
Supplementary Material for “Genomic sketching with multiplicities and

locality-sensitive hashing using Dashing 2”

Figure S1: (a) Schematic of SetSketch. A given input item is hashed and its hash value is used
to seed the pseudo-random number generator (RNG). The RNG generates exponential random
draws for each register. Each register is updated according to the given rule. Once fully populated,
the register values are used in combination with different estimators for set cardinality or Jaccard
similarity. (b) Illustration of estimating cardinality of set A via its SetSketch. (c) Illustration of
combining two SetSketches to obtain the sketch of the uinion. (d) Illustration of using Jaccard
similarity estimator to compare two datasets via their SetSketches.

1



Input: K[0..m− 1]: SetSketch registers for this dataset
Input: id: Identifier for this dataset
Input: RNG: Pseudo-random number generator
Input: seed: Pseudo-random seed
Input: N : Number of super-register sizes in index
Input: LSH : map from 〈 table id, super-register id, super-register value 〉 triples to a

corresponding list of datasets
Result: LSH updated to include dataset 〈K, id〉

1 i← N − 1
2 if i > 2 then
3 RNG.initialize(seed)

end
// Loop over tables 0 .. N -1, from largest super-register size (most specific)
// to smallest (least specific)

4 while i ≥ 0 do
5 P ← min(2i, 2i)
6 if i ≤ 2 then
7 S← m/N

else
8 S← m · 8/N

end
9 j ← 0 // Loop over super-registers

10 while j < S do
11 if i ≤ 2 then

// Next non-overlapping super-register
12 SuperReg← K[P · j .. P · j + P − 1]

else
// Get uniform random integer in [0, m− P ]

13 ri← RNG.randomInt(0, m− P )
14 SuperReg← K[ri .. ri+ P − 1]

end
// Append this dataset to the list for this table, super-register
// super-register value combination

15 LSH[〈i, j, SuperReg 〉].append(id)
16 j ← j + 1

end
17 i← i− 1

end
Algorithm S1: Add dataset 〈K, id〉 to LSH index

2



Input: SetSketch K[0..m− 1], item X
Result: K updated according to X

1 RI← hash(X)
2 q ← RI mod m
3 p← bRI/mc
4 K[i]← min(K[i], p)
Algorithm S2: Update one-permutation Dashing 2 SetSketch. Each Ki gets the minimal 64-bit
random draw among draws that map there.

Input : SetSketch K[0..m− 1], item X
Output: K ′ set to a truncated form of K

1 for i← 0,m− 1 do
2 K ′[i]← b1− logb(K[i])c

end
Algorithm S3: Finalize Full Dashing 2 SetSketch

Input : Temporary K[0..m− 1] from Algorithm S2
Output: Finalized K ′

1 for i← 0,m− 1 do
2 RV ← − ln(K[i])
3 K ′[i]← b1− logb(RV )c

end
Algorithm S4: Finalize one-permutation Dashing 2 SetSketch

3



Time (seconds) Memory footprint (MB)
Method Sketching Similarity Sketching Similarity

Mash 16.1 4.61 338 41.4
Sourmash 89.4 11.9 141 320

BinDash 26.8 28.2 37.8 124
D2 10.2 0.12 169 39.9

D2-full 16.3 0.13 169 40.2
D2W 47.0 0.13 481 51.7

Table S1: Running time (i.e. wall-clock time) and memory footprint (i.e. peak resident set size) of
each sketching tool as measured by /usr/bin/time -v. The “Sketching” task involved sketch-
ing all 2,020 genome assemblies used in the experiments over 1,010 genome pairs described in
Results. The “Similarity” task involved computing all pairwise Jaccard similarities between the
sketches produced by the first task. All tools were run with 16 threads. In the case of Sourmash’s
sketching mode, we used GNU parallel to keep a steady state of 16 simultaneous sketching pro-
cesses. Smallest and second-smallest values highlighted in red and dark red respectively. Software
versions used were Mash v2.3, Sourmash v4.6.1, BinDash v1.0, and Dashing 2 v2.1.6

4


