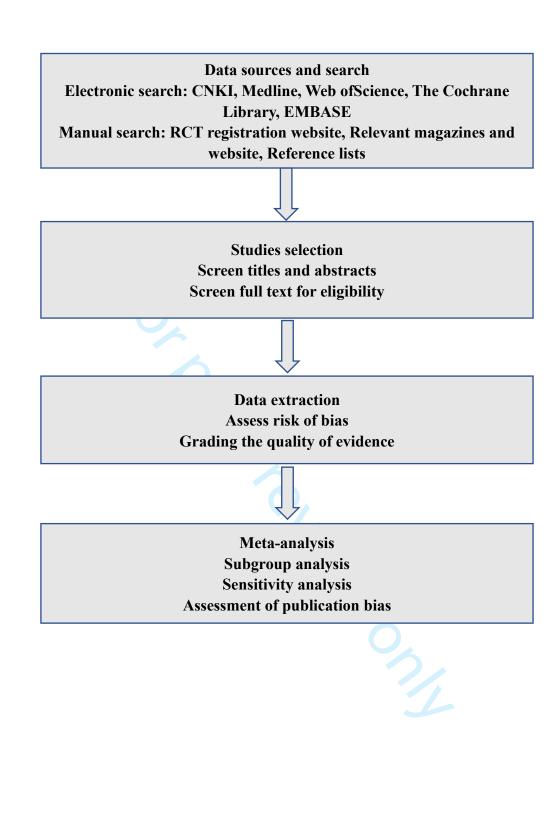
60

All authors declare no potential conflicts of interest with respect to the research, authorship, and/or

publication of this study.

Reference

- Eckert MJ, Martin MJ. Trauma: Spinal Cord Injury[J]. Surg Clin North Am, 2017,97(5):1031-1045. DOI: 10.1016/j.suc.2017.06.008.
- [2] Stricsek G, Ghobrial G, Wilson J, et al. Complications in the Management of Patients with Spine Trauma[J]. Neurosurg Clin N Am, 2017,28(1):147-155. DOI: 10.1016/j.nec.2016.08.007.
- [3] Zhang JM, Li N, Zhu L, et al. Effects of pelvic floor biofeedback electrical stimulation combined with lower limb rehabilitation robot training on intestinal function of patients with spinal cord injury [J]. Journal of Brain and Nervous Diseases,2021,29(01):53-57.
- [4] Xiang XN, Zhong HY, He HC. Research progress of lower limb exoskeleton rehabilitation robot in improving walking ability of patients with spinal cord injury [J]. Chinese Journal of Rehabilitation Medicine,2020,35(01):119-122. DOI: CNKI:SUN:ZGKF.0.2020-01-024
- [5] Bárbara-Bataller E, Méndez-Suárez JL, Alemán-Sánchez C, et al. Change in the profile of traumatic spinal cord injury over 15 years in Spain[J]. Scand J Trauma Resusc Emerg Med, 2018,26(1):27. DOI: 10.1186/s13049-018-0491-4.
- [6] Grasmücke D, Zieriacks A, Jansen O, et al. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level[J]. Neurosurg Focus, 2017,42(5):E15. DOI: 10.3171/2017.2.FOCUS171.
- [7] Holanda LJ, Silva P, Amorim TC, et al. Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017,14(1):126. DOI: 10.1186/s12984-017-0338-7.
- [8] Nam KY, Kim HJ, Kwon BS, et al. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017,14(1):24. DOI: 10.1186/s12984-017-0232-3.
- [9] Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions[J]. Cochrane Database Syst Rev, 2019,10:ED000142. DOI: 10.1002/14651858.ED000142.
- [10] Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials[J]. Arch Phys Med Rehabil, 2019,100(10):1945-1963. DOI: 10.1016/j.apmr.2019.04.009.
- [11] Maher CG, Sherrington C, Herbert RD, et al. Reliability of the PEDro scale for rating quality of randomized controlled trials[J]. Phys Ther, 2003,83(8):713-721.
- [12] Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678-77572011000100001.
- [13] Brożek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in


clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy, 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x.

- [14] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539-1558. DOI: 10.1002/sim.1186.
- [15] Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen-2018-026844.
- [16] Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials[J]. BMJ, 2011,343:d4002. DOI: 10.1136/bmj.d4002.

Figure: Flow chart of meta-analysis for robotic-assisted gait training in patients with spinal

or review only

cord injury.

BMJ Open

Effect of robotic-assisted gait training on gait and motor function in spinal cord injury: a protocol of a systematic review with meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-070675.R1
Article Type:	Protocol
Date Submitted by the Author:	17-Apr-2023
Complete List of Authors:	wang, lei; Hunan Provincial People's Hospital, peng, lin; Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology chen, lian; Hunan Provincial People's Hospital
Primary Subject Heading :	Rehabilitation medicine
Secondary Subject Heading:	Rehabilitation medicine, Neurology
Keywords:	REHABILITATION MEDICINE, NEUROSURGERY, Neurological injury < NEUROLOGY

BMJ Open

2		
3		
4	1	Effect of robotic-assisted gait training on gait and motor function in spinal cord
5		
6	2	injury: a protocol of a systematic review with meta-analysis
7	2	injury. a protocor of a systematic review with meta-analysis
8		
9	3	
10	U	
11		
12	4	First author:
13		
14	-	
15	5	Lei Wang, <u>wangleipx168@163.com</u> , Department of Rehabilitation Medicine, Hunan Provincial
16		
17	6	People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005,
18	0	r copie s nospital (The First Allmateu nospital of numan Normal Oniversity), Changsna 410005,
19		
	7	Hunan, Peoples R China
20		
21		
22	8	lin-jin Peng, pjlkim@163.com, Tongji Hospital, Tongji Medical College, Huazhong University
23		
24	0	
25	9	of Science & Technology, Wuhan 430000, Hubei Province, China.
26		
27	10	Corresponding Author:
28	10	Corresponding Author.
29		
30	11	lian-ai Chen, <u>652326303@qq.com</u> , Department of Rehabilitation Medicine, Hunan Provincial
31		
32		
33	12	People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005,
34		
35	10	Harry Deedle D China
36	13	Hunan, Peoples R China.
37		
38	14	
30 39		
40	15	
41		
42		
43	16	
44		
45	17	
46	17	
47		
48	18	
49		
50		
51	19	
52		
53	20	
54	20	
55		
56	21	
57	<u> </u>	
58		
58 59	22	
60		
00		1
		·

Effect of robotic-assisted gait training on gait and motor function in spinal cord

injury: a protocol of a systematic review with meta-analysis

Abstract : Introduction: Robotic-assisted gait training (RAGT) has been reported to be effective in the rehabilitation of patients with spinal cord injury (SCI). However, studies on RAGT showed different results because they varied in terms of the number of samples. Thus, summarizing studies based on robotic-related factors is critical for the accurate estimation of the effects of RAGT on SCI. This work aims to search for strong evidence showing that using RAGT is effective in the treatment of SCI and to analyze the deficiencies of current studies. Methods and analysis: The following publication databases were electronically searched in December 2022 without restrictions on publication year: Medline, Cochrane Library, Web of Science, Embase, PubMed, the Cochrane Central Register of Controlled Trials, and China National Knowledge Infrastructure. All articles on randomized controlled trials using RAGT to treat SCI that were published in English and Chinese and met the following criteria will be included. Outcomes included motor function, and gait parameters included those assessed by using instrumented gait assessment, the Berg balance scale, the 10 m walking speed test, the 6 min walking endurance test, the functional ambulation category scale, the Walking index of SCI, and the ASIA assessment scale. Research selection, data extraction, and quality assessment will be conducted independently by two reviewers to ensure that all relevant studies are free from personal bias. The Cochrane Bias Risk Assessment Tool will be used to assess the risk of bias. Review Manager V.5.3 software will be utilized to produce deviation risk maps and perform paired meta-analyses.

Strengths and limitations of this study

BMJ Open

45	1. This study will be the first meta-analysis to systematically evaluate the efficacy and safety of
46	RAGT in the treatment of SCI.
47	2. The results of this study will provide evidence for the treatment of SCI patients, and help therapists
48	and patients to choose appropriate treatment methods.
49	3.To ensure that all relevant studies are free from personal bias, two reviewers will independently
50	conduct research selection, data extraction and quality assessment.
51	4. The language categories of the research search are only included in English and Chinese, and the
52	final search results will have some bias.
53	Key words: Spinal Cord Injuries; Motor disorders; Rehabilitation; Robotics, Gait Analysis
54	Ethics and dissemination: Ethics approval is not required for systematic reviews and network
55	meta-analyses. The results will be submitted to a peer-reviewed journal or presented at a conference.
56	Trial registration number: PROSPERO (CRD42022319555).
56 57	Trial registration number: PROSPERO (CRD42022319555). Introduction
57	Introduction
57 58	Introduction Spinal cord injury (SCI) is a serious disabling disease that often causes paraplegia or quadriplegia
57 58 59	Introduction Spinal cord injury (SCI) is a serious disabling disease that often causes paraplegia or quadriplegia and affects the patient's sensory, motor, and autonomic nervous functions ^[1, 2] . SCI leads to a variety
57 58 59 60	Introduction Spinal cord injury (SCI) is a serious disabling disease that often causes paraplegia or quadriplegia and affects the patient's sensory, motor, and autonomic nervous functions ^[1, 2] . SCI leads to a variety of complications, such as pressure ulcers, lung infections, and urinary tract infections ^[3] . It affects
57 58 59 60 61	Introduction Spinal cord injury (SCI) is a serious disabling disease that often causes paraplegia or quadriplegia and affects the patient's sensory, motor, and autonomic nervous functions ^[1, 2] . SCI leads to a variety of complications, such as pressure ulcers, lung infections, and urinary tract infections ^[3] . It affects the quality of life and living standard of patients and imposes a heavy burden on families ^[4] and
57 58 59 60 61 62	Introduction Spinal cord injury (SCI) is a serious disabling disease that often causes paraplegia or quadriplegia and affects the patient's sensory, motor, and autonomic nervous functions ^[1, 2] . SCI leads to a variety of complications, such as pressure ulcers, lung infections, and urinary tract infections ^[3] . It affects the quality of life and living standard of patients and imposes a heavy burden on families ^[4] and society. It ultimately shortens the life expectancy of patients ^[5] . In addition, the mortality rate of
57 58 59 60 61 62 63	Introduction Spinal cord injury (SCI) is a serious disabling disease that often causes paraplegia or quadriplegia and affects the patient's sensory, motor, and autonomic nervous functions ^[1, 2] . SCI leads to a variety of complications, such as pressure ulcers, lung infections, and urinary tract infections ^[3] . It affects the quality of life and living standard of patients and imposes a heavy burden on families ^[4] and society. It ultimately shortens the life expectancy of patients ^[5] . In addition, the mortality rate of patients with spinal cord injury is higher than that of the general population ^[6-8] . National statistical

patients return to society and reduces their costs. Therefore, increased exercise capacity of the lower limbs is crucial to daily independence and social reintegration for this population, which mainly function in standing and walking^[10, 11]. Robot-assisted gait training (RAGT) can improve the walking ability^[12], lower limb strength, and independence of patients with incomplete SCI^[13]. It can also improve balance function^[14]. RAGT has been gradually applied in patients with SCI. Some clinical evidence shows that in patients with SCI, robots for lower limb rehabilitation can effectively and safely improve walking ability; reduce pressure ulcers^[15], lung infections^[8], urinary tract infections, and other complications^[16]; improve dignity; and reduce costs. However, high-quality evidence-based medical studies that systematically evaluated the efficacy of RAGT in the treatment of SCI remain scarce. Summarizing studies based on RAGT-related factors is critical for the accurate estimation of the effects of RAGT on SCI. This meta-analysis aims to evaluate systematically the efficacy of RAGT in alleviating motor dysfunction and restoring speech ability in patients with SCI according to randomized clinical trials (RCTs); find strong evidence demonstrating that using RAGT is effective in the treatment of SCI; and analyze the deficiencies of current studies. Methods The protocol of this systematic review was planned and conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols Guideline [17] and PRISMA 2020 guidelines ^[18] and was performed following a protocol registered in PROSPERO (CRD42022319555). The plan starts on March 1, 2023 and ends on June 1. The review process is shown in Figure

88 Search strategy

BMJ Open

Two reviewers (Jin-lin Peng and Lei Wang) electronically searched the following publication databases in December 2022 without restrictions on publication year: Medline, Cochrane Library, Web of Science, Embase, PubMed, the Cochrane Central Register of Controlled Trials, and China National Knowledge Infrastructure. Various combinations of keywords, including "motor disorders," "robotics", "robotic assisted gait training," "noninvasive brain stimulation," "SCI", and "gait analysis", were used as search terms. The key terms matched the appropriate Medical Subject Headings terms. Presearches were performed. Then, the final search was conducted follows: Relevant journals and references of review articles were manually searched online to identify papers that may have been missed in the electronic database searches.

98 Eligibility criteria

99 Inclusion criteria

(1) Study design: Only RCTs were included. (2) Selected population: Participants diagnosed with SCI, namely, individuals with any level of traumatic SCI, regardless of the time since injury, sex, and age, were included. (3) Type of intervention: The experimental groups received RAGT or RAGT combined with other physical therapies. The control group not received RAGT or received other types of physical therapy. (4) Comparison: The treated subjects were compared at baseline then with the control or sham-stimulated subjects. (5) Type of outcomes measured: Gait analysis indicators, including gait speed (m/s), step length (cm), double support phase (% walking cycle), single support phase (% walking cycle), and symmetry index; Berg balance scale; ASIA assessment scale; Holden walking ability classification (functional ambulation category scale); 10 m walking speed test; 6 min walking endurance test; and WISCI I score.

110 Exclusion criteria

Studies involving animal research, conference research, protocol studies, or computer model research and duplicate papers were excluded. Two reviewers (Jin-lin Peng and Lei Wang) independently screened titles and abstracts to identify articles reporting studies that met the inclusion criteria. Then, the full-text versions of the identified articles were obtained and separately screened to ensure that they met the inclusion criteria. A third reviewer (Ai-lian Chen) made the final assessment regarding whether or not full-text papers met the inclusion criteria.

Data extraction

A reviewer (Lei Wang) prepared the general information and data collection process by another reviewer (Jin-lin Peng). The format of data collection included the following factors: research design, participants (number, diagnosis, age, and target population numbers in each group), eligibility criteria, intervention used on the research group and control group (i.e., site of stimulation, intensity, number of sessions, and time of each session), and outcomes of interest.

