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S.1 Construction of mixedstrobes and altstrobes1

S.1.1 Construction of mixedstrobes2

Mixedstrobes consists out of a specified fraction of k-mers and strobemers and may be3

sampled with either of the three strobemers seeding methods (minstrobes, hybridstrobes4

and randstrobes), but we will only consider randstrobes here.5

Whether a strobemer or a k-mer is seeded depends on the hash value of the first6

strobe h(S[i : i + `]) and the user-defined strobe fraction q. For instance, for mixed-7

strobes with q = 0.8 = 80%, strobemers should be generated when h(S[i : i + `) %8

100 < 80; otherwise a k-mer should be sampled instead. Strobemers are sampled fol-9

lowing the routine [SR2]. When sampling a k-mer (1 − q), n` consecutive nucleotides10

are taken starting from the start position of the first strobe (S[i : i+n`]) and converted11

to its respective hash value (Python). By taking n` nucleotides, we obtain the same12

subsequence lengths as strobemers consisting out of n strobes of length `. In C++, k-13

mers are constructed by summing the hash values of S[i+ j ∗ `], which are each divided14

by (n+ j) to guarantee non-commutativity, whereby j ∈ [1, n].15

16

S.1.2 Construction of altstrobes17

Altstrobes are modified randstrobes where the strobe length is alternating between18

shorter (ks) and longer strobes (kl) with |ks| + |kl| = k. Whether the first strobe19

is of length |ks| or |kl| is decided based on the hash value of the substring of length20

|ks| (i.e. the potential first strobe). Note that it is highly advised against making the21

decision based on the hash value of kl as this may lead to unnecessarily many seeds22

being destroyed where (ks, kl)-altstrobes should have been sampled and there is are23

mutations within the positions [ks, kl] downstream from the start position of the seed.24

Furthermore, one should not seed altstrobes where the length of the shorter strobe is25

smaller than 5 to avoid seed repetitiveness (low uniqueness).26

In case, that we are sampling mixed-altstrobes, the hash value is divided by 100,27

whereby the fractional part (remainder) is discarded. This integer division is required28

as we have to make two independent decisions using the hash value: whether to sample29

an altstrobe or a k-mer and in case of an altstobes whether to sample a short or a long30

strobe first.31

The following downstream strobes are selected from a window W by alternatively32

sampling a short and a long strobe using the randstrobe linking routine as described33

in [SR2]. We adjust the offset of (wmin, wmax) depending on if it is the long or34

short strobe we sample. Specifically, we let kl in altstrobe (ks, kl) be sampled from35

[wmin − (kl − ks)/2, wmax − (kl − ks)/2] and ks in altstrobe (kl, ks) be sampled from36

[wmin + (kl − ks)/2, wmax + (kl − ks)/2]. This guarantees that the maximum length of37

the altstrobe seed remains the same as randstrobes (w = wmax+k/2) which is important38

for benchmarking.39

In the default altstrobe protocol where 2ks = kl, we store S[i] for short strobes40

and S[i] as well as S[i] + ks for long strobes. This allows us to keep track of whether41

(|ks|, |kl|) or (|kl|, |ks|) was sampled and facilitates analysis (e.g. sequence coverage) as42

now all strobes are of equal length (ks). If generalized altstrobes are sampled where43

2ks 6= kl and information about the exact strobe composition is required, we store all44

strobe positions.45
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Algorithm 1 Mixedstrobes
Function: Mixedstrobes (S, n, `, wmin, wmax, s)
Input: Sequence S, number of strobes n, strobe lengths `, strobe window

W [wmin, wmax], strobe fraction s
Output: Mixedstrobes of order n and their positions from S

s =
N

D
// Split strobe fraction s in numerator N and denominator D

O = [] // Initialize array of strobemers and their positions
for i ∈ [1, |S| − (n ∗ `+ 1)] do // Iterate over all positions

m1 = S[i : i+ `]

P = [i, ]

H = h(m1)
if h(m1) % D < N then // Sample strobemer at position i

wu = min(wmax, ([S]− i)/(n− 1)) // Second argument only active at end
of S

wl = max(wmin − (wmax − wu), `)
for j ∈ [2, n] do

w′ = [i + wl + (j − 2)wu, i + (j − 1)wu] // Window to look for current
strobe

p = argminp{p : h(m
⊕

S[p : p + `]) 6 h(m
⊕

S[i′ : i′ +

`]),∀i′ ∈ w′} // Selecting strobes based on strobemer protocol,
here exemplified using randstrobes)

P += p

H += (−1)j ∗ j ∗ h(S[p : p + `]) // Non-commutative hash value
combination

end
else // Sample k-mer of length n` at position i

for j ∈ [2, n] do
P += i+ j ∗ `
H = h(S[i : i+ n`])

end
end
O += (P,H)

return O
end
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Algorithm 2 Altstrobes
Function: Altstrobes (S, n, ks, kl, wmin, wmax)
Input: Sequence S, number of strobes n, length of short and long strobes ks and kl,

strobe window W [wmin, wmax]
Output: Altstrobes of order n and their positions from S
Require : n ∈ 2Z
O = [] // Initialize array of altstrobes and their positions
for i ∈ [1, |S| − (n ∗ `+ 1)] do // Iterate over all positions

P = [i, ]
if h(S[i : i+ ks]) % 2 = 0 then // Sample altstrobe(ks,kl) at position i

H = h(S[i : i+ ks])

strobes = [ks, kl]
else // Sample altstrobe(kl,ks) at position i

H = h(S[i : i+ kl])

strobes = [kl, ks]
end
wu = min(wmax, ([S]− i)/(n− 1)) // Second argument only active at end of
S

wl = max(wmin − (wmax − wu), kl)
for j ∈ [2, n] do

k′ = strobes[(j + 1)%2] // Retrieve length of next strobe

offset = (ks + kl)/2− k′// Adjusting window offsets

w′ = [i+ wl + (j − 2)wu + offset, i+ (j − 1)wu + offset] // Window to look
for current strobe

p = argminp{p : h(m
⊕

S[p : p + k′]) 6 h(m
⊕

S[i′ : i′ + k′]),∀i′ ∈ w′}
// Selecting strobes based on randstrobe protocol

P += p

H += (−1)j∗j∗h(S[p : p+k′]) // Non-commutative hash value combination
end
O += (P,H)

return O
end
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S.1.2.1 Minimium ks for altstrobes46

The combination of strobe lengths ks and kl matter in practice. A too short ks leads47

to degenerate seed constructs for two reasons. Firstly, the number of possible hash48

values is limited for very short strobes (e.g., 4, 16, and 64 hash values for 1-, 2-, and49

3-mers respectively). Thus, it cannot be guaranteed that an even fraction of (ks, kl)50

and (kl, ks) is computed for such parametrizations, which decreases randomness in51

seed selection. Secondly, |ks| needs to be long enough to avoid random repetitions in52

substrings of length wmax − wmin. To see why this is the case, consider using a short53

strobe size of 2. If we have a sequence ACGACTACA..., where AC hash to an even54

number (short strobe selected), we will very likely link AC (short strobe) with the same55

kl multiple times as the downstream selection window of size wmax − wmin will share56

many strobes for reasonably large windows. This deteriorates both randomness and57

uniqueness of seeds. We show uniqueness per ks length in Suppl. Fig. S4, where for58

random simulated sequences has a window size of 25nt. For this window size, |ks| ≥ 659

is needed to be competitive with other parametrizations in terms of uniqueness.60

S.1.2.2 Selecting altstrobes parametrization for experiments61

Several combinations of (ks, kl) in altstrobes could lead to lower correlation and poten-62

tially outperform randstrobes, as was shown in Figure S5. We performed simulations63

on random sequences for all possible altstrobe combinations of combined strobe length64

of 30. We found that sequence coverage, match coverage and expected island size was65

best for altstrobes with ks between 7 and 10 (Fig. S5). Since simulated sequences are66

less repetitive than biological sequences, we opt for the longest possible ks with good67

metrics.68

S.1.2.3 Altstrobes implementation details69

Despite altstrobes orders being multiples of 2, we output the results as multiples of70

order 3 to keep track on whether a short-long or a long-short combination was sampled.71

As the long strobe kl is exactly double the size of ks we can store altstrobe seeds of72

order 2 as (x1, x1+ks, x2) and (x1, x2, x2+ks) with x1 and x2 being the start positions73

of the strobes and ks being the shorter strobe length.74

S.1.3 Construction of multistrobes75

Multistrobes are generalized altstrobes which allows to sample a range of possible strobe76

lengths ranging from ks to kl with |ks|+ |kl| = k within the same seeding pass.77

As the strobe length combination is decided based on the hash value of a subsequence78

of length ks (h(S[i : i + |ks|])), we have to deal with uniformity issues. For instance,79

for |ks| = 2 and |kl| = 28, there are only 42 = 16 hash values h(S[i : i + |ks|]) making80

it impossible to select all 27 options from |kl − ks + 1|. However, there are less strobe81

length combinations from [ks, k/2] than the 16 hash values. Therefore, if we first pick82

a strobe size from [ks, k/2] (14 options), we may in a second step choose whether it83

should be the first or the second strobe. In more detail, the approach is performed as84

follows.85

First, a strobe length k′ is sampled from [ks, k/2] based on the hash value of h(S[i :86

i+ |ks|] as87

k′
.
= |ks|+

(
h(S[i : i+ |ks|])%(|kl| − |k|/2 + 1)

)
.

Second, we decide if the strobe of length k′ should come first or second based on88
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f(i, k, w, S, ∗) =

{
Sample multistrobe (k′, k − k′) if

(
(h(S[i : i+ |k′|]) //100)% 2 = 0

Sample multistrobe (k − k′, k′), otherwise

This approach can, at best, double the possible hash value selection options and also89

improve the uniformity of the number of short-long and long-short combinations when90

ks is small. Note however that our two-step implementation described above is not fully91

uniform when |kl − ks + 1| is uneven, as the option (k/2, k/2) is appearing with double92

probability as their short-long and long-short combinations are identical. The python93

implementation implements this two-step procedure to cope with very small ks for our94

sensitivity benchmarks while the C++ implements the sampling as described in the95

main paper for runtime. While the number of possible hash values is largely exceeding96

the number of strobe length options for ks > 3 ensuring a near-uniform distribution97

of strobe sizes, we observe a high variability of the simulation results for very small98

ks at each new experiment, since Python’s hash function starts with a different seed99

value. This has an effect on the distribution of strobe sizes. Especially for ks = 1,100

it may happen that a poor hash value distribution cause a non-uniform strobe sizes101

distorting simulation results. Hence, we decided to avoid degenerate hash functions for102

the smallest ks ∈ [1, 2]. For ks ≤ 2 we use a customized hash function based on the first103

two nucleotides at the start position of the first strobe, using the following strobe size104

assignments for our sensitivity estimation in Fig. 2 and Suppl. Figs. S1 - S3. When105

ks = 1, we use the mapping106

(”AA”: 1, ”AC”: 9, ”AG”: 19, ”AT”: 27, ”CA”: 14, ”CC”: 3, ”CG”: 11, ”CT”: 21,107

”GA”: 23, ”GC”: 16, ”GG”: 5, ”GT”: 13, ”TA”: 29, ”TC”: 25, ”TG”: 17, ”TT”: 7).108

When ks = 2, we use the mapping109

(”AA”: 2, ”AC”: 9, ”AG”: 19, ”AT”: 26, ”CA”: 14, ”CC”: 4, ”CG”: 11, ”CT”: 21,110

”GA”: 23, ”GC”: 16, ”GG”: 6, ”GT”: 13, ”TA”: 28, ”TC”: 24, ”TG”: 17, ”TT”: 7).111
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Algorithm 3 Multistrobes
Function: Multistrobes (S, n, ks, kl, wmin, wmax)
Input: Sequence S, number of strobes n, minimum strobe length ks, maximum strobe

length kl, strobe window W [wmin, wmax]
Output: Multistrobes of order n and their positions from S
Require : n ∈ 2Z
O = [] // Initialize array of multistrobes and their positions
for i ∈ [1, |S| − (n ∗ `+ 1)] do // Iterate over all positions

P = [i, ]

|k′| .
= |ks|+

(
h(S[i : i+ |ks|])%(|kl| − |k|/2 + 1)

)
if

(
(h(S[i:i+|k’|]) // 100) % 2 = 0) then // Decide whether to start with a

short strobe
k1 = k′

k2 = k − k′

else
k1 = k − k′

k2 = k′

end
strobes = [k1, k2]

H = h(S[i : i+ k1])

wu = min(wmax, ([S]− i)/(n− 1)) // Second argument only active at end of
S

wl = max(wmin − (wmax − wu), k2)
for j ∈ [2, n] do

k′ = strobes[(j + 1)%2] // Retrieve length of next strobe

offset = k/2− k′// Adjusting window offsets

w′ = [i+ wl + (j − 2)wu + offset, i+ (j − 1)wu] + offset // Window to look
for current strobe

p = argminp{p : h(m
⊕

S[p : p + k′]) 6 h(m
⊕

S[i′ : i′ + k′]),∀i′ ∈ w′}
// Selecting strobes based on randstrobe protocol

P += p

H += (−1)j ∗j∗h(S[p : p+k′) // Non-commutative hash value combination
end
O += (P,H)

return O
end
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S.2 Example computations of P (Xi|Yj)112

For convenience, we will denote P (Xi|Yj) for k-mers, randstrobes, mixedstrobes, alt-113

strobes, and multistrobes as Pk, Pr, Pmi, Pa, Pmu, respectively.114

S.2.1 k-mers115

We have116

Pk =

{
1 if i+ j + 2 ≤ k

0 otherwise.
(1)

We will refer to this equation as E6(k) taking the length of the k-mer as argument,117

as it turns out handy to reuse for some of the other constructs.118

S.2.2 Randstrobes119

Let the strobe size be k′ = bk/2c. If Yj is located on the second strobe, the probability120

is E6(k
′) since i can only be covered by the second strobe. If j is located on the first121

strobe, i can be either covered by the first or second strobe. Hence, we need to structure122

the probability up into cases. The possible second strobe coverings of position i given Yj123

depends on the downstream window location, and is further restricted by the window124

size (B = wmax − wmin + 1) and the strobe length. The second strobe coverings is125

computed as126

A = min(k′, B, i+ j + 2− wmin, w − (i+ j + 2)).

Under the assumption that wmin > k′, we have127

E7(k
′) =


1 if i+ j + 2 ≤ k′

A/B if wmin − j ≤ i ≤ w − (j + 1)

0 otherwise.
(2)

Let Ij be an indicator variable with Ij = 1 if j is placed on first strobe and 0128

otherwise. Then,129

Pr = E7(k
′)Ij + E6(k

′)(1− Ij)

S.2.3 Altstrobes130

For altstrobes, we have the same cases as for randstrobes (E6 and E7), but we need
to sum over the scenario that either the first or the second strobe is short (with equal
probabilities 0.5). We have

Pa = (0.5E7(ks) + 0.5E7(kl))Ij + (0.5E6(kl) + 0.5E6(ks))(1− Ij).

To guarantee the same maximum seed length we employed a window offset based on131

if the first strobe as short or long (as described in section 2.8), this window adjustment132

is computed before E7 is computed.133
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S.2.4 Mixedstrobes134

For mixedstrobes, we need to condition on the probability q that either a randstrobe or
a k-mer is sampled. We have

Pmi = (qE7(k
′) + (1− q)E6(k))Ij + qE6(k

′)(1− Ij).

Where we have included in the event Ij = 1 that a k-mer is sampled, as it can be135

seen as a strobe of length k with the second strobe being of length 0.136

S.2.5 Multistrobes137

Finally, multistrobes samples a strobe length ` ∈ [kb, k − kb] and sets k − ` as length138

for the second strobe. Let p` =
1

k−2kb+1 denote this probability (which is uniform over139

the considered strobe lengths). Let the shorter of the two be denoted by ks and the140

longer be denoted by kl, similarly to altstrobes. Then the probability is similar to Pa141

but summed over possible strobe lengths. We have142

Pmu =

k−kb∑
`=kb

p`

(
(0.5E7(ks) + 0.5E7(kl))Ij + (0.5E6(kl) + 0.5E6(ks))(1− Ij)

)
.

In case of Pr, Pmi, Pa, and Pmu, the above probabilities assume that the second143

strobe is chosen uniformly at random over the window, meaning that they assume a144

perfect random hash function. When the first strobe in altstrobes or multistrobes is145

very short it is not possible to sample uniformly from the window, as was discussed and146

shown in the construction of altstrobes section.147

S.3 Empirically estimating P (Nm > 0)148

We empirically estimated P (Nm > 0) for each of the seed construct parametrizations149

as follows. A string S (letters A, C, G, and T) of length 4w is simulated at random,150

and a second string T is simulated by copying S and randomly performing exactly m151

mutations within the first 2w nucleotides of S, creating a fixed mutation rate within the152

segment of 2w on S. As for the mutation profile, we uniformly draw the substitution153

rate s ∈ [0, 1] and set insertions and deletions each to (1−s)/2. We then construct seeds154

from S and T with each seed construct and parametrization. We store the event that155

seeds from the first w seeds on S and T has at least one match. We estimate P (Nm > 0)156

from the fraction of experiments with at least one match out of U experiment replicates,157

where U = 10, 000 for wmax = 50 and U = 1, 000 for wmax = 100 and 200. Finally,158

we obtain the summed sensitivity
∑M

m=1 P (Nm > 0) to capture the sensitivity over a159

range of error rates. M is chosen such that it corresponds to 30% error rate within the160

segment of length 2w. We chose 30% as all seed constructs returned no matches with161

the given seed lengths for this error rate. We chose wmax of 50, 100, and 200, giving162

rise to w of 64, 114, and 214 respectively. We chose these values to study the effect of163

the window size, where 50 and 100 are also consistent with previous study [SR2].164

S.4 Experiments165

S.4.1 Evaluation metrics166

We also evaluated our best performing seed constructs from the sensitivity analysis in167

a more general sequence matching scenario using previously designed metrics in [SR2],168
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namely fraction of matches, match coverage, sequence coverage, and expected island169

size:170

• Fraction of Matches: proportion of the query seeds that matched the reference171

• Match Coverage: proportion of nucleotides covered by the k-mers and strobe-172

mers from end-to-end including potential gaps173

• Sequence Coverage: proportion of nucleotides covered by the strobes of matches,174

so it distinguished from match coverage by disregarding the gaps between the175

strobes176

• Expected Island Size: An island is the maximal interval of consecutive nu-177

cleotides without matches. If a random location from the reference genome is178

selected, they may either be covered by matches (size of island = 0) or islands179

of various length. For a sequence S and a set of islands length X, the expected180

island size E is computed as follows:181

E =
1

| S |
∑
xεX

x2 (3)

.182

We used the same parameters and simulation setup as in [SR2] (details in Suppl.183

Section S2). Our seed sensitivity measure investigated in section 3.1 is most related to184

the metrics sequence coverage and island E-size, which measures two important metrics185

for sequence matching. While some sequence comparison algorithms may require a186

high fraction of matches for accurate similarity estimation and therefore optimize for187

number of matches, it is not typically needed for, e.g., read mapping applications. For188

example, it was shown in [SR2] that k-mers produce the highest fraction of matches189

under a random error distribution, but the high fraction of matches often occur because190

of several consecutive overlapping matches. In [SR1], the authors argued that this is191

bad as many of the matches are redundant, and they aim to select combinations of seeds192

that yield matches which overlap as little as possible which does not optimize for a high193

fraction of matches.194

S.4.2 Data simulation195

The performance of mixedstrobes, altstrobes and multistrobes was benchmarked and196

compared to (spaced) k-mers and strobemers on simulated sequencing data in a similar197

scenario to the match evaluation in [SR2], described here for convenience. Random198

reference sequences of 10,000 nucleotides were simulated, whereby the probability of each199

of the four nucleotides was 25% for each position. To create the corresponding query200

sequence, 1%, 5% and 10% of the nucleotides of the reference string were mutated for the201

different experimental conditions. Insertions, deletions and substitutions were hereby202

added with equal probability of 1/3. To reduce sample variation bias, these simulations203

were repeated 1,000 times. The randomly-simulated references and queries were now204

used as inputs to seed k-mers, spaced k-mers, randstrobes, minstrobes, hybridstrobes,205

mixedstrobes, and altstrobes. All k-mer and strobemer parameters were set as in [SR2],206

namely k = 30 and (2,15,25,50), altstrobes with (2,10,20,25,50) and multistrobes with207

(2,5,25,25,50), all yielding valid (30, 64)-seeds. Then, mixedstrobes was sampled with208

(2,15,25,50,q), q ∈ [0, 0.1, 0.2, . . . , 1.0]. We sampled mixedstrobes by combining each209

strobemer type (randstrobes, minstrobes, hybridstrobes, altstrobes) with k-mers as it210

was easy with our experiment setup.211
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S.4.3 Simulated results212

Our results demonstrate that k-mers performed best regarding the fraction of matches213

(Fig. S6A), which decreased linearly with increasing fractions of strobemers. Contrary,214

the match coverage (Fig. S6B) and the sequence coverage (Fig. S6C) increased with215

higher strobemer fractions, even though it leveled off towards the highest strobemer216

fractions. Sequence and match coverage were shown to be best for multistrobes and217

pure altstrobes (100%) followed by randstrobes and hybridstrobes with a strobemer218

content of 70-80% (Fig. S6C), largely outperforming k-mers and even being slightly219

better than the pure strobemer implementations. We observed similar results when220

looking at the expected island size which displayed an exponential decay behavior when221

adding more strobemers, whereby the benefit of going beyond 80% strobemers was either222

non-existent or very low (Fig. S6D).223

Overall, mixedrandstrobes with a strobe fraction of 70-80% were found to be superior224

to the pure strobemer implementations as higher fraction of matches and a lower island225

size was observed while maintaining high sequence and match coverage. Furthermore226

our analysis suggests that altstrobes are strictly better than the currently best known227

strobemer construct (randstrobes) as the fraction of matches, sequence coverage and228

match coverage are higher while the number of expected island sizes remained lower.229

The generalized implementation of altstrobes, multistrobes, performed even better as it230

is outperforming altstrobes in all matching metrics (Supp. Table 1).231

As the spaced k-mer protocol performed worse than k-mers on all metrics (fewer232

matches, lower match coverage, and larger expected island size), their results are not233

displayed for better visualisation. However, full data including spaced k-mers is pre-234

sented in Suppl. Table 1.235

We also looked at strobemers of orders 2 to 5. We observe that in practice, n ≥ 4236

does not offer benefit over n = 2 and 3 for the application of strobemers that we consider237

in this study (Fig S6). Note that k = 30, can be divided by 2,3, and 5 without leaving238

a remainder, guaranteeing same number of positions sampled. Also, altstrobes and239

multistrobes were only computed for n = 2, 4 to guarantee same number of positions240

sampled as the other seeds. For strobemers of order 4, we observe that altstrobes and241

multistrobes perform very similar which can be explained by their shortest possible242

strobes being of identical length (ks = 5) and the considerably lower number of strobe243

combinations (6 vs. 21) for multistrobes of order 4.244

S.4.4 E.coli Oxford Nanopore Technology Reads245

In contrast to simulated data where we compare query sequences and their correspond-246

ing references individually, biological data may contain spurious matches, which requires247

measurements of the sequence matching metrics on biological data to reaffirm our pre-248

vious simulation results.249

To this end, the one thousand E.coli Oxford Nanopore Technology reads used in250

[SR2] ranging from 17,360nt to 52,197nt (median 19,601nt) were split up in disjoint251

segments of 2,000bp before computing the collinear chain solution of the raw hits for252

each of the segments. The collinear chaining algorithm determines chains of matches253

that are in identical order in both sequences. Hence, the collinear solution can be254

viewed as a proxy for finding the true location of the hits by taking only the longest255

collinear chain of the hits into account, as in [SR2], to avoid overcounting “spurious”256

hits caused by local matches in repetitive regions that occur throughout the genome.257

Raw unmerged hits were assessed rather than non-overlapping approximately matchings258

(NAMs) to make the analysis identical to the simulated experiment. Subsequently, for259

each read, the number of matches, the match coverage, the sequence coverage and the260

expected island size were computed for the collinear solution of hits (Fig. 3 and Suppl.261
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Figs. S7 and S8).262

S.4.5 Biological Data263

The thousand E.coli reads were downloaded from Sequence Read Archive with Run264

ID SRR13893500 (available here: https://trace.ncbi.nlm.nih.gov/Traces/?view=265

run_browser&acc=SRR13893500&display=download. We selected the 1,000 longest266

reads that aligned to the E.coli genome with more than 95% of the total read length267

as in [SR2]. The reads were mapped to the E.coli genome assembly GCA 003018135.1268

ASM301813v1 (available here: https://www.ncbi.nlm.nih.gov/genome/167?genome_269

assembly_id=368373). For the E-hits and uniqueness analysis we used human chro-270

mosome 21 (NC_000021.9) from GRCh38.p13 Primary Assembly. For the human data271

analysis with minimap2, we used assembly CHM13 v2.2 (available here: https://272

s3-us-west-2.amazonaws.com/human-pangenomics/T2T/CHM13/assemblies/analysis_273

set/chm13v2.0.fa.gz).274

S.5 Minimap2 implementation details275

We implemented randstrobes, mixedstrobes, altstrobes and multistrobes in the fast se-276

quence mapping and alignment program minimap2. First, we find minimizer k-mers277

based on the shorter strobe ks (altstrobes and multistrobes) or the first strobe k/2278

(randstrobes and mixedstrobes). To decide whether a k-mer or a randstrobe (mixed-279

strobes) should be sampled, a modulo operation is performed on the hash value of the280

first strobe (see mixedstrobe implementation). Analogously, a decision about ks and kl,281

and k1 and k2 is made for altstrobes and multistrobes, respectively (see Section 2.6 of282

the paper).283

Next, the second strobes are selected from a downstream window [25,50] that min-284

imizes the function argminp{p : h(m
⊕

S[p : p + `]) 6 h(m
⊕

S[i′ : i′ + `]),∀i′ ∈ w′}.285

The hash values of the selected strobes are combined using non-commutative concate-286

nation (hash values of linked k-mers) and are assigned to our fuzzy seeds of length287

wmax + k − 1. As it is not possible to sample seeds of these length from the reverse288

strand at the beginning of the sequence, only forward seeds are sampled for the first289

wmax + k − 1 nucleotides, and vice versa only reverse strand seeds at the end of the290

sequence.291

292

S.5.1 Minimap2 analysis293

To measure speed and accuracy of our newly implemented seeding methods, we bench-294

marked them against k-mers with k = 15 (default setting) and k = 28. To this end,295

we sampled 100,000 reads of length 10,000nt from random positions across the Homo296

sapiens (human) genome assembly CHM13 that did not contain any incompletely spec-297

ified bases. Next, we inserted, deleted, or substituted nucleotides with equal probability298

of 1/3 each across the reads with the mutation rate 0.01, 0.05, 0.1, as in [SR2], and299

converted the read sequence into its reverse-complement counterpart with probability300

of 1/2. These mutated reads were mapped and aligned back to the CHM13 assembly301

using minimap2 with default mapping and aligning settings. A read was considered to302

be mapped correctly if at least 1nt was mapped to its correct location.303

S.6 Figures and tables304

https://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser&acc=SRR13893500&display=download
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Figure S1. Scatterplot showing the relationship between entropy and
sensitivity. The coefficient of determination (square of the Pearson correlation
coefficient) to quantify whether entropy can predict sensitivity.
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Figure S5. Match Statistics for altstrobes with different strobe length
combinations.
For a given strobe length combination and mutation rate in the plot, 1,000 random
sequences of length 10,000nt with randomly updated hash tables were generated. To
guarantee an equal number of long-short and short-long altstrobe combinations even
for very short strobes (see concerns prompted in section 1. Construction of
Altstrobes), altstrobes were constructed with a modified altstrobe implementation. To
this end, reference sequences were seeded with both altstrobes possibilities for each
position and the decision about whether a short-long or a long-short query seed should
be constructed was based on the longer strobe ensuring a large enough hash space to
neglect systematic bias.
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Figure S6. Match Statistics for k-mers, strobemers, altstrobes,
multistrobes and mixedstrobes of orders 2 - 5.
1,000 random DNA sequences of 10,000 nucleotides were generated and subsequently
mutated to obtain references and queries. Using these sequences, seeds were sampled
with strobemer fractions from 0% (k-mers) to 100% (pure strobemers), downstream
windows set to [25,50] and all strobes combined adding up to equal length
subsequences of size 30 for better comparison. Hence, the strobemer settings were as
follows: (2,15,25,50,q), (3,10,25,50,q), and (5,6,25,50,q), whereby mixedstrobes were
sampled with a strobe fraction q ranging from 0% (k-mers) to 100% (strobemers) and
a step size of 10% (f(0, 100, 10) =

{
10k | k ∈ {0, 10, ..., 100}

}
). For strobemers of order

4, seeds of lengths 28 and 32 were seeded and the average (mean) plotted for each
metrics to ensure similar sizes of subsequences between the protocols. Altstrobes were
seeded with strobes of length ks = 10/kl = 20 (2,10,20,25,50,q), and ks = 5/kl = 10
(4,5,10,25,50,q), respectively. Multistrobes were seeded as (2,5,25,25,50) and
(4,5,10,25,50).
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Figure S7. Comparison between k-mers, strobemers, altstrobes and
multistrobes when mapping genomic ONT reads for reads of different
lengths (x-axis).
The E.coli reads were split up in long disjoint segments of 2,000nt. Next, the segments
were seeded with k-mers, strobemers and altstrobes, downstream windows set to
[25,50] and all strobes combined adding up to equal length subsequences of size 30 for
better comparison. Then for each segment, the collinear solution of raw hits was
computed to subsequently quantify number of matches, match coverage, sequence
coverage and expected island size for each read. Each dot represents one read while
the line displays a smoothed conditional mean (GAM curve with cubic spline:
y ∼ s(x, bs = ”cs”)).
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Figure S8. Comparison between randstrobes, mixedrandstrobes, altstrobes
and multistrobes when mapping genomic ONT reads for reads of different
lengths (x-axis).
The E.coli reads were split up in long disjoint segments of 2,000nt. Next, the segments
were seeded with randstrobes (2,15,25,50), mixedrandstrobes (2,15,25,50,0.8),
altstrobes (2,10,20,25,50) and multistrobes (2,5,25,25,50). For each segment, the
collinear solution of raw hits was computed to subsequently quantify number of
matches, match coverage, sequence coverage and expected island size for each read.
For each read, the matching metrics from mixedrandstrobes (blue), altstrobes (pink)
and multistrobes (black) were subsequently normalized by randstrobes (turkis) for
better visualisation. Multistrobes and altstrobes perform best indicated by similar
number of matches, higher sequence and match coverage as well as lower gap size.
Mixedrandstrobes perform better than randstrobes for all metrics besides match
coverage where mixedrandstrobes perform roughly 1% worse. Each dot represents one
read while the line displays a smoothed conditional mean (GAM curve with cubic
spline: y ∼ s(x, bs = ”cs”)).
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Figure S9. Minimap2 Benchmarking.
100,000 sequences of lengths 10,000nt without any incompletely specified bases (e.g.
”n”) were selected from random positions of the CHM13v2.0 human assembly and
mutated (insertions, deletions and base substitutions) with mutation frequencies of
0%, 1%, 5% and 10%. The selected reads were mapped and aligned back to the
reference using k-mers (k = 15 and 28), altstrobes (2, 9, 18, 25, 50), randstrobes
(2, 14, 25, 50), multistrobes (2, 5, 23, 25, 50) and mixedstrobes (2, 14, 25, 40, 0.8). All
experiments were repeated 5 times and the average (mean) taken to account for
variance in computer processing speed.
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Figure S10. Fraction of unique seeds for different strobemer seeding
techniques and fractions on Human chromosome 21.
Chromosome 21 of the human GRCh38 assembly was seeded with k-mers, strