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Supplementary Figure 1.  Raman spectrum was analyzed for a graphene channel using a laser 
excitation with a wavelength of 532 nm. The identification of pronounced peaks at approximately 1583 
cm-1 and 2674 cm-1, which correspond to the G-band and 2D-band, respectively, provides evidence for 
the existence of a monolayer of graphene. 
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Supplementary Figure 2.  Gate leakage current for five different tastes and DI water, as a function of 
VLG. 
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(a) (b) (c)

Supplementary Figure 3. Optical images capturing the sample throughout the experiment. a) Initial 
state of the sample before the experiment. b) Optical image of the sample showing precipitation of the 
solution. c) Optical image of the sample after thorough wash with DI water, acetone, and IPA. 
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Supplementary Figure 4. The reusability of graphene chemitransistor is shown for four different 
species for four cycles. The transfer characteristics of four distinct solutions are measured during a single 
cycle at VDS = 10 mV. The transfer characteristics for any species stay mostly unchanged between 
cycles, according to four rounds of experiments. 
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Supplementary Figure 5. Endurance plot of 100 cycles showing consistent transfer characteristics of the 
graphene chemitransistor for sugar solution at VDS = 500 mV. 
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Supplementary Figure 6. To capture the experimental transfer characteristics of graphene 
chemitransistors we have developed an empirical model where the transition from hole dominant 
transport to electron dominant transport is captured through a single empirical model as described in 
Eq. S1 
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In Eq. S1, q is the charge of an electron,  μ is the total carrier field effect (FE) mobility, n0 is the residual 
number of carriers in graphene due to the presence of charge puddles in the oxide and energy level 
broadening due to the coupling with the metal contacts and finite operating temperature, 𝐶𝐶OX is the 
oxide capacitance, and 𝑉𝑉Dirac is the Dirac voltage, which corresponds to the gate voltage where the 
current is minimum and equally contributed by the holes in the valence band and electrons in the 
conduction band. Furthermore, 𝑘𝑘B is the Boltzmann constant, T is the temperature, and m is a fitting 
parameter. The expression for μ is defined empirically to capture the asymmetry in the device 
characteristics originating from the fact that the effective electron mobility (𝜇𝜇n) and effective hole 
mobility (𝜇𝜇p) in our graphene chemitransistors are different.  
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Supplementary Figure 7. Physics-based semi-empirical model for mimicking the graphene based 
artificial taste receptor. a) Transfer characteristics of a single graphene chemitransistor (GC1) modelled 
such that its 𝑉𝑉Dirac falls across a total of 11 different 𝑉𝑉LG values. b) Output response of two graphene 
chemitransistors (GC 1 and GC2) in the voltage-divider configuration shown in Fig. 2b.  Here, 𝑉𝑉Dirac 
of GC2 falls exactly at a 𝑉𝑉LG of 0V while VDirac of GC1 changes following the same 𝑉𝑉LG values seen in 
a). c) A three-dimensional (3D) plot showing 𝑉𝑉C plotted as a function of 𝑉𝑉LG and the difference in the 
𝑉𝑉Dirac of GC1 and GC2. d) Transfer characteristics of GC1 modelled for a range of 𝜇𝜇G1 values. E) 
Output response of two graphene chemitransistors (GC1 and GC2) in the voltage-divider configuration 
shown in Fig. 2b.  Here, the ratio of the electron and hole mobility, �𝜇𝜇𝐺𝐺1

𝜇𝜇𝐺𝐺2
�, changes following the values 

seen in d) while GC2 remains constant along with its corresponding f) 3D plot showing the relationship 
of these variables. 
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Supplementary Figure 8: Transfer characteristics of a representative MoS2 memtransistor is shown 
for different a) programming (𝑉𝑉P) and b) erase (𝑉𝑉P) voltages ranging from 5V to 14V applied to the 
local-back gate of the device. While application of negative voltage pulses shifts the device threshold 
voltage (𝑉𝑉TH) towards more negative values, positive voltage pulses have the opposite effect where 
device 𝑉𝑉TH  shifts towards more positive values. c) Retention of four different memory states for a total 
duration of 100 seconds.  
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Supplementary Figure 9. Detailed view of the gain plots for all four stages of the inverter, allowing 
for a comprehensive understanding of the inverter’s amplification behavior. The peak gain values of the 
four stages of the inverter increase steadily in a monotonous fashion. The first stage of the circuit 
provides a peak gain of approximately 14. Moving on to (b) the second stage, the peak gain value is 
about 29, (c) the third stage provides a higher gain of approximately 81, which is roughly 2.8 times the 
gain of the second stage. Finally, the fourth stage (d) yields the highest gain of approximately 90. This 
increasing trend in peak gain values across the stages suggests a progressive amplification of the signal, 
with each subsequent stage building upon the amplification provided by the previous stages to achieve 
a higher overall gain. 
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Supplementary Figure 10. Circuit schematic of an AND logic gate has been shown in (a). The AND 
gate is made of three representative 2D memtransistors, where the two input signals 𝑉𝑉A  and 𝑉𝑉B are 
provided to MT1  and MT2 , whereas MT3  remains as a n-type depletion mode memtransistor. In this 
case, if either input, 𝑉𝑉A  or 𝑉𝑉B , is at 0, the output of the AND gate, 𝑉𝑉Out , will be consistently held at the 
lower logic level (~ 0 V) and 𝑉𝑉Out  only switches to the higher logic level or 2 V, when both the inputs 
are at 1 as shown in (b). Similarly, the circuit schematic of an OR logic gate is shown in (c), where MT1  
and MT2  are connected in series with MT3 . Now, if the inputs to the memtransistors, 𝑉𝑉A  or 𝑉𝑉B are both 
at 0, then only the output, 𝑉𝑉Out , will be 0 V or logic low as shown in (d). 
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Supplementary Figure 11. Transfer characteristics of graphene chemitransistors for a) four different 
sugar solutions and b) four umami solutions at 𝑉𝑉DS = 10 mV. 
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Supplementary Figure 12. Transfer characteristics of graphene-based taste receptors to different 
concentrations (1mM, 10mM, 100mM) of salt solution within a gate voltage range of -0.5V to 0.5V at 
𝑉𝑉DS = 10 mV. 
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The concept of machines possessing emotional intelligence is an area of ongoing research and 

development [1, 2]. While machines cannot experience emotions in the same way humans do, 

incorporating emotional intelligence into their capabilities can offer several potential benefits 

especially with growing dominance of artificial intelligence (AI) in all spheres of our lives. 

Machines with emotional intelligence can understand and respond to human emotions, making 

interactions more natural and meaningful. Emotional intelligence also enables machines to 

understand individual needs and preferences. By recognizing emotions, they can provide tailored 

recommendations, suggestions, or support. For instance, a virtual assistant with emotional 

intelligence can detect if a person is stressed and recommend food that can uplift their mood [3]. 

Likewise, emotional intelligence can be applied in various ways within the food industry to 

enhance customer experiences and drive business success [4]. By incorporating emotional 

intelligence into the menu development process, restaurants can create dishes and experiences that 

evoke positive emotions, enhancing customer satisfaction and loyalty [5]. Emotional intelligence 

can also accelerate culinary innovation by understanding the emotional impact of different flavors, 

textures, and food combinations. While the benefits of machines having emotional intelligence are 

promising, we agree with the reviewer that it is essential to consider ethical considerations, data 

privacy, and the potential impact on human employment and relationships. Striking a balance 

between the benefits of emotional intelligence and responsible implementation is crucial for 

creating a positive and sustainable future with intelligent machines. 
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Our rationale for separating hunger and appetite is as follows: Hunger is a physiological sensation 

that arises from the body's need for nourishment. It is primarily driven by biological factors and 

the body's energy requirements. When you experience hunger, it is a signal from your body that it 

needs food to meet its energy needs and maintain proper function. Hunger is often accompanied 

by physical sensations like stomach growling, feeling lightheaded, or having low energy levels. 

Appetite, on the other hand, refers to the desire or preference for specific types of food or the urge 

to eat. Unlike hunger, which is primarily driven by biological factors, appetite is influenced by a 

combination of physiological, psychological, and social factors. Appetite is shaped by factors such 

as sensory cues (smell, taste, and appearance of food), learned preferences, emotional states, 

cultural influences, and environmental cues. Appetite can vary greatly from person to person and 

may not always align with actual physiological hunger. In summary, hunger is the physiological 

sensation of needing food to satisfy energy requirements, while appetite refers to the desire or 

preference for specific foods or the urge to eat.  

However, we admit that it is not possible to completely separate hunger and appetite. In fact, the 

same is true for physiology and psychology and hence intellectual and emotional intelligence. As 

the physical connection between hunger and appetite becomes clearer from studies in psychology 

and biology, it will be possible in the future to refine the expression for feeding. However, 

considering the primary focus of this work, which is developing hardware components to capture 

different aspects of intelligence, we have decided to treat hunger and appetite as distinct concepts. 

Finally, we also acknowledge that hunger is primarily driven by body's internal energy 

requirements, whereas appetite can be driven by a combination of physiological, psychological, 

and social factors including sensory cues (smell, taste, and appearance of food), learned 

preferences, emotional states, cultural influences, and environmental cues. So, it is not fair to treat 

both as external stimuli. We also acknowledge that stimulating hunger in artificial systems can be 

challenging, as hunger is a complex physiological process. However, artificial systems can 

simulate hunger by monitoring and responding to specific physiological parameters associated 

with hunger. For example, tracking blood glucose levels, ghrelin (hunger hormone) levels, or even 

neural activity related to hunger signals can provide input for stimulating hunger in the system. 

However, considering the primary focus of the work, we have decided to treat hunger and appetite 

as external stimuli so that we can perform the proof-of-concepts experiments. 
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