Quality assessment

The quality evaluation of the included studies was performed independently by two reviewers (Jin-lin Peng and Lei Wang) and was revised by the third reviewer (Ai-lian Chen). The methodological quality of the intervention studies was assessed by using the Physiotherapy Evidence Database (PEDro) scale. The PEDro scale is a valid and reliable measure of the methodological quality of RCTs. This 10-item scale is based on the core criteria for RCT quality assessment^[19]. The quality of papers was classified as follows in accordance with the PEDro scale: Studies with scores of less than 6 points were considered low-quality studies, whereas those with scores equal to or greater than 6 points were considered high-quality studies (where scores of 6-7 indicate good quality and those of 8–10 indicate excellent quality)^[20].

BMJ Open

The GRADEpro GDT online tool was used to evaluate the level of evidence quality of the outcome indicators. The tool is available at its official website http://www.guidelinedevelopment.org/. The GRADEpro GDT online tool for evaluating the quality of outcome indicators includes five degrading factors: risk of bias, inconsistency, indirectness, imprecision, and other considerations.^[21]
The quality of evidence can be divided into four levels of "high", "moderate", "low", and "very low."^[22]

139 Risk-of-bias assessment of individual studies

The quality of the included studies was evaluated and their scores were compared in a consensus meeting between two independent authors (Jin-lin Peng and Lei Wang) to minimize errors and potential biases in the evaluation. In the event of any disagreement, a third author (Ai-lian Chen) was included in the discussion for a final consensus. The Cochrane Risk of Bias 2.0 tool^[23] was used to assess the risk of bias of the articles. Each article was assessed for selection bias (random sequence generation and allocation concealment), performance bias (blinding of participants and personnel), detection bias (blinding of outcome assessment), attrition bias (incomplete outcome data reporting), and reporting bias (selective outcome reporting). Each domain was rated as high risk of bias, unclear of bias, or low risk of bias. The risk map of the biases of the studies' quality was prepared with RevMan 5.2 software.

150 Patient and public Involvement

151 No patient participated in writing the system review plan. However, the results will be disseminated152 to patients with SCI.

- 153 Statistical analysis
- 154 A meta-analysis will be conducted by using Review Manager 5.3. Heterogeneity between studies

155	will be evaluated on the basis of the I ² statistic for the quantification of the proportion of the total
156	outcome attributable to variability among studies. The following ranges were defined: $I^2 = 0\%-30\%$
157	(no heterogeneity), $I^2 = 30\%-49\%$ (moderate heterogeneity), $I^2 = 50\%-74\%$ (substantial
158	heterogeneity), and $I^2 = 75\%-100\%$ (considerable heterogeneity) ^[24] . On the basis of heterogeneity,
159	a random-effects model was used when $I^2 > 30\%$, and a fixed-effects model was utilized when $I^2 =$
160	0%–30%.
161	For the comparison of data from different scales, pooled statistics will be calculated by using
162	standardized mean differences (SMDs). Means and standard deviations after intervention and
163	follow-up evaluation for the RAGT and control groups (when relevant) will be applied to compute
164	SMDs.
165	Addressing missing data
166	The original author will be contacted for additional information regarding missing data. In the
167	absence of a reply, the data will be calculated on the basis of the availability factor. The potential
168	effect of the missing data on meta-analysis results will be tested through sensitivity analysis.
169	Subgroup analysis
170	Grouping analysis will be performed to address potential heterogeneity and inconsistencies and will

- 171 be conducted in accordance with age, gender, SCI plane, disease course, treatment prescription, and
- 172 treatment duration. At the same time, meta-analysis will be conducted to explore the possible
- 173 sources of heterogeneity.
- 174 Sensitivity analysis

175 For the verification of the robustness of the research conclusion, sensitivity analysis will be

176 conducted on the main results to assess the effect of method quality, research quality, sample size,

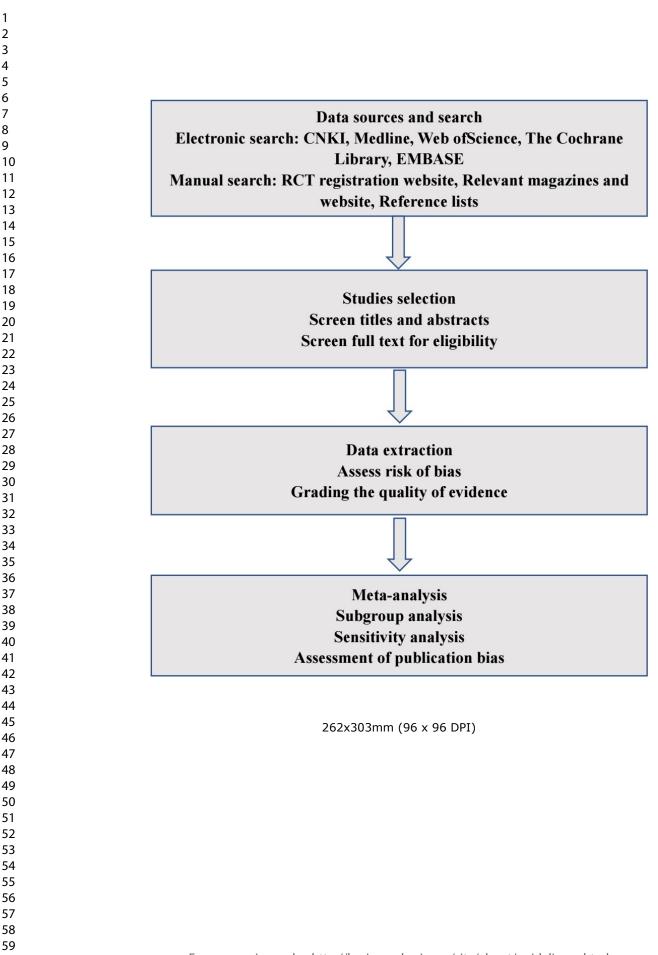
2	
3 4	1
5 6	
7	1
8 9	1
10 11	
12 13	1
14	1
15 16	
17 18	1
19 20	1
21	
22 23	1
24 25	1
26	
27 28	1
29 30	1
31 32	
33	1
34 35	1
36 37	
38 39	1
40	1
41 42	1
43 44	1
45 46	1
47	1 1
48 49	1
50 51	1
52 53	1 2
54	2
55 56	2
57 58	2
59 60	
00	

missing data, and analysis methods on the results of this review^[25].

178 Assessment of publication bias

Each included study will be evaluated in accordance with the PEDro scale. Funnel charts will beused to assess the publication bias of the main results included in the study. If the funnel chart is

181 found to be asymmetrical, attempts will be made to explain its asymmetry ^[26].


82 Discussion

183	RAGT can improve the walking ability of patients with incomplete SCI and can be used by patients
184	with stable vital signs. For patients with complete SCI, RAGT acts mainly to maintain the range of
185	motion of joints. In recent years, studies on using RAGT to improve walking ability in SCI have
186	increased, and the new exoskeleton robot for lower limb rehabilitation has shown the advantage of
187	safe transfer. Our current query shows that our work is the first systematic review and meta-analysis
188	on RAGT for patients with SCI. The results of this meta-analysis can help patients and therapists
189	select the appropriate treatment method for SCI and improve new options on the basis of the
190	comparative evidence for effectiveness and safety. We hope that the results of this study will provide
191	evidence for guideline recommendations.
192	Data Availability
193 194	The datasets used and analyzed in the current study are included in this article.
195	Ethical Approval
196	This research is a review, does not involve ethical issues, and did not apply for ethical approval.
197	
198	Funding
199	This study has no funding support.
200	
201	Disclosure
202	All authors have read and approved the final manuscript.
203	

2		
3		
4 5	204	Contributors
6		
7	205	WL and P-JL, as the first authors, have made equal contributions to this work. Research concept
8		
9	206	and design: WL and C-AL. Data acquisition: WL and P-JL. Draft: WL and P-JL. Supervised by: C-
10		
11	207	AL. All the authors approved the publication of the Protocol.
12 13	207	AL. All the authors approved the publication of the Protocol.
13	208	
15		
16	209	Conflicts of Interest
17		
18	210	All authors declare no potential conflicts of interest with respect to the research, authorship, and/or
19		
20 21	211	publication of this study.
21	211	publication of this study.
23		
24	212	参考文献
25	213	
26	214	[1] Edicart MI Martin MI Traumas Eniral Card Iniurs [1] Sura Clin North Am. 2017.07(5):1021-1045. DOL
27		[1] Eckert MJ, Martin MJ. Trauma: Spinal Cord Injury[J]. Surg Clin North Am, 2017,97(5):1031-1045. DOI:
28 29	215	10.1016/j.suc.2017.06.008.
30	216	[2] Anjum A, Yazid MD, Fauzi Daud M, et al. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions,
31	217	and Underlying Recovery Mechanisms[J]. Int J Mol Sci, 2020,21(20)DOI: 10.3390/ijms21207533.
32	218	[3] Stricsek G, Ghobrial G, Wilson J, et al. Complications in the Management of Patients with Spine Trauma[J].
33	219	Neurosurg Clin N Am, 2017,28(1):147-155. DOI: 10.1016/j.nec.2016.08.007.
34	220	[4] Zhang JM, Li N, Zhu L, et al. Effects of pelvic floor biofeedback electrical stimulation combined with lower
35	221	limb rehabilitation robot training on intestinal function of patients with spinal cord injury [J]. Journal of Brain
36 37	222	
38		and Nervous Diseases,2021,29(01):53-57.
39	223	[5] Xiang XN, Zhong HY, He HC. Research progress of lower limb exoskeleton rehabilitation robot in
40	224	improving walking ability of patients with spinal cord injury [J]. Chinese Journal of Rehabilitation
41	225	Medicine,2020,35(01):119-122. DOI: CNKI:SUN:ZGKF.0.2020-01-024
42	226	[6] Buzzell A, Chamberlain JD, Eriks-Hoogland I, et al. All-cause and cause-specific mortality following non-
43 44	227	traumatic spinal cord injury: evidence from a population-based cohort study in Switzerland[J]. Spinal Cord,
45	228	2020,58(2):157-164. DOI: 10.1038/s41393-019-0361-6.
46	229	[7] Mirzaeva L, Lobzin S, Tcinzerling N, et al. Complications and mortality after acute traumatic spinal cord
47	230	injury in Saint Petersburg, Russia[J]. Spinal Cord, 2020,58(9):970-979. DOI: 10.1038/s41393-020-0458-y.
48		
49	231	[8] Li R, Ding M, Wang J, et al. Effectiveness of robotic-assisted gait training on cardiopulmonary fitness and
50 51	232	exercise capacity for incomplete spinal cord injury: A systematic review and meta-analysis of randomized
52	233	controlled trials[J]. Clin Rehabil, 2023,37(3):312-329. DOI: 10.1177/02692155221133474.
53	234	[9] Bárbara-Bataller E, Méndez-Suárez JL, Alemán-Sánchez C, et al. Change in the profile of traumatic spinal
54	235	cord injury over 15 years in Spain[J]. Scand J Trauma Resusc Emerg Med, 2018,26(1):27. DOI:
55	236	10.1186/s13049-018-0491-4.
56	237	[10] Mahooti F, Raheb G, Alipour F, et al. Psychosocial challenges of social reintegration for people with spinal
57 58	238	cord injury: a qualitative study[J]. Spinal Cord, 2020,58(10):1119-1127. DOI: 10.1038/s41393-020-0449-z.
58 59	230	
60	239	[11] Rahimi M, Torkaman G, Ghabaee M, et al. Advanced weight-bearing mat exercises combined with
		10

 functional electrical stimulation to improve the ability of wheelchar-dependent people with spinal cord injury to transfer and attain independence in activities of duly living: a randomized controlled trial[J]. Spinal Cord, 2020;58(1):78-85. DOI: 10.1085/41392-019-0328-7. [21] Grasmake D, Zieralek A, Janero A, et al. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level[J]. Neurosurg Focus, 2017;42(5):E15. DOI: 10.1371/2017 2 FOCUS171. [247] [13] Holanda LJ, Silva P, Amorim TC, et al. Robotne assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017;14(1):126. DOI: 10.1186/s12984-017-0338-7. [250] [14] Nam KY, Kim HJ, Kwon BS, et al. Robotne assisted gait training (Lokonat) improves walking function and activity in people with spinal cord injury. a systematic review[J]. J Neuroeng Rehabil, 2017;14(1):124. DOI: 10.1186/s12984-017-04323-3. [15] Rathore A, Wilco M, Ramirez DZ, et al. Quantifying the human-robot interaction forces between a lower limb exoskeleton and healthy user[J]. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016;586-589. DOI: 10.1109/EMBC 2016;597070. [16] Pathanakuhar S, Ahmedy I, Settono S, et al. Impacts of Bladder Managements and Urinary Complications on Quality of Life. Cross-sectional Perspectives of Persons. With Spinal Cord Injury Living in Malaysia, Indonesia, and Thailand[J]. Am J Phys. Med. Rehabil, 2023;102(3):214-221. DOI: 10.1109/719/H.M000000002066. [17] Cumpston M, Li T, Page MJ, et al. Undeted guiddenfor for epotring systematic reviews [J]. BML, 2013;327:n71. DOI: 10.1136/bml a71. [18] Page MJ, McKerniz JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guiddeine for reporting systematic reviews[J]. BML, 2023;32(3):213-21. <li< th=""><th>1</th><th></th><th></th><th></th></li<>	1			
 Partonia transfer and attain independence in activities of daily living: a randomized controlled trial/JJ Spinal Cord. 2020;58(1) 78-85. DOI: 10.038/s41393-019-0328-7. [12] Grasmücke D, Zeiraks A, Jansen O, et al. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically corrolled Hybrid Assistive Limb cosokeleton. A subgroup analysis of 55 patients according to age and lesion level[J]. Neurosurg Focus, 2017;42(5):E15. DOI: 10.3171/2017.2.FOCUS171. [13] Holanda LJ, Silva P, Amorini TC, et al. Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017;14(1):126. DOI: 10.1186/s12984-017-0338-7. [14] Nam KY, Kim HJ, Kwon HS, et al. Robotic assisted gait training (Lokonat) improves walking function and activity in people with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017;14(1):24. DOI: 10.1186/s12984-017-0323-3. [15] Rathore A, Wilcox M, Raminez DZ, et al. Quantifying the human-robot interaction forces between a lower Indiverse A, Wilcox M, Raminez DZ, et al. Quantifying the human-robot interaction forces between a lower Indive coxlector and healthy user[J]. Annu In Corf IEEE Eng Med Biol Soc, 2016;2016;586-589. DOI: 10.1109/EMBC.2016.7390770. [16] Patimatuhar S, Ahmedy F, Settono S, et al. Impacts of Bladder Managements and Urinary Complications ou Quality of Life. Cross-sectional Perspectives of Persons. With Spinal Cord Injury Living in Malaysia, Indonesia, and Thailand[J]. Am J Phys. Med Rehabil, 2023;102(3):214-221. DOI: 10.1097PHIM.0000000000002066. [17] Cumprofin M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Indonized Controlled Traits. Arch Phys. Med Rehabil, 2012;01(2):1714-221. DOI: 10.1097PHIM.000000000000000000000000000000000000	2 3	240		functional electrical stimulation to improve the shility of wheelehoir dependent people with spinel cord
 Cord, 2020;58(1):78-85. DOI: 10.1038/s41393-019-0328-7. Cord, 2020;58(1):78-85. DOI: 10.1038/s41393-019-0328-7. Grasmičke D., Zeiracks A, Jansen O, et al. Against the odds: what to expect in rehabilitation of chonic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exostelaton. A subgroup nalysis of 55 patients according to age and lesion level[J]. Neurosing Focus, 2017;42(5):E15. DOI: 10.1317/12017;21COUS171. Holanda LJ, Silva P, Amorim TC, et al. Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review[J]. J Neurosing Rehabil, 2017;14(1):126. DOI: 10.1186/s12984-017-0338-7. Nam KY, Kim JD, Kwon BS, et al. Robot-assisted gait training (Lokomat) improves withing function and activity in people with spinal cord injury: a systematic review[J]. J Neurosing Rehabil, 2017;14(1):24. DOI: 10.1186/s12984-017-0252-3. Rathore A, Wikox M, Ramirez DZ, et al. Quantifying the human-robot interaction forces between a lower limb ecoskeleton and healthy user[J]. Annu Int Conf IFEE Fag Med Hiol Soc, 2016;2016;586-589. DOI: 10.1109/EMBC.2016.5790770. Patemakahar S, Ahmedy F, Settono S, et al. Impacts of Bladder Managements and Urinary Complications on Quality of Life: Cross-sectiona J erspectives of Persons With Spinal Cord Injury Living in Malaysia, Indonesia, and Thailand[J]. Am J Phys. Med. Rehabil, 2023;102(3):214-221. DOI: 10.1097/PIIM.000000000002066. Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Codrame Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: 151000142. Page MJ, McKenzie EE, Bossay(PM, et al. The PRISMA 2020 statemate: an updated guideline for reporting systematic reviews/J, BMJ, 2021;372:n71. DOI: 10.1136/bminj71. Botomas T, Elshenaway S, Ayad NN, Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor	4			
 243 [12] Grasniteke D, Zieriacks A, Jansen O, et al. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level[J]. Neurosurg Focus, 2017,42(5):E15. DOI: 10.3171/2017.2.FOCUS171. 247 [13] Holanda LJ, Silva P. Amorim TC, et al. Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017,14(1):126. DOI: 10.1186/s12984-017-0338-7. 250 [14] Nam KY, Kim HJ, Kwon BS, et al. Roboti-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017,14(1):24. DOI: 10.1186/s12984-017-0222-3. 253 [15] Rathore A, Wilcox M, Ramirez IV., et al. Quantifying the human-robot interaction forces between a lower limb exoskeleton and healthy users[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2016,2016-586-589. DOI: 10.1109/EMBC.2016.7390770. 256 [16] Pattanatuhar S, Ahmedy F, Settono S, et al. Impacts of Bladder Managements and Urinary Complications on Quality of Life: Cross-sectional Perspectives of Persons With Spinal Cord Injury Living in Malaysia, Indonesia, and Thailand[J] Am J. Phys. Med. Rehabil. 2012,012(3):214-221. DOI: 10.1097/PHM.0000000000006. 260 [17] Cumptron M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: ED000142. 268 [19] Page MJ, McKenzie JP, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews [J]. BMJ, 2021, 327. 217. DOI: 10.1156/shij.a71. 265 [19] Elbanna ST, Elshennawy S, Ayad MN, Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor Disorderes Following Brain Injury: Systematic Review of				
 spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton: A subgroup analysis of 55 patients according to age and lesion leve[J]. Neurosurg Focus, 2017,42(5):E15. DOI: 10.3171/2017.2.FOCUS171. H3 Holanda LJ, Silve J, Amorim TC, et al. Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017,14(1):126. DOI: 10.1186/s12984-017-0338-7. Nam KY, Kim HJ, Kwon BS, et al. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017,14(1):24. DOI: 10.1186/s12984-017-0232-3. Rathore A, Wilcox M, Ruminez DZ, et al. Quantifying the human-robot interaction forces between a lower imb exoskeleton and healthy users[J]. Annu Int Cord IEEE: Eng Med Biol Soc, 2016;016:86-5889. DOI: 10.1109/EMBC.2016.7590770. Patamakuha S, Ahmedy F, Setiono S, et al. Impacts of Bladder Managements and Urinary Complications on Quality of Life: Cross-sectional Perspectives of Persons With Spinal Cord Injury Living in Malaysia, Indonesia, and Thailand[J]. Am J Phys. Med. Rehabil, 2023;102(3):214-221. DOI: 10.1097/FHM.0000000000000066. Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: ED000142. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews? JMJ, 2013;72: a71. DOI: 10.1136/mj.71. Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Peliatric Motor Dioorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehabil. 2019.100(10): 1945-1963. Naser M, Fedorowicz Z, Grading the quality of evidence and strength of recommendations[]. Phys.			[12]	
 of 55 patients according to age and lesion level[J]. Neurosurg Focus, 2017;42(5):F15. DOI: 10.3171/2017.2.FOCUS171. Holanda LJ, Silva P, Amorim TC, et al. Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017;14(1):126. DOI: 10.1186/s12984-017-0338-7. Nam KY, Kim HJ, Kwon BS, et al. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017;14(1):126. DOI: 10.1186/s12984-017-0338-7. Rathore A, Wilcox M, Ramirez DZ, et al. Quantifying the human-robot interaction forces between a lower limb ecoskeleton and healthy users[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2016;2016:586-589. DOI: 10.1106/STMSC.2016.7390730. Rathore A, Wilcox M, Ramirez DZ, et al. Quantifying the human-robot interaction forces between a lower limb ecoskeleton and healthy users[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2016;2016:586-589. DOI: 10.1106/STMSC.2016.7390730. Holmorsia, and Thailand[J]. Am J Phys Med Rehabil, 2023;102(3):214-221. DOI: 10.107/PHA 000000000000000000 Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: ED000142. Filaman ST, Elshennawy S, Ayad MN Nominvasive Brain Stimulation for Rehabilitation of Pediatric Motor Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehabil. 2019.100(10): 1945-1963. Rathore K, Ali EA, Compalati E, et al. Grading quality of evidence and strength of recommendations: the GRADE approach to improving dental clinical guidelines and strength of recommendations. Sci. 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x. Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessi			[12]	
 10.3171/2017.2.FOCUS171. 113 Holanda LJ, Silva P, Amorim TC, et al. Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil. 2017,14(1):126. DOI: 10.1186/s12984-017-0338-7. 114 Nam KY, Kim HJ, Kwon BS, et al. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil. 2017,14(1):24. DOI: 10.1186/s12984-017-0232-3. 115 Rathore A, Wilcox M, Ramirez DZ, et al. Quantifying the human-robot interaction forces between a lower limb exoskeleton and healthy users[J]. Annu Int Conf IEEE Eng Med Biol Soc. 2016,2016.586-589. DOI: 10.1109/EMBC2016.7590770. 116 Pattanakuhar S, Ahmedy F, Settiono S, et al. Impacts of Bladder Managements and Urinary Complications on Quality of Life: Cross-sectional Perspectives of Persons With Spinal Cord Injury Living in Malaysia, Indonesia, and Thailand/JI. Am J Phys Med Rehabil, 2023,102(3):214-221. DOI: 10.1097/PHM.00000000000266. 117 Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: ED000142. 119 Elbarna ST, Elsbeenawy S, Ayad MN, Noninvasive Brain Simulation for Rehabilitation of Pediatric Motor Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehabil. 2019.100(10): 1945-1963. 120 Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M, Reliability of the DEDro scale for rating quality of randomized controlled trials. Phys Thet 200. 83(8): 713-21. 121 Rozzk M, Akl FA, Compalati F, et al. Grading quality of evidence and strength of recommendations; IJ Allery, 2011.66(19): S88-595. DOI: 10.1111/j.138-5995.2010.02530.x. 122 Brozzk J, Akl FA, Compalati F, et al. Grading quality of evidence and				
 247 [13] Holanda LJ, Silva P, Amorim TC, et al. Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017;14(1):126. DOI: 10.1186/s12984-017-0338-7. 250 [14] Nam KY, Kim HJ, Kwon BS, et al. Robot-assisted gait training (Lokomat) improves walking function and a civity in people with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017,14(1):24. DOI: 10.1186/s12984-017-0223-3. 253 [15] Rathore A, Wilcox M, Ramirez DZ, et al. Quantifying the human-robot interaction forces between a lower limb exoskeleton and healthy users[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2016;0216:586-589. DOI: 10.1109/EMBC.2016.7590770. 256 [16] Pattanakuhar S, Ahmedy F, Setione S, et al. Impacts of Bladder Maragements and Urinary Complications on Quality of Life: Cross-acctional Perspectives of Persons With Spinal Cord Injury Living in Malaysia, Indonesia, and Thailand[J]. Am J Phys Med Rehabil, 2023,102(3):214-221. DOI: 10.1097/PHM.000000000002066. 250 [17] Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: ED000142. 263 [18] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews/J]. BMJ, 2021,372:n71. DOI: 10.1136/bmi.p71. 265 [19] Elbanama ST, Elshennawy S, Ayad MN. Noninvasive Brian Stimulation for Rehabilitation of Pediatric Motor Disonders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehabil. 2019.100(10): 1945-1963. 266 [27] Maher CG, Sherrigton C, Herbert RD, Moseley AM, Elkins M. Rehability of the PEDro scale for rating quality of randomized controlled Trials. Phys Ther. 2003.83(8): 713-21. 276 [28] Maher CG, Sherrigton C, Herbert RD, Moseley AM, Elkins M. Rehab				
 spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017,14(1):126. DOI: 10.1186/s12984-017-0338-7. [14] Nam KY, Kim HJ, Kwon BS, et al. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017,14(1):24. DOI: 10.1186/s12984-017-0232-3. [15] Rathore A, Wilcox M, Ramirez DZ, et al. Quantifying the human-robot interaction forces between a lower limb exoskeleton and healthy users[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2016,2016:586-589. DOI: 10.1109/FDBRC 2016.7590770. [16] Pattanakuhar S, Ahmedy F, Settiona S, et al. Impacts of Bladder Managements and Urinary Complications on Quality of Life: Cross-sectional Perspectives of Persons With Spinal Cord Injury Living in Malaysia, Indonesia, and Thailand[J]. Am J Phys Med Rehabil, 2023,102(3):214-221. DOI: 10.1097/PHM.00000000002066. [17] Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: ED000142. [18] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews[J]. BMJ, 2021,372:n71. DOI: 10.1136/bmj n71. [19] Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehabil. 2019. 100(10): 1945-1963. [20] Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M, Rehability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21. [21] Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations]: the GRADE approach to developing recommendations]: the GRADE approach to developing recommendations[J]. Allergy, 2011,66([13]	
 249 0.338-7. 250 [14] Nam KY, Kim HJ, Kwon BS, et al. Robot-assisted gait training (Lokomat) improves walking function and activity in poople with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017,14(1):24. DOI: 10.1186/s12984-017-0232-3. 253 [15] Rathore A, Wilcox M, Ramirez DZ, et al. Quantifying the human-robot interaction forces between a lower limb exoskeleton and healthy users[J]. Annu Int Corl IEEE Eng Med Biol Soc, 2016,2016:586-589. DOI: 10.1109/EMBC.2016.7590770. 256 [16] Pattanakuhar S, Ahmedy F, Setions S, et al. Impacts of Bladder Managements and Urinary Complications on Quality of Life Cross-sectional Perspectives of Persons With Spinal Cord Injury Living in Malaysia, Indonesia, and Thailand[J]. Am J Phys Med Rehabil, 2023,102(3):214-221. DOI: 10.1097/PHIM 000000000002066 260 [17] Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: ED000142. 263 [18] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews: J]. BMJ, 2021,372:n71. DOI: 10.1136/bmj n71. 264 [19] Elbanna ST, Elbhenawy S, Ayad MN. Nointvasive Brain Stimulation for Rehabilitation of Pediatric Motor Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehability of randomized controlled trials. Phys Ther. 2003. 83(8): 715-21. 270 [21] Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1): 0. DOI: 10.1590/s1678-7757201100010001. 273 [21] Brożek J., Akt E.A, Complati F, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendation			[10]	-
 16 250 [14] Nam KY, Kim HJ, Kwon BS, et al. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017,14(1):24. DOI: 10.1186/s12984-017-0232-3. 253 [15] Rathore A, Wilcox M, Ramirez DZ, et al. Quantifying the human-robot interaction forces between a lower limit ecoskeleton and healthy users[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2016,2016.586-589. DOI: 10.1109/EMBC.2016.7590770. 256 [16] Pattanakubar S, Ahmedy F, Setions S, et al. Impacts of Bladder Managements and Urinary Complications on Quality of Life: Cross-sectional Perspectives of Persons With Spinal Cord Injury Living in Malaysia, Indonesia, and Thailand[J]. Am J Phys Med Rehabil, 2023,102(3):214-221. DOI: 10.1097/PHM.000000000000666. 260 [17] Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: ED000142. 263 [18] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews[J]. BMJ, 2021,372:n71. DOI: 10.1136/bmj n71. 264 [269 [19] Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehabil, 2019. 100(10): 1945-1963. 276 [20] Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Rehability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21. 277 [21] Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations; in elinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy, 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x. 276 [23] Sterne				
 activity in people with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017,14(1):24. DOI: 10.1186/s12984-017-0232-3. [15] Rathore A, Wilcox M, Ramirez DZ, et al. Quantifying the human-robot interaction forces between a lower limb exoskeleton and heathry users[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2016,2016;586-589. DOI: 10.1109/EMBC:2016.7590770. [16] Pattanakuhar S, Ahmedy F, Setiono S, et al. Impacts of Bladder Managements and Urinary Complications on Quality of Life: Cross-sectional Perspectives of Persons With Spinal Cord Injury Living in Malaysia, Indonesia, and Thailand[J]. Am J Phys Med Rehabil, 2023,102(3):214-221. DOI: 10.1097/PHM.000000000002066. [17] Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: ED000142. [18] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews[J]. BMJ, 2021,372:n71. DOI: 10.1136/bmj.n71. [19] Eibanna ST, Elshennawy S, Ayad MN. Nonirvasive Brain Stimulation for Rehabilitation of Pediatric Motor Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehabil. 2019. 100(10): 1945-1963. [20] Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther: 2003. 83(8): 713-21. [21] Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations; IP 306/s1678- 77572011000100001. [22] Breżek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The GRADE: approach to developing recommendations[J]. Allergy. 2011.66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x. [23] Sterne J, Savovic	16		[14]	
 252 10.1186/s12984-017-0232-3. 253 [15] Rathore A, Wilcox M, Ramirez DZ, et al. Quantifying the human-robot interaction forces between a lower limb exoskeleton and healthy users[J]. Annu Int Conf IEEE Eng Med Biol See, 2016;2016:586-589. DOI: 10.1109/EMBC.2016.7590770. 256 [16] Pattanakubar S, Ahmedy F, Setions S, et al. Impacts of Bladder Managements and Urinary Complications on Quality of Life: Cross-sectional Perspectives of Persons With Spinal Cord Injury Living in Malaysia, Indonesia, and Thailand[J]. Am J Phys Med Rehabil, 2023;102(3):214-221. DOI: 10.1097/FHM.00000000000006. 260 [17] Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: ED000142. 263 [18] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews[J] BMJ, 2021;372:n71. DOI: 10.1136/bmj.n71. 264 [19] Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor Diorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehabil. 2019. 100(10): 1945-1963. 268 [20] Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther: 2003. 83(8): 713-21. 276 [21] Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011.19(1):0. DOI: 10.1590/s1678- 77572011000100001. 277 [21] Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy, 2011.66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530x. 276 [23] Eisten J, Xavoivi J, Page MJ, et al. RoB2			[]	
 253 [15] Rathore A, Wilcox M, Ramirez DZ, et al. Quantifying the human-robot interaction forces between a lower 254 limb exoskeleton and healthy users[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2016,2016;586-589. DOI: 255 10.1109/EMBC.2016.7590770. 256 [16] Pattanakuhar S, Ahmedy F, Setiono S, et al. Impacts of Bladder Managements and Urinary Complications 257 on Quality of Life: Cross-sectional Perspectives of Persons With Spinal Cord Injury Living in Malaysia, 258 Indonesia, and Thailand[J]. Am J Phys Med Rehabil, 2023,102(3):214-221. DOI: 259 10.1097/PHM.00000000002066. 260 [17] Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the 261 Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: 262 ED000142. 263 [18] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting 264 systematic reviews[J]. BMJ, 2021;372:n71. DOI: 10.1136/bmj.n71. 265 [19] Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation of Rehabilitation of Pediatric Motor 266 Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med 267 Rehabil. 2019. 100(10): 1945-1963. 268 [20] Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating 269 quality of randomized controlled trials. Phys Ther. 2003 83(8): 713-21. 270 [21] Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations in 271 approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678- 272 7752011000100001. 273 [22] Brozek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in				
 254 limb exoskeleton and healthy users[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2016,2016;586-589. DOI: 10.1109/EMBC.2016.7590770. 255 [16] Patanakuhar S, Ahmedy F, Setiono S, et al. Impacts of Bladder Managements and Urinary Complications on Quality of Life: Cross-sectional Perspectives of Persons With Spinal Cord Injury Living in Malaysia, Indonesia, and Thailand[J]. Am J Phys Med Rehabil, 2023,102(3):214-221. DOI: 10.1097/FHM.00000000000266. 260 [17] Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: ED000142. 263 [18] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews[J]. BMJ, 2021;372:n71. DOI: 10.1136/bmj n71. 265 [19] Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehabil. 2019. 100(10): 1945-1963. 268 [20] Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21. 277 [21] Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678- 77572011000100001. 273 [22] Brozek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations[J]. Allergy, 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x. 276 [23] Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J]. BMJ, 2019,366:14898. DOI: 10.1136/bmj144898. 278 [24] Hinggins JP, Thompson SG, Quantifying heterogeneity in a			[15]	
 255 10.1109/EMBC.2016.7590776. 256 [16] Patanakuhar S, Ahmedy F, Setiono S, et al. Impacts of Bladder Managements and Urinary Complications on Quality of Life: Cross-sectional Perspectives of Persons With Spinal Cord Injury Living in Malaysia, Indonesia, and Thailand[J]. Am J Phys Med Rehabil, 2023,102(3):214-221. DOI: 10.1097/PIM.00000000000002066. 260 [17] Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: ED000142. 263 [18] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews[J]. BMJ, 2021,372:n71. DOI: 10.1136/bmj.n71. 264 Systematic Reviews JJ, BMJ, 2021,372:n71. DOI: 10.1136/bmj.n71. 265 [19] Elbanna ST, Elshennawy S, Ayad MN. Nonirvasive Brain Stimulation for Rehabilitation of Pediatric Motor Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehabil. 2019. 100(10): 1945-1963. 268 [20] Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21. 270 [21] Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678- 77572011000100001. 273 [22] Brozek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations[J]. Allergy 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x. 276 [23] Steme J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J]. BMJ, 2019,366:14888. DOI: 10.1136/bmj.14898. 278 [24] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. S			L - J	
 256 [16] Pattanakuhar S, Ahmedy F, Setiono S, et al. Impacts of Bladder Managements and Urinary Complications on Quality of Life: Cross-sectional Perspectives of Persons With Spinal Cord Injury Living in Malaysia, Indonesia, and Thailand[J]. Am J Phys Med Rehabil, 2023,102(3):214-221. DOI: 10.1097/PHM.00000000002066. 260 [17] Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: ED000142. 263 [18] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews[J]. BMJ, 2021,372:n71. DOI: 10.1136/bmj.n71. 265 [19] Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehabil. 2019. 100(10): 1945-1963. 268 [20] Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21. 271 approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678- 77572011000100001. 273 [21] Brozek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy, 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x. 276 [23] Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J]. BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898. 278 [24] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539- 1588. DOI: 10.1002/sin.1186. 280 [25] Li J, Zhong D, Ye J, et al. Rehabilitation for balance im				
 257 257 on Quality of Life: Cross-sectional Perspectives of Persons With Spinal Cord Injury Living in Malaysia, 1ndonesia, and Thailand[J]. Am J Phys Med Rehabil, 2023,102(3):214-221. DOI: 10.1097/PHM.000000000002066. 259 260 260 [17] Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: ED000142. 262 263 [18] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews[J]. BMJ, 2021;372:n71. DOI: 10.1136/bmj.n71. 265 [19] Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehabil. 2019. 100(10): 1945-1963. 268 [20] Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21. 270 [21] Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678- 77572011000100001. 273 [22] Brozek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy, 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x. 276 277 BMJ, 2019,366:14898. DOI: 10.11136/bmj.14898. 278 278 274 275 Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol o			[16]	
 258 Indonesia, and Thailand[J]. Am J Phys Med Rehabil, 2023,102(3):214-221. DOI: 10.1097/PHM.000000000000066. 260 [17] Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: ED000142. 262 ED000142. 263 [18] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews[J]. BMJ, 2021,372:n71. DOI: 10.1136/bmj.n71. 264 Systematic reviews[J]. BMJ, 2021,372:n71. DOI: 10.1136/bmj.n71. 265 [19] Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehabil. 2019. 100(10): 1945-1963. 268 [20] Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21. 270 [21] Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678-77572011000100001. 273 [22] Brożek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy, 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x. 276 [23] Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J]. BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898. 277 BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898. 278 [24] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539-1558. DOI: 10.1002/sim.1186. 280 [25] Li J, Zhong D, Ye J, et al. Rehabilitation for				
 259 10.1097/PHM.00000000002066. 260 [17] Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the 261 Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: 262 ED000142. 263 [18] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews[J]. BMJ, 2021,372:n71. DOI: 10.1136/bmj.n71. 264 Systematic Reviews[J]. BMJ, 2021,372:n71. DOI: 10.1136/bmj.n71. 265 [19] Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehabil. 2019. 100(10): 1945-1963. 268 [20] Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21. 270 [21] Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678- 77572011000100001. 273 [22] Brożek JL., Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy, 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x. 276 [23] Sterme J, Savović J, Page MJ, et al. RobB 2: a revised tool for assessing risk of bias in randomised trials[J]. BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898. 278 [24] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539- 1558. DOI: 10.1002/sim.1186. 280 [25] Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.		258		
 Compston M, Li T, Fage MJ, et al. Optated guidance to fusced systematic reviews. a new entition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10: ED000142. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews[J]. BMJ, 2021,372:n71. DOI: 10.1136/bmj.n71. Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehabil. 2019. 100(10): 1945-1963. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21. Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678-77572011000100001. Brozek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy, 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x. Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J]. BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898. Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen-2018-026844. Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot for streme analysis [J]. Stat Med, 2002,21(11):1539-1558. DOI: 10.102/sim.1186. 				
 261 Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019, 10: ED000142. 262 ED000142. 263 [18] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews[J]. BMJ, 2021,372:n71. DOI: 10.1136/bmj.n71. 265 [19] Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehabil. 2019. 100(10): 1945-1963. 268 [20] Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21. 270 [21] Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678-7752711000100001. 273 [22] Brozek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy, 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x. 276 [23] Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J]. BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898. 278 [24] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539-1558. DOI: 10.10136/bmj.14898. 278 [25] Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen-2018-026844. 283 [26] Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot 		260	[17]	Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the
32262ED000142.33263[18]Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting34264systematic reviews[J]. BMJ, 2021,372:n71. DOI: 10.1136/bmj.n71.36265[19]Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor37266Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med38267Rehabil. 2019. 100(10): 1945-1963.40268[20]Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating41269quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21.42270[21]Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE43approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678-44271approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678-472273[22]874clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy,482742011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x.50276[23]51277BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898.52278[24]53278[24]54279558. DOI: 10.1002/sim.1186.55280[25]5628157<		261		
 200 [18] Fage MJ, MCKERE JE, BOSAYT M, CHE, FR. TRE TREME SED STATE. The Probability of an experiment of reporting systematic reviews JJ. BMJ, 2021,372:n71. DOI: 10.1136/bmj.n71. 265 [19] Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med Rehabil. 2019. 100(10): 1945-1963. 268 [20] Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21. 270 [21] Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678-77572011000100001. 273 [22] Brozek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy, 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x. 276 [23] Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J]. 277 BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898. 278 [24] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539-1558. DOI: 10.1002/sim.1186. 280 [25] Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen-2018-026844. 283 [26] Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot 		262		ED000142.
 systematic reviews[J]. BMJ, 2021,372:n71. DOI: 10.1136/bmj.n71. 265 [19] Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor 266 Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med 267 Rehabil. 2019. 100(10): 1945-1963. 268 [20] Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating 269 quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21. 270 [21] Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE 271 approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678- 272 77572011000100001. 273 [22] Brozek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in 274 clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy, 275 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x. 276 [23] Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J]. 277 BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898. 278 [24] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539- 158. DOI: 10.1002/sim.1186. 280 [25] Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen- 2018-026844. 283 [26] Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot 		263	[18]	Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting
36265[19]Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor37266Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med38267Rehabil. 2019. 100(10): 1945-1963.40268[20]Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating41269quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21.42270[21]Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE43271approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678-4527277572011000100001.46273[22]8rozek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in47clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy,492752011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x.50276[23]Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J].51277BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898.53278[24]Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539-542791558. DOI: 10.1002/sim.1186.55280[25]Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a56 <t< td=""><td></td><td>264</td><td></td><td>systematic reviews[J]. BMJ, 2021,372:n71. DOI: 10.1136/bmj.n71.</td></t<>		264		systematic reviews[J]. BMJ, 2021,372:n71. DOI: 10.1136/bmj.n71.
38267Rehabil. 2019. 100(10): 1945-1963.39268[20]Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21.41269quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21.42270[21]Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678- 77572011000100001.46273[22]Brożek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy, 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x.50276[23]Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J].51277BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898.53278[24]Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539-542791558. DOI: 10.1002/sim.1186.55280[25]Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen- 2018-026844.59283[26]Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot		265	[19]	Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor
39267Renabil. 2019. 100(10): 1943-1965.40268[20]Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21.41269quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21.42270[21]Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678- 77572011000100001.46273[22]Brożek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy, 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x.50276[23]Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J]. BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898.53278[24]Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539- 1558. DOI: 10.1002/sim.1186.55280[25]Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen- 2018-026844.59283[26]Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot		266		Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med
40268[20]Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating41269quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21.42270[21]Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE43271approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678-4527277572011000100001.46273[22]8rożek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in47clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy,492752011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x.50276[23]51277BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898.53278[24]542791558. DOI: 10.102/sim.1186.55280[25]Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a57281systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen-58283[26]59283[26]50283[26]51Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot		267		Rehabil. 2019. 100(10): 1945-1963.
41269quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21.42270[21]Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE43271approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678-4527277572011000100001.46273[22]Brożek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in47274clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy,492752011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x.50276[23]Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J].51277BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898.53278[24]Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539-542791558. DOI: 10.1002/sim.1186.55280[25]Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a57281systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen-58283[26]Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot		268	[20]	Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating
 Yasser M, Fedorovicz Z. Orading the quarity of evidence and strength of recommendations. the OKADE approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678-77572011000100001. 273 [22] Brożek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy, 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x. 276 [23] Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J]. 277 BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898. 278 [24] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539-1558. DOI: 10.1002/sim.1186. 280 [25] Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen-2018-026844. 283 [26] Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot 	41	269		quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21.
44271approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678-4527277572011000100001.46273[22]Brożek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy,492752011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x.50276[23]Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J].51277BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898.53278[24]Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539-542791558. DOI: 10.1002/sim.1186.55280[25]Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen- 28858283[26]Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot		270	[21]	Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE
4527277572011000100001.46273[22]Brożek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy, 275492752011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x.50276[23]Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J].51277BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898.53278[24]Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539-542791558. DOI: 10.1002/sim.1186.55280[25]Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen- 283582822018-026844.59283[26]Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot		271		approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678-
 47 274 clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy, 49 275 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x. 50 276 [23] Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J]. 51 277 BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898. 52 278 [24] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539- 54 279 1558. DOI: 10.1002/sim.1186. 55 280 [25] Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen- 58 282 2018-026844. 59 283 [26] Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot 	45	272		77572011000100001.
 274 clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy, 275 2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x. 276 [23] Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J]. 277 BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898. 278 [24] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539- 279 1558. DOI: 10.1002/sim.1186. 280 [25] Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen- 282 2018-026844. 283 [26] Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot 		273	[22]	Brożek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in
492752011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x.50276[23]Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J].51277BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898.52278[24]Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539-542791558. DOI: 10.1002/sim.1186.55280[25]Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a57281systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen-582822018-026844.59283[26]Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot		274		clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy,
51277BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898.52278[24]Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539-542791558. DOI: 10.1002/sim.1186.55280[25]Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a56281systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen-582822018-026844.59283[26]6026]Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot	49	275		2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x.
52277BMJ, 2019, 566:14898. DOI: 10.1136/bmJ.14898.53278[24]Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539-542791558. DOI: 10.1002/sim.1186.55280[25]Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a56281systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen-582822018-026844.59283[26]60Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot		276	[23]	Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J].
53278[24]Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539-542791558. DOI: 10.1002/sim.1186.55280[25]Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a56281systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen-582822018-026844.59283[26]Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot		277		BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898.
55 56 56 57280 281[25]Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen- 2018-026844.58 59 60283[26]Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot		278	[24]	Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539-
 56 [25] El 3, Zhông D, Te 3, et al. Renaonitation for balance impainment in patients after stoke. a protocol of a systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen-2018-026844. 59 283 [26] Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot 				1558. DOI: 10.1002/sim.1186.
 57 281 systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen- 58 282 2018-026844. 59 283 [26] Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot 			[25]	
59 283 [26] Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot 60				
60				
		283	[26]	Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot
				11

284 285 286	asymmetry in meta-analyses of randomised controlled trials[J]. BMJ, 2011,343:d4002. DOI: 10.1136/bmj.d4002.
287	Figure: Flow chart of meta-analysis for robotic-assisted gait training in patients with spinal
288	cord injury.

BMJ Open

Effect of robotic-assisted gait training on gait and motor function in spinal cord injury: a protocol of a systematic review with meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-070675.R2
Article Type:	Protocol
Date Submitted by the Author:	05-Jun-2023
Complete List of Authors:	wang, lei; Hunan Provincial People's Hospital, peng, lin; Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology chen, lian; Hunan Provincial People's Hospital
Primary Subject Heading :	Rehabilitation medicine
Secondary Subject Heading:	Rehabilitation medicine, Neurology
Keywords:	REHABILITATION MEDICINE, NEUROSURGERY, Neurological injury < NEUROLOGY

BMJ Open

2		
3		
4	1	Effect of robotic-assisted gait training on gait and motor function in spinal cord
5		
6		
7	2	injury: a protocol of a systematic review with meta-analysis
8		
9	3	
10	_	
11		
12	4	First author:
13		
14	5	Lei Wang, wangleipx168@163.com, Department of Rehabilitation Medicine, Hunan Provincial
15		
16		
17	6	People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005,
18		
19		
	7	Hunan, Peoples R China
20		
21		
22	8	Jin-lin Peng(lin-jin Peng), pjlkim@163.com, Tongji Hospital, Tongji Medical College,
23	Ũ	om mitteng(mijmiteng), planing toereon, tongjitospian, tongji fitenem conege,
24		
25	9	Huazhong University of Science & Technology, Wuhan 430000, Hubei Province, China.
	-	
26		
27	10	Corresponding Author:
28		corresponding random v
29		
30	11	Ai-lian Chen (lian-ai Chen), <u>652326303@qq.com</u> , Department of Rehabilitation Medicine, Hunan
31		
32		
	12	Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University),
33		
34		
35	13	Changsha 410005, Hunan, Peoples R China.
36		
37		
38	14	(Note: The name in the article is correct, and the name in parentheses comes from ScholarOne.
39		
40	15	As ScholarOne cannot modify the name, it is hereby stated in the article)
41		
42		
43	16	
44		
45		
	17	
46		
47		
48	18	
49		
50		
51	19	
	-	
52		
53	20	
54	_•	
55		
56	21	
57		
58		
	22	
59		
60		<i>,</i>
		1

23	
24	Effect of robotic-assisted gait training on gait and motor function in spinal cord
25	injury: a protocol of a systematic review with meta-analysis
26	Abstract :
27	Introduction: Robotic-assisted gait training (RAGT) has been reported to be effective in
28	rehabilitating patients with spinal cord injury (SCI). However, studies on RAGT showed different
29	results due to a varied number of samples. Thus, summarising studies based on robotic-related
30	factors is critical for the accurate estimation of the effects of RAGT on SCI. This work aims to
31	search for strong evidence showing that using RAGT is effective in treating SCI and analyse the
32	deficiencies of current studies.
33	Methods and analysis: The following publication databases were electronically searched in
34	December 2022 without restrictions on publication year: Medline, Cochrane Library, Web of
35	Science, Embase, PubMed, the Cochrane Central Register of Controlled Trials and China National
36	Knowledge Infrastructure. Various combinations of keywords, including 'motor disorders',
37	'robotics', 'robotic-assisted gait training', 'Spinal Cord Injuries', 'SCI' and 'gait analysis' were
38	used as search terms. All articles on randomised controlled trials (excluding retrospective trials)
39	using RAGT to treat SCI that were published in English and Chinese and met the inclusion criteria
40	were included. Outcomes included motor function, and gait parameters included those assessed by
41	using the instrumented gait assessment, the Berg balance scale, the 10-m walk speed test, the 6-min
42	walk endurance test, the functional ambulation category scale, the Walking index of SCI and the
43	ASIA assessment scale. Research selection, data extraction and quality assessment were conducted
44	independently by two reviewers to ensure that all relevant studies were free from personal bias. In

3
4
5
6 7 8 9
7
8
0
10
11
12
13
14
15 16 17 18
16
17
10
10
19
20
21
22
23
24
25
26
26 27 28
27
28
29
30
31
32
33
34
35
36
30 77
37 38
39
40
41
42
43
44
45
45
47
48
49
50
51
52
53
54
54 55
55
56
57
58
59
60

45 addition, the Cochrane Bias Risk Assessment Tool was used to assess the risk of bias. Review
46 Manager V.5.3 software was utilised to produce deviation risk maps and perform paired meta47 analyses.

- 48 Strengths and limitations of this study
- 49 1. This study was the first meta-analysis to systematically evaluate the efficacy and safety of RAGT

50 in the treatment of SCI.

- 51 2. The results of this study provided evidence for the treatment of SCI patients and helped therapists
- 52 and patients to choose appropriate treatment methods.
- 53 3. Two reviewers independently conducted research selection, data extraction and quality
- 54 assessment to ensure that all relevant studies were free from personal bias.
- 55 4. The language categories of the research search were only included in English and Chinese, and
- 56 the final search results would have some bias.
- 57 Key words: Spinal Cord Injuries; Motor disorders; Rehabilitation; Robotics, Gait Analysis
- 58 Ethics and dissemination: Ethics approval is not required for systematic reviews and network
- 59 meta-analyses. The results will be submitted to a peer-reviewed journal or presented at a conference.
- 60 Trial registration number: PROSPERO (CRD42022319555).
- 61 Introduction
- 62 Spinal cord injury (SCI) is a serious disabling disease that often causes paraplegia or quadriplegia
- 63 and affects patient's sensory, motor and autonomic nervous functions^[1, 2]. SCI leads to various
- 64 complications, such as pressure ulcers, lung infections and urinary tract infections^[3]. It also affects
- 65 patients' quality of life and living standard and imposes a heavy burden on families^[4] and society.
- 66 It ultimately shortens patients' life expectancy^[5]. In addition, the mortality rate of patients with SCI

is higher than that of the general population ^[6-8]. National statistical data show an increasing incidence rate of SCI annually, and that the incidence rate of SCI per million residents is 9.3 persons/year^[9]. During the rehabilitation treatment of SCI, improving the walking ability, self-care ability and self-esteem of patients is an important aspect that helps them return to society and reduces their costs. Therefore, increased exercise capacity of the lower limbs is crucial to daily independence and social reintegration for this population, which mainly functions in standing and walking^[10, 11]. Robot-assisted gait training (RAGT) can improve the walking ability^[12], lower limb strength and independence of patients with incomplete SCI^[13]. RAGT can also improve balance function^[14] and has been gradually applied in patients with SCI. In patients with SCI, robots for lower limb rehabilitation can effectively and safely improve walking ability; reduce pressure ulcers^[15], lung infections^[8], urinary tract infections and other complications^[16]; improve dignity; and reduce costs. However, high-quality evidence-based medical studies that systematically evaluated the efficacy of RAGT in the treatment of SCI remain scarce.

81 Therefore, summarising studies based on RAGT-related factors is critical for the accurate estimation 82 of the effects of RAGT on SCI. This meta-analysis aims to systematically evaluate the efficacy of 83 RAGT in alleviating motor dysfunction and restoring speech ability in patients with SCI based on 84 randomised clinical trials (RCTs), find strong evidence demonstrating that using RAGT is effective 85 in the treatment of SCI and analyse the deficiencies of current studies.

86 Methods

87 The protocol of this systematic review was planned and conducted following the Preferred
88 Reporting Items for Systematic Reviews and Meta-Analyses Protocols Guideline ^[17] and PRISMA

BMJ Open

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55 54
55
56
57
58
59
60

2020 guidelines ^[18] and was performed following a protocol registered in PROSPERO
(CRD42022319555). The plan starts on March 1, 2023 and ends on June 1. The review
process is shown in Figure 1.

92 Search strategy

93 Two reviewers (Jin-lin Peng and Lei Wang) electronically searched the following publication 94 databases in December 2022 without restrictions on publication year: Medline, Cochrane Library, 95 Web of Science, Embase, PubMed, the Cochrane Central Register of Controlled Trials and China 96 National Knowledge Infrastructure. Various combinations of keywords, including 'motor disorders', 97 'robotics', 'robotic-assisted gait training', 'Spinal Cord Injuries', 'SCI' and 'gait analysis' were 98 used as search terms. The key terms matched the appropriate Medical Subject Heading terms. 99 Presearches were performed. Then, the final search was conducted, relevant journals and references 100 of review articles were manually searched online to identify papers that may have been missed in

101 the electronic database searches.

102 Eligibility criteria

103 Inclusion criteria

104 (1) Study design: Only RCTs were included. (2) Selected population: Participants diagnosed with
105 SCI, namely, individuals with any level of traumatic SCI, regardless of the time since injury, sex
106 and age were included. (3) Type of intervention: The experimental groups received RAGT or RAGT
107 combined with other physical therapies. The control group not received RAGT or received other
108 types of physical therapy. (4) Comparison: The treated subjects were compared at baseline and then
109 with the control or sham-stimulated subjects. (5) Type of outcomes measured: Gait analysis
110 indicators, including gait speed (m/s), step length (cm), double support phase (% walking cycle),

single support phase (% walking cycle) and symmetry index; Berg balance scale; ASIA assessment scale; Holden walking ability classification (functional ambulation category scale); 10-m walk speed test; 6-min walk endurance test; and WISCI I score. **Exclusion criteria** Studies involving animal research, conference research, protocol studies or computer model research and duplicate papers were excluded. Two reviewers (Jin-lin Peng and Lei Wang) independently screened titles and abstracts to identify articles reporting studies that met the inclusion criteria. Then, the full-text versions of the identified articles were obtained and separately screened to ensure that they met the inclusion criteria. Moreover, a third reviewer (Ai-lian Chen) made the final assessment regarding whether or not full-text papers met the inclusion criteria. **Data extraction** A reviewer (Lei Wang) prepared the general information and data collection process by another reviewer (Jin-lin Peng). The format of data collection included research design, participants (number, diagnosis, age and target population numbers in each group), eligibility criteria, intervention used on the research group and control group (i.e. site of stimulation, intensity, number of sessions and time of each session) and outcomes of interest. Quality assessment The quality evaluation of the included studies was performed independently by two reviewers (Jin-lin Peng and Lei Wang) and was revised by the third reviewer (Ai-lian Chen). The methodological quality of the intervention studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. The PEDro scale is a valid and reliable measure of the methodological quality of RCTs. This 10-item scale is based on the core criteria for RCT quality assessment^[19]. The quality of papers was

BMJ Open

classified based on the PEDro scale. Studies with scores of less than 6 points were considered low-

quality studies, whereas those with scores equal to or greater than 6 points were considered high-quality studies (scores of 6–7 indicate good quality and 8–10 indicate excellent quality)^[20]. The GRADEpro GDT online tool was used to evaluate the level of evidence quality of the outcome indicators. The tool is available at its official website http://www.guidelinedevelopment.org/. The GRADEpro GDT online tool for evaluating the quality of outcome indicators includes five degrading factors, namely, risk of bias, inconsistency, indirectness, imprecision and other considerations^[21]. The quality of evidence can be divided into four levels, namely, 'high', 'moderate', 'low' and 'very low'^[22]. Risk-of-bias assessment of individual studies The quality of the included studies was evaluated and their scores were compared in a consensus meeting between two independent authors (Jin-lin Peng and Lei Wang) to minimise errors and potential biases in the evaluation. However, in the event of any disagreement, a third author (Ai-lian Chen) was included in the discussion for a final consensus. The Cochrane Risk of Bias 2.0 tool^[23] was used to assess the articles' risk of bias. Each article was assessed for selection bias (random sequence generation and allocation concealment), performance bias (blinding of participants and personnel), detection bias (blinding of outcome assessment), attrition bias (incomplete outcome data reporting) and reporting bias (selective outcome reporting). Each domain was rated as high risk of bias, unclear of bias or low risk of bias. The risk map of the biases of the studies' quality was prepared with Review Manager 5.3.

- 153 Patient and Public Involvement
- 154 No patient participated in writing the system review plan. However, the results were disseminated

to patients with SCI.

Statistical analysis

A meta-analysis was conducted using Review Manager 5.3. Heterogeneity between studies was evaluated based on the I^2 statistic for the quantification of the proportion of the total outcome attributable to variability amongst studies. The following ranges were defined: $I^2 = 0\%-30\%$ (no heterogeneity), $I^2 = 30\%-49\%$ (moderate heterogeneity), $I^2 = 50\%-74\%$ (substantial heterogeneity) and $I^2 = 75\% - 100\%$ (considerable heterogeneity)^[24]. Based on heterogeneity, a random-effects model was used when $I^2 > 30\%$, and a fixed-effects model was utilised when $I^2 = 0\% - 30\%$.

For the comparison of data from different scales, pooled statistics were calculated using standardised mean differences (SMDs). Furthermore, means and standard deviations after intervention and follow-up evaluation for the RAGT and control groups (when relevant) were olle applied to compute SMDs.

Addressing missing data

Regarding missing data, the original author was contacted for additional information. In the absence of a reply, the data was calculated based on the availability factor. The potential effect of the missing data on meta-analysis results was tested through sensitivity analysis.

Subgroup analysis

Analysis results showed a situation wherein heterogeneity was high and subgroup analysis was required. Grouping analysis was conducted based on age (children, adolescents, middle-aged and elderly), SCI level (cervical, thoracic and lumbar), disease course (recovery and sequelae), treatment prescription and treatment duration to address potential heterogeneity and inconsistency. A meta-

analysis was also conducted to explore possible sources of heterogeneity.

2
3
4
5
6
0
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
58 59
60

177 Sensitivity analysis

178 Sensitivity analysis was conducted on the main results to assess the effect of method quality,

179 research quality, sample size, missing data and analysis methods on the results of this review to

180 verify the robustness of the research conclusion ^[25].

181 Assessment of publication bias

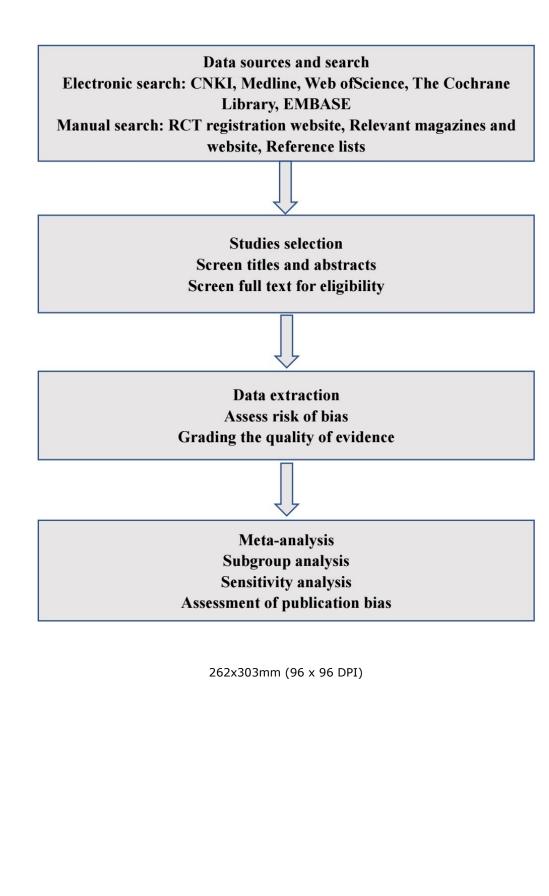
Each included study was evaluated based on the PEDro scale. Funnel charts were used to assess the
publication bias of the main results included in the study. However, when the funnel chart was
asymmetrical, attempts were made to explain its asymmetry ^[26].

185 Discussion

186 RAGT can improve the walking ability of patients with incomplete SCI and can be used by patients 187 with stable vital signs. For patients with complete SCI, RAGT primarily acts to maintain the range 188 of motion of joints. In recent years, there is an increasing number of studies on using RAGT to 189 improve walking ability in SCI, and the new exoskeleton robot for lower limb rehabilitation has 190 shown the advantage of safe transfer. Our current query shows that our work is the first systematic 191 review and meta-analysis on RAGT for patients with SCI. The results of this meta-analysis can help 192 patients and therapists select the appropriate treatment method for SCI and improve new options 193 based on the comparative evidence for effectiveness and safety. Therefore, we hope that the results 194 of this study will provide evidence for guideline recommendations. 195 **Study limitations** 196 Articles published in both Chinese and English were included. Articles in other languages were not

197 included, and their exclusion may affect our research. When incorporating outcome indicators, all

198 data were sourced from scale evaluation and gait analysis instruments. The lack of research results


1		
2		
3	100	
4 5	199	on neural mechanisms may have had a certain effect on this study.
6	200	Data Availability
7	201	The datasets used and analysed in the current study are included in this article.
8	202	The datasets used and analysed in the earlent study are mended in this article.
9		
10	203	Ethical Approval
11 12	204	This research is a review, does not involve ethical issues and did not apply for ethical approval.
12	205	
14	206	Funding
15	207	This study has no funding support.
16	208	
17	209	Disclosure
18 10		
19 20	210	All authors have read and approved the final manuscript.
20	211	
22		
23	212	Contributors
24	212	Contributors
25		\sim
26 27	213	As the first authors, WL and P-JL have made equal contributions to this work. WL and C-AL for
27 28		
29	214	research concept and design. WL and P-JL are responsible for data acquisition. WL and P-JL made
30		
31	215	the draft, and C-AL did the supervision. All the authors approved the publication of the Protocol.
32		
33	216	
34 35	0.47	
36	217	Conflicts of Interest
37		
38	218	All authors declare no potential conflicts of interest with respect to the research, authorship and/or
39		
40	219	publication of this study.
41		1 5
42 43	000	References
44	220	publication of this study. References
45	221	[1] Eckert MJ, Martin MJ. Trauma: Spinal Cord Injury[J]. Surg Clin North Am, 2017,97(5):1031-1045. DOI:
46	222	10.1016/j.suc.2017.06.008.
47	223	[2] Anjum A, Yazid MD, Fauzi Daud M, et al. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions,
48	224	
49 50		and Underlying Recovery Mechanisms[J]. Int J Mol Sci, 2020,21(20)DOI: 10.3390/ijms21207533.
50 51	225	[3] Stricsek G, Ghobrial G, Wilson J, et al. Complications in the Management of Patients with Spine Trauma[J].
52	226	Neurosurg Clin N Am, 2017,28(1):147-155. DOI: 10.1016/j.nec.2016.08.007.
53	227	[4] Zhang JM, Li N, Zhu L, et al. Effects of pelvic floor biofeedback electrical stimulation combined with lower
54	228	limb rehabilitation robot training on intestinal function of patients with spinal cord injury [J]. Journal of Brain
55	229	and Nervous Diseases,2021,29(01):53-57.
56	230	[5] Xiang XN, Zhong HY, He HC. Research progress of lower limb exoskeleton rehabilitation robot in
57 58	231	improving walking ability of patients with spinal cord injury [J]. Chinese Journal of Rehabilitation
58 59		
60	232	Medicine,2020,35(01):119-122. DOI: CNKI:SUN:ZGKF.0.2020-01-024

BMJ Open

2			
3 4	233	[6]	Buzzell A, Chamberlain JD, Eriks-Hoogland I, et al. All-cause and cause-specific mortality following non-
5	234		traumatic spinal cord injury: evidence from a population-based cohort study in Switzerland[J]. Spinal Cord,
6	235		2020,58(2):157-164. DOI: 10.1038/s41393-019-0361-6.
7	236	[7]	Mirzaeva L, Lobzin S, Tcinzerling N, et al. Complications and mortality after acute traumatic spinal cord
8 9	237		injury in Saint Petersburg, Russia[J]. Spinal Cord, 2020,58(9):970-979. DOI: 10.1038/s41393-020-0458-y.
9 10	238	[8]	Li R, Ding M, Wang J, et al. Effectiveness of robotic-assisted gait training on cardiopulmonary fitness and
11	239		exercise capacity for incomplete spinal cord injury: A systematic review and meta-analysis of randomized
12	240		controlled trials[J]. Clin Rehabil, 2023,37(3):312-329. DOI: 10.1177/02692155221133474.
13 14	241	[9]	Bárbara-Bataller E, Méndez-Suárez JL, Alemán-Sánchez C, et al. Change in the profile of traumatic spinal
14	242	L. 1	cord injury over 15 years in Spain[J]. Scand J Trauma Resusc Emerg Med, 2018,26(1):27. DOI:
16	243		10.1186/s13049-018-0491-4.
17	244	[10]	Mahooti F, Raheb G, Alipour F, et al. Psychosocial challenges of social reintegration for people with spinal
18 19	245	[10]	cord injury: a qualitative study[J]. Spinal Cord, 2020,58(10):1119-1127. DOI: 10.1038/s41393-020-0449-z.
20	246	[11]	Rahimi M, Torkaman G, Ghabaee M, et al. Advanced weight-bearing mat exercises combined with
21	240 247	[11]	functional electrical stimulation to improve the ability of wheelchair-dependent people with spinal cord
22	247		
23 24	240 249		injury to transfer and attain independence in activities of daily living: a randomized controlled trial[J]. Spinal
25		[10]	Cord, 2020,58(1):78-85. DOI: 10.1038/s41393-019-0328-7.
26	250	[12]	Grasmücke D, Zieriacks A, Jansen O, et al. Against the odds: what to expect in rehabilitation of chronic
27	251		spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis
28 29	252		of 55 patients according to age and lesion level[J]. Neurosurg Focus, 2017,42(5):E15. DOI:
30	253		10.3171/2017.2.FOCUS171.
31	254	[13]	Holanda LJ, Silva P, Amorim TC, et al. Robotic assisted gait as a tool for rehabilitation of individuals with
32	255		spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017,14(1):126. DOI: 10.1186/s12984-017-
33 34	256		0338-7.
35	257	[14]	Nam KY, Kim HJ, Kwon BS, et al. Robot-assisted gait training (Lokomat) improves walking function and
36	258		activity in people with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017,14(1):24. DOI:
37	259		10.1186/s12984-017-0232-3.
38 39	260	[15]	Rathore A, Wilcox M, Ramirez DZ, et al. Quantifying the human-robot interaction forces between a lower
40	261		limb exoskeleton and healthy users[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2016,2016:586-589. DOI:
41	262		10.1109/EMBC.2016.7590770.
42	263	[16]	Pattanakuhar S, Ahmedy F, Setiono S, et al. Impacts of Bladder Managements and Urinary Complications
43 44	264		on Quality of Life: Cross-sectional Perspectives of Persons With Spinal Cord Injury Living in Malaysia,
45	265		Indonesia, and Thailand[J]. Am J Phys Med Rehabil, 2023,102(3):214-221. DOI:
46	266		10.1097/PHM.00000000002066.
47 48	267	[17]	Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the
40 49	268		Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019. 10:
50	269		ED000142.
51	270	[18]	Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting
52 53	271		systematic reviews[J]. BMJ, 2021,372:n71. DOI: 10.1136/bmj.n71.
53	272	[19]	Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor
55	273	[-,]	Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med
56	274		Rehabil. 2019. 100(10): 1945-1963.
57 58	275	[20]	Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating
59	276	[20]	quality of randomized controlled trials. Phys Ther. 2003. 83(8): 713-21.
60	210		
			11

2		
3	277	[21] Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE
4 5	278	approach to improving dental clinical guidelines[J]. J Appl Oral Sci, 2011,19(1):0. DOI: 10.1590/s1678-
6	279	77572011000100001.
7	280	[22] Brożek JL, Akl EA, Compalati E, et al. Grading quality of evidence and strength of recommendations in
8	281	clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations[J]. Allergy,
9 10	282	2011,66(5):588-595. DOI: 10.1111/j.1398-9995.2010.02530.x.
10	283	[23] Sterne J, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials[J].
12	284	BMJ, 2019,366:14898. DOI: 10.1136/bmj.14898.
13	285	[24] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002,21(11):1539-
14 15	286	1558. DOI: 10.1002/sim.1186.
16	287	[25] Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a
17	288	
18 10	289	systematic review and network meta-analysis[J]. BMJ Open, 2019,9(7):e026844. DOI: 10.1136/bmjopen-
19 20		
21	290	[26] Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot
22	291	asymmetry in meta-analyses of randomised controlled trials[J]. BMJ, 2011,343:d4002. DOI:
23	292	10.1136/bmj.d4002.
24 25	293	
26		
27	294	Figure: Flow chart of meta-analysis for robotic-assisted gait training in patients with spinal
28 29	20.	
29 30	295	cord injury.
31	200	
32	296	cord injury.
33 34	290	
34 35	297	
36	297	
37	000	
38	298	
39 40	000	
41	299	
42		
43 44	300	
45		
46	301	
47		
48 49	302	
50		
51	303	
52 52		
53 54	304	
55		
56	305	
57 58		
58 59	306	
60		
		12

5	001	
6 7 8	308	
9 10	309	
11 12 13	310	
14 15 16	311	
17 18	312	
19 20 21	313	
22 23	314	
24 25 26	315	
27 28 29	316	
30		
31		
32		
33 34		
34 35		
36		
37		
38		
39 40		
41		
42		
43		
44 45		
46		
47		
48		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Section and topic	Item No	Checklist item	Location whe item is report (line number
	TVE	INFORMATION	
Title:			
Identification	la	Identify the report as a protocol of a systematic review	1
Update	1b	If the protocol is for an update of a previous systematic review, identify as such	
Registration	2	If registered, provide the name of the registry (such as PROSPERO) and registration number	60
Authors:			
Contact	3a	Provide name, institutional affiliation, e-mail address of all protocol authors; provide physical mailing address of corresponding author	4-15
Contributions	3b	Describe contributions of protocol authors and identify the guarantor of the review	212-215
Amendments	4	If the protocol represents an amendment of a previously completed or published protocol, identify as such and list changes; otherwise, state plan for documenting important protocol amendments	
Support:			
Sources		Indicate sources of financial or other support for the review	206-207
Sponsor		Provide name for the review funder and/or sponsor	
Role of sponsor or funder	5c	Describe roles of funder(s), sponsor(s), and/or institution(s), if any, in developing the protocol	
INTRODUCTIO	DN		61-85
Rationale	6	Describe the rationale for the review in the context of what is already known	81-85
Objectives	7	Provide an explicit statement of the question(s) the review will address with reference to participants, interventions, comparators, and outcomes (PICO)	104-113
METHODS			
Eligibility criteria	8	Specify the study characteristics (such as PICO, study design, setting, time frame) and report characteristics (such as years considered, language, publication status) to be used as criteria for eligibility for the review	104-113
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3 4	
5 6 7 8	
9 10	
13 14 15 16	
11 12 13 14 15 16 17 18 19 20	
21 22 23 24	
25 26 27 28	
29 30 31 32	
33 34 35 36	
37 38 39 40	
41 42 43 44	
45	

Information sources	9	Describe all intended information sources (such as electronic databases, contact with study authors, trial registers or other grey literature sources) with planned dates of coverage	92-101
Search strategy	10	Present draft of search strategy to be used for at least one electronic database, including planned limits, such that it could be repeated	92-101
Study records:			
Data management	11a	Describe the mechanism(s) that will be used to manage records and data throughout the review	114-120
Selection process	11b	State the process that will be used for selecting studies (such as two independent reviewers) through each phase of the review (that is, screening, eligibility and inclusion in meta-analysis)	114-120
Data collection process	11c	Describe planned method of extracting data from reports (such as piloting forms, done independently, in duplicate), any processes for obtaining and confirming data from investigators	121-126
Data items	12	List and define all variables for which data will be sought (such as PICO items, funding sources), any pre-planned data assumptions and simplifications	121-126
Outcomes and prioritization	13	List and define all outcomes for which data will be sought, including prioritization of main and additional outcomes, with rationale	121-126
Risk of bias in individual studies	14	Describe anticipated methods for assessing risk of bias of individual studies, including whether this will be done at the outcome or study level, or both; state how this information will be used in data synthesis	142-152
Data synthesis	15a	Describe criteria under which study data will be quantitatively synthesised	121-126
	15b	If data are appropriate for quantitative synthesis, describe planned summary measures, methods of handling data and methods of combining data from studies, including any planned exploration of consistency (such as I^2 , Kendall's τ)	156-166
	15c	Describe any proposed additional analyses (such as sensitivity or subgroup analyses, meta-regression)	171-180
	15d	If quantitative synthesis is not appropriate, describe the type of summary planned	167-170
Meta-bias(es)		Specify any planned assessment of meta-bias(es) (such as publication bias across studies, selective reporting within studies)	181-184
Confidence in cumulative evidence	17	Describe how the strength of the body of evidence will be assessed (such as GRADE)	181-184
* It is strongly re	comn	nended that this checklist be read in conjunction with the PRISMA-P Explanation and Elaboration (cite when available) for	important clarificat
•••		s to a review protocol should be tracked and dated. The copyright for PRISMA-P (including checklist) is held by the PRISM	-
		eative Commons Attribution Licence 4.0.	
uisuituteu uiluer	a Ch		

 BMJ Open

splanation. BMJ. 2015 Jan 2;3+. From: Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart L, PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015 Jan 2;349(jan02 1):g7647.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Effect of robotic-assisted gait training on gait and motor function in spinal cord injury: a protocol of a systematic review with meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-070675.R3
Article Type:	Protocol
Date Submitted by the Author:	07-Aug-2023
Complete List of Authors:	wang, lei; Hunan Provincial People's Hospital, peng, lin; Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology chen, lian; Hunan Provincial People's Hospital
Primary Subject Heading :	Rehabilitation medicine
Secondary Subject Heading:	Rehabilitation medicine, Neurology
Keywords:	REHABILITATION MEDICINE, NEUROSURGERY, Neurological injury < NEUROLOGY

BMJ Open

2		
3		
4	1	Effect of robotic-assisted gait training on gait and motor function in spinal cord
5	1	Zierer of Fostorie upostera gare er annag on gare and motor Function in Spinar cora
6		
	2	injury: a protocol of a systematic review with meta-analysis
7	-	
8		
9	3	
10	5	
11		
12	4	First author:
	-	
13		
14	5	Lei Wang, <u>wangleipx168@163.com</u> , Department of Rehabilitation Medicine, Hunan Provincial
15	-	
16		
17	6	People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005,
18		
19		
	7	Hunan, Peoples R China
20		
21		
22	8	Jin-lin Peng(lin-jin Peng), pjlkim@163.com, Tongji Hospital, Tongji Medical College,
23	-	
24		
25	9	Huazhong University of Science & Technology, Wuhan 430000, Hubei Province, China.
26		
27	10	Corresponding Author:
28		
29		
30	11	Ai-lian Chen (lian-ai Chen), <u>652326303@qq.com</u> , Department of Rehabilitation Medicine, Hunan
31		
32		
	12	Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University),
33		
34		
35	13	Changsha 410005, Hunan, Peoples R China.
36		
37		
38	14	(Note: The name in the article is correct, and the name in parentheses comes from ScholarOne.
39		
40	15	As ScholarOne cannot modify the name, it is hereby stated in the article)
41	-	
42		
43	16	
44	-	
45		
	17	
46		
47		
48	18	
49		
50		
51	19	
52		
53	20	
54		
55		
56	21	
57		
58		
	22	
59	-	
60		

23	
24	Effect of robotic-assisted gait training on gait and motor function in spinal cord
25	injury: a protocol of a systematic review with meta-analysis
26	Abstract :
27	Introduction: Robotic-assisted gait training (RAGT) has been reported to be effective in
28	rehabilitating patients with spinal cord injury (SCI). However, studies on RAGT showed different
29	results due to a varied number of samples. Thus, summarising studies based on robotic-related
30	factors is critical for the accurate estimation of the effects of RAGT on SCI. This work aims to
31	search for strong evidence showing that using RAGT is effective in treating SCI and analyse the
32	deficiencies of current studies.
33	Methods and analysis: The following publication databases were electronically searched in
34	December 2022 without restrictions on publication year: Medline, Cochrane Library, Web of
35	Science, Embase, PubMed, the Cochrane Central Register of Controlled Trials and China National
36	Knowledge Infrastructure. Various combinations of keywords, including 'motor disorders',
37	'robotics', 'robotic-assisted gait training', 'Spinal Cord Injuries', 'SCI' and 'gait analysis' were
38	used as search terms. All articles on randomised controlled trials (excluding retrospective trials)
39	using RAGT to treat SCI that were published in English and Chinese and met the inclusion criteria
40	were included. Outcomes included motor function, and gait parameters included those assessed by
41	using the instrumented gait assessment, the Berg balance scale, the 10-m walk speed test, the 6-min
42	walk endurance test, the functional ambulation category scale, the Walking index of SCI and the
43	ASIA assessment scale. Research selection, data extraction and quality assessment were conducted
44	independently by two reviewers to ensure that all relevant studies were free from personal bias. In

BMJ Open

addition, the Cochrane Bias Risk Assessment Tool was used to assess the risk of bias. Review Manager V.5.3 software was utilised to produce deviation risk maps and perform paired meta-analyses. Strengths and limitations of this study 1. This study was the first meta-analysis to systematically evaluate the efficacy and safety of RAGT in the treatment of SCI. 2. The results of this study provided evidence for the treatment of SCI patients and helped therapists and patients to choose appropriate treatment methods. 3. Two reviewers independently conducted research selection, data extraction and quality assessment to ensure that all relevant studies were free from personal bias. 4. The language categories of the research search were only included in English and Chinese, and the final search results would have some bias.

57 Key words: Spinal Cord Injuries; Motor disorders; Rehabilitation; Robotics, Gait Analysis

58 Ethics and dissemination: Ethics approval is not required for systematic reviews and network

59 meta-analyses. The results will be submitted to a peer-reviewed journal or presented at a conference.

Trial registration number: PROSPERO (CRD42022319555).

61 Introduction

62 Spinal cord injury (SCI) is a serious disabling disease that often causes paraplegia or quadriplegia

63 and affects patient's sensory, motor and autonomic nervous functions.[1 2] SCI leads to various

- 64 complications, such as pressure ulcers, lung infections and urinary tract infections.^[3] It also affects
- 65 patients' quality of life and living standard and imposes a heavy burden on families and society.[4]
- 66 It ultimately shortens patients' life expectancy.^[5] In addition, the mortality rate of patients with

67	SCI is higher than that of the general population.[6-8] National statistical data show an increasing
68	incidence rate of SCI annually, and that the incidence rate of SCI per million residents is 9.3
69	persons/year.[9] During the rehabilitation treatment of SCI, improving the walking ability, self-care
70	ability and self-esteem of patients is an important aspect that helps them return to society and
71	reduces their costs. Therefore, increased exercise capacity of the lower limbs is crucial to daily
72	independence and social reintegration for this population, which mainly functions in standing and
73	walking.[10 11]
74	Robot-assisted gait training (RAGT) can improve the walking ability,[12] lower limb strength and
75	independence of patients with incomplete SCI.[13] RAGT can also improve balance function and
76	has been gradually applied in patients with SCI.[14] In patients with SCI, robots for lower limb
77	rehabilitation can effectively and safely improve walking ability; reduce pressure ulcers,[15] lung
78	infections,[8] urinary tract infections and other complications;[16] improve dignity; and reduce
79	costs. However, high-quality evidence-based medical studies that systematically evaluated the
80	efficacy of RAGT in the treatment of SCI remain scarce.
81	Therefore, summarising studies based on RAGT-related factors is critical for the accurate estimation
82	of the effects of RAGT on SCI. This meta-analysis aims to systematically evaluate the efficacy of

- 83 RAGT in alleviating motor dysfunction and restoring speech ability in patients with SCI based on
- 84 randomised clinical trials (RCTs), find strong evidence demonstrating that using RAGT is effective
- 85 in the treatment of SCI and analyse the deficiencies of current studies.

86 Methods

87 The protocol of this systematic review was planned and conducted following the Preferred
88 Reporting Items for Systematic Reviews and Meta-Analyses Protocols Guideline and PRISMA

 BMJ Open

2020 guidelines and was performed following a protocol registered in PROSPERO
(CRD42022319555).[17 18] The plan starts on March 1, 2023 and ends on June 1. The review
process is shown in Figure 1.
Search strategy
Two reviewers (Jin-lin Peng and Lei Wang) electronically searched the following publication

databases in December 2022 without restrictions on publication year: Medline, Cochrane Library,

Web of Science, Embase, PubMed and China National Knowledge Infrastructure. Various
combinations of keywords, including 'motor disorders', 'robotics', 'robotic-assisted gait training',
'Spinal Cord Injuries', 'SCI' and 'gait analysis' were used as search terms. The key terms matched
the appropriate Medical Subject Heading terms. Presearches were performed. Then, the final search
was conducted, relevant journals and references of review articles were manually searched online

100 to identify papers that may have been missed in the electronic database searches.

101 Eligibility criteria

102 Inclusion criteria

(1) Study design: Only RCTs were included. (2) Selected population: Participants diagnosed with SCI, namely, individuals with any level of traumatic SCI, regardless of the time since injury, sex and age were included. (3) Type of intervention: The experimental groups received RAGT or RAGT combined with other physical therapies. The control group not received RAGT or received other types of physical therapy. (4) Comparison: The treated subjects were compared at baseline and then with the control or sham-stimulated subjects. (5) Type of outcomes measured: Gait analysis indicators, including gait speed (m/s), step length (cm), double support phase (% walking cycle), single support phase (% walking cycle) and symmetry index; Berg balance scale; ASIA assessment

scale; Holden walking ability classification (functional ambulation category scale); 10-m walk
speed test; 6-min walk endurance test; and WISCI II score.

113 Exclusion criteria

Studies involving animal research, conference research, protocol studies or computer model research and duplicate papers were excluded. Two reviewers (Jin-lin Peng and Lei Wang) independently screened titles and abstracts to identify articles reporting studies that met the inclusion criteria. Then, the full-text versions of the identified articles were obtained and separately screened to ensure that they met the inclusion criteria. Moreover, a third reviewer (Ai-lian Chen)

119 made the final assessment regarding whether or not full-text papers met the inclusion criteria.

120 Data extraction

A reviewer (Lei Wang) prepared the general information and data collection process by another reviewer (Jin-lin Peng). The format of data collection included research design, participants (number, diagnosis, age and target population numbers in each group), eligibility criteria, intervention used on the research group and control group (i.e. site of stimulation, intensity, number of sessions and time of each session) and outcomes of interest.

Quality assessment

The quality evaluation of the included studies was performed independently by two reviewers (Jinlin Peng and Lei Wang) and was revised by the third reviewer (Ai-lian Chen). The methodological quality of the intervention studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. The PEDro scale is a valid and reliable measure of the methodological quality of RCTs. This 10-item scale is based on the core criteria for RCT quality assessment.[19] The quality of papers was classified based on the PEDro scale. Studies with scores of less than 6 points were considered

BMJ Open

low-quality studies, whereas those with scores equal to or greater than 6 points were considered high-quality studies (scores of 6–7 indicate good quality and 8–10 indicate excellent quality). [20] The GRADEpro GDT online tool was used to evaluate the level of evidence quality of the outcome indicators. The tool is available at its official website http://www.guidelinedevelopment.org/. The GRADEpro GDT online tool for evaluating the quality of outcome indicators includes five degrading factors, namely, risk of bias, inconsistency, indirectness, imprecision and other considerations.[21] The quality of evidence can be divided into four levels, namely, 'high', 'moderate', 'low' and 'very low'.[22] **Risk-of-bias assessment of individual studies** The quality of the included studies was evaluated and their scores were compared in a consensus meeting between two independent authors (Jin-lin Peng and Lei Wang) to minimise errors and potential biases in the evaluation. However, in the event of any disagreement, a third author (Ai-lian Chen) was included in the discussion for a final consensus. The Cochrane Risk of Bias 2.0 tool was used to assess the articles' risk of bias. [23] Each article was assessed for selection bias (random sequence generation and allocation concealment), performance bias (blinding of participants and personnel), detection bias (blinding of outcome assessment), attrition bias (incomplete outcome data reporting) and reporting bias (selective outcome reporting). Each domain was rated as high risk of bias, unclear of bias or low risk of bias. The risk map of the biases of the studies' quality was prepared with Review Manager 5.3. **Patient and Public Involvement**

153 No patient participated in writing the system review plan. However, the results were disseminated154 to patients with SCI.

155	Statistical analysis
-----	----------------------

156	A meta-analysis was conducted using Review Manager 5.3. Heterogeneity between studies was
157	evaluated based on the I^2 statistic for the quantification of the proportion of the total outcome
158	attributable to variability amongst studies. The following ranges were defined: $I^2 = 0\%-30\%$ (no
159	heterogeneity), $I^2 = 30\%-49\%$ (moderate heterogeneity), $I^2 = 50\%-74\%$ (substantial heterogeneity)
160	and $I^2 = 75\%-100\%$ (considerable heterogeneity).[24] Based on heterogeneity, a random-effects
161	model was used when $I^2 > 30\%$, and a fixed-effects model was utilised when $I^2 = 0\%-30\%$.
162	For the comparison of data from different scales, pooled statistics were calculated using
163	standardised mean differences (SMDs). Furthermore, means and standard deviations after
164	intervention and follow-up evaluation for the RAGT and control groups (when relevant) were
165	applied to compute SMDs.
166	Addressing missing data

167 Regarding missing data, the original author was contacted for additional information. In the absence

168 of a reply, the data was calculated based on the availability factor. The potential effect of the missing

169 data on meta-analysis results was tested through sensitivity analysis.

170 Subgroup analysis

171 Analysis results showed a situation wherein heterogeneity was high and subgroup analysis was

- 172 required. Grouping analysis was conducted based on age (children, adolescents, middle-aged and
- 173 elderly), SCI level (cervical, thoracic and lumbar), disease course (recovery and sequelae), treatment
- 174 prescription and treatment duration to address potential heterogeneity and inconsistency. A meta-
- analysis was also conducted to explore possible sources of heterogeneity.

176 Sensitivity analysis

BMJ Open

3	
4	
5	
6	
0 7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
47 40	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

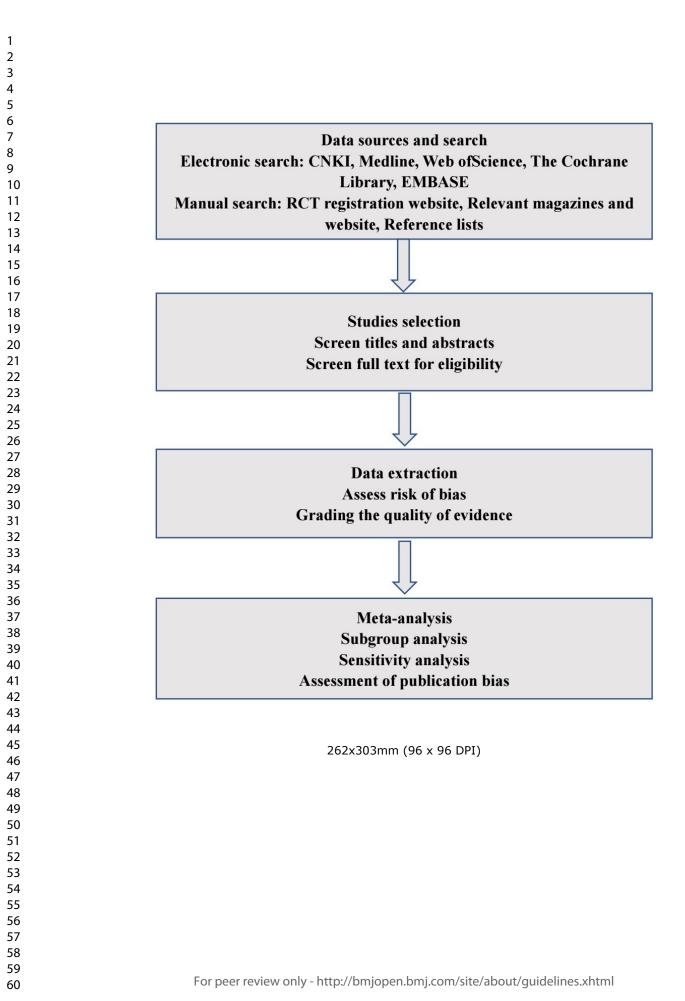
60

Sensitivity analysis was conducted on the main results to assess the effect of method quality, 177 178 research quality, sample size, missing data and analysis methods on the results of this review to 179 verify the robustness of the research conclusion.[25] 180 Assessment of publication bias 181 Each included study was evaluated based on the PEDro scale. Funnel charts were used to assess the 182 publication bias of the main results included in the study. However, when the funnel chart was 183 asymmetrical, attempts were made to explain its asymmetry.^[26] Discussion 184 185 RAGT can improve the walking ability of patients with incomplete SCI and can be used by patients 186 with stable vital signs. For patients with complete SCI, RAGT primarily acts to maintain the range 187 of motion of joints. In recent years, there is an increasing number of studies on using RAGT to 188 improve walking ability in SCI, and the new exoskeleton robot for lower limb rehabilitation has 189 shown the advantage of safe transfer. Our current query shows that our work is the first systematic 190 review and meta-analysis on RAGT for patients with SCI. The results of this meta-analysis could 191 help patients and therapists select the appropriate treatment method for SCI and improve new

193 results of this study will provide evidence for guideline recommendations.

194 Study limitations

192


Articles published in both Chinese and English were included. Articles in other languages were not included, and their exclusion may affect our research. When incorporating outcome indicators, all data were sourced from scale evaluation and gait analysis instruments. The lack of research results on neural mechanisms may have had a certain effect on this study.

options based on the comparative evidence for effectiveness and safety. Therefore, we hope that the

3	199	Data Availability
4	200	The datasets used and analysed in the current study are included in this article.
5 6	200	The datasets about and analysed in the current study are mended in this article.
7		
8	202	Ethical Approval
9	203	This research is a review, does not involve ethical issues and did not apply for ethical approval.
10	204	
11	205	Funding
12	206	This study has no funding support.
13		This study has no funding support.
14	207	
15 16	208	Disclosure
16 17	209	All authors have read and approved the final manuscript.
18	210	
19 20		
20	211	Contributors
22	211	
23		
24	212	As the first authors, WL and P-JL have made equal contributions to this work. WL and C-AL for
25		
26	213	research concept and design. WL and P-JL are responsible for data acquisition. WL and P-JL made
27		
28	214	the draft, and C-AL did the supervision. All the authors approved the publication of the Protocol.
29	217	the drant, and C-ALE did the supervision. At the additions approved the publication of the Trobeol.
30 31	215	
32		
33	216	Conflicts of Interest
34		
35	217	All authors declare no potential conflicts of interest with respect to the research, authorship and/or
36	,	
37	010	
38	218	publication of this study.
39		
40 41	219	REFERENCES
41		
43	220	
44	221	1. Eckert MJ, Martin MJ. Trauma: Spinal Cord Injury. <i>Surg Clin North Am</i> 2017;97:1031-45.
45	222	2. Anjum A, Yazid MD, Fauzi Daud M, et al. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions,
46	223	and Underlying Recovery Mechanisms. Int J Mol Sci 2020;21.
47	224	3. Stricsek G, Ghobrial G, Wilson J, <i>et al.</i> Complications in the Management of Patients with Spine Trauma.
48 49	225	Neurosurg Clin N Am 2017;28:147-55.
50	226	4. Zhang JM, Li N, Zhu L, et al. Effects of pelvic floor biofeedback electrical stimulation combined with lower
51	227	limb rehabilitation robot training on intestinal function of patients with spinal cord injury. <i>Journal of Brain</i>
52		
53	228	and Nervous Diseases 2021;29:53-7.
54	229	5. Xiang XN, Zhong HY, He HC. Research progress of lower limb exoskeleton rehabilitation robot in
55 56	230	improving walking ability of patients with spinal cord injury. Chinese Journal of Rehabilitation Medicine
56 57	231	2020;35:119-22.
57 58	232	6. Buzzell A, Chamberlain JD, Eriks-Hoogland I, <i>et al.</i> All-cause and cause-specific mortality following non-
59	232	
60	255	traumatic spinal cord injury: evidence from a population-based cohort study in Switzerland. Spinal Cord

1			
2			
3 4	234		2020;58:157-64.
5	235	7.	Mirzaeva L, Lobzin S, Tcinzerling N, et al. Complications and mortality after acute traumatic spinal cord
6	236		injury in Saint Petersburg, Russia. Spinal Cord 2020;58:970-9.
7 8	237	8.	Li R, Ding M, Wang J, et al. Effectiveness of robotic-assisted gait training on cardiopulmonary fitness and
9	238		exercise capacity for incomplete spinal cord injury: A systematic review and meta-analysis of randomized
10	239		controlled trials. Clin Rehabil 2023;37:312-29.
11	240	9.	Bárbara-Bataller E, Méndez-Suárez JL, Alemán-Sánchez C, et al. Change in the profile of traumatic spinal
12 13	241		cord injury over 15 years in Spain. Scand J Trauma Resusc Emerg Med 2018;26:27.
14	242	10.	Mahooti F, Raheb G, Alipour F, et al. Psychosocial challenges of social reintegration for people with spinal
15	243		cord injury: a qualitative study. Spinal Cord 2020;58:1119-27.
16 17	244	11.	Rahimi M, Torkaman G, Ghabaee M, et al. Advanced weight-bearing mat exercises combined with
17	245		functional electrical stimulation to improve the ability of wheelchair-dependent people with spinal cord
19	246		injury to transfer and attain independence in activities of daily living: a randomized controlled trial. Spinal
20	247		Cord 2020;58:78-85.
21 22	248	12.	Grasmücke D, Zieriacks A, Jansen O, et al. Against the odds: what to expect in rehabilitation of chronic
23	249		spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis
24	250		of 55 patients according to age and lesion level. Neurosurg Focus 2017;42:E15.
25 26	251	13.	Holanda LJ, Silva P, Amorim TC, et al. Robotic assisted gait as a tool for rehabilitation of individuals with
26 27	252		spinal cord injury: a systematic review. J Neuroeng Rehabil 2017;14:126.
28	253	14.	Nam KY, Kim HJ, Kwon BS, et al. Robot-assisted gait training (Lokomat) improves walking function and
29	254		activity in people with spinal cord injury: a systematic review. J Neuroeng Rehabil 2017;14:24.
30 31	255	15.	Rathore A, Wilcox M, Ramirez DZ, et al. Quantifying the human-robot interaction forces between a lower
32	256		limb exoskeleton and healthy users. Annu Int Conf IEEE Eng Med Biol Soc 2016;2016:586-9.
33	257	16.	Pattanakuhar S, Ahmedy F, Setiono S, et al. Impacts of Bladder Managements and Urinary Complications
34	258		on Quality of Life: Cross-sectional Perspectives of Persons With Spinal Cord Injury Living in Malaysia,
35 36	259		Indonesia, and Thailand. Am J Phys Med Rehabil 2023;102:214-21.
37	260	17.	Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the
38	261		Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev
39 40	262		2019;10:ED000142.
40	263	18.	Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting
42	264		systematic reviews. <i>BMJ</i> 2021;372:n71.
43	265	19.	Elbanna ST, Elshennawy S, Ayad MN. Noninvasive Brain Stimulation for Rehabilitation of Pediatric Motor
44 45	266		Disorders Following Brain Injury: Systematic Review of Randomized Controlled Trials. Arch Phys Med
46	267		Rehabil 2019;100:1945-63.
47	268	20.	Maher CG, Sherrington C, Herbert RD, <i>et al.</i> Reliability of the PEDro scale for rating quality of randomized
48 49	269	-0.	controlled trials. <i>Phys Ther</i> 2003;83:713-21.
50	270	21.	Nasser M, Fedorowicz Z. Grading the quality of evidence and strength of recommendations: the GRADE
51	271	21.	approach to improving dental clinical guidelines. <i>J Appl Oral Sci</i> 2011;19:0.
52	271	22.	Brożek JL, Akl EA, Compalati E, <i>et al.</i> Grading quality of evidence and strength of recommendations in
53 54	272	<i>22</i> .	clinical practice guidelines part 3 of 3. The GRADE approach to developing recommendations. <i>Allergy</i>
55	273		2011;66:588-95.
56	274	23.	Sterne J, Savović J, Page MJ, <i>et al.</i> RoB 2: a revised tool for assessing risk of bias in randomised trials. <i>BMJ</i>
57 58	275	<i>43</i> .	2019;366:14898.
58 59	270	24	Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. <i>Stat Med</i> 2002;21:1539-58.
60	211	24.	inggins 51, inompson 50. Quantitying neurogeneny in a meta-analysis. Star Mea 2002;21:1559-58.

2		
3	278	25. Li J, Zhong D, Ye J, et al. Rehabilitation for balance impairment in patients after stroke: a protocol of a
4	279	systematic review and network meta-analysis. BMJ Open 2019;9:e026844.
5 6	280	26. Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot
7	281	asymmetry in meta-analyses of randomised controlled trials. <i>BMJ</i> 2011;343:d4002.
8		asymmetry in meta-analyses of fandomised controlled trais. <i>DMJ</i> 2011,545.04002.
9	282	
10	283	Figure: Flow chart of meta-analysis for robotic-assisted gait training in patients with spinal cord
11 12	284	injury.
13	285	
14	286	
15	287	
16 17	288	
17	289	
19	290	
20	291	
21	292	
22	292	
23 24	293	
25		
26	295	
27	296	
28 29	297	
30	298	
31	299	
32	300	
33	301	
34 35	302	
36	303	
37	304	
38	305	
39 40		
40 41		
42		
43		
44		
45 46		
47		
48		
49		
50 51		
52		
53		
54		
55 56		
56 57		
58		
59		
60		

Section and topic	Item No	Checklist item	Location where item is reported (line numbers)
ADMINISTRAT	IVE	INFORMATION	
Title:			
Identification	1a	Identify the report as a protocol of a systematic review	1
Update	1b	If the protocol is for an update of a previous systematic review, identify as such	
Registration	2	If registered, provide the name of the registry (such as PROSPERO) and registration number	60
Authors:			
Contact	3a	Provide name, institutional affiliation, e-mail address of all protocol authors; provide physical mailing address of corresponding author	4-15
Contributions	3b	Describe contributions of protocol authors and identify the guarantor of the review	212-215
Amendments	4	If the protocol represents an amendment of a previously completed or published protocol, identify as such and list changes; otherwise, state plan for documenting important protocol amendments	
Support:			
Sources	5a	Indicate sources of financial or other support for the review	206-207
Sponsor	5b	Provide name for the review funder and/or sponsor	
Role of sponsor or funder	5c	Describe roles of funder(s), sponsor(s), and/or institution(s), if any, in developing the protocol	
INTRODUCTIO	N		61-85
Rationale	6	Describe the rationale for the review in the context of what is already known	81-85
Objectives	7	Provide an explicit statement of the question(s) the review will address with reference to participants, interventions, comparators, and outcomes (PICO)	104-113
METHODS			
Eligibility criteria	8	Specify the study characteristics (such as PICO, study design, setting, time frame) and report characteristics (such as ye considered, language, publication status) to be used as criteria for eligibility for the review	ars 104-113
	8		ars 104-113

PRISMA-P (Preferred Reporting Items for Systematic review and Meta-Analysis Protocols) 2015 checklist: recommended items to address in a systematic review protocol*

 BMJ Open

Information sources	9	Describe all intended information sources (such as electronic databases, contact with study authors, trial registers or other grey literature sources) with planned dates of coverage	92-101
Search strategy	10	Present draft of search strategy to be used for at least one electronic database, including planned limits, such that it could be repeated	92-101
Study records:			
Data management	11a	Describe the mechanism(s) that will be used to manage records and data throughout the review	114-120
Selection process	11b	State the process that will be used for selecting studies (such as two independent reviewers) through each phase of the review (that is, screening, eligibility and inclusion in meta-analysis)	114-120
Data collection process	11c	Describe planned method of extracting data from reports (such as piloting forms, done independently, in duplicate), any processes for obtaining and confirming data from investigators	121-126
Data items	12	List and define all variables for which data will be sought (such as PICO items, funding sources), any pre-planned data assumptions and simplifications	121-126
Outcomes and prioritization	13	List and define all outcomes for which data will be sought, including prioritization of main and additional outcomes, with rationale	121-126
Risk of bias in individual studies	14	Describe anticipated methods for assessing risk of bias of individual studies, including whether this will be done at the outcome or study level, or both; state how this information will be used in data synthesis	142-152
Data synthesis	15a	Describe criteria under which study data will be quantitatively synthesised	121-126
	15b	If data are appropriate for quantitative synthesis, describe planned summary measures, methods of handling data and methods of combining data from studies, including any planned exploration of consistency (such as I^2 , Kendall's τ)	156-166
	15c	Describe any proposed additional analyses (such as sensitivity or subgroup analyses, meta-regression)	171-180
	15d	If quantitative synthesis is not appropriate, describe the type of summary planned	167-170
Meta-bias(es)	16	Specify any planned assessment of meta-bias(es) (such as publication bias across studies, selective reporting within studies)	181-184
Confidence in cumulative evidence	17	Describe how the strength of the body of evidence will be assessed (such as GRADE)	181-184
* It is strongly rec	comm	ended that this checklist be read in conjunction with the PRISMA-P Explanation and Elaboration (cite when available) for	important clar
•••		s to a review protocol should be tracked and dated. The copyright for PRISMA-P (including checklist) is held by the PRISM	-
			an s-r Oroup a
distributed under	a Cre	eative Commons Attribution Licence 4.0.	

.crew M, Shekelle P, Ste .planation. BMJ. 2015 Jan 2;3+. From: Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart L, PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015 Jan 2;349(jan02 1):g7647.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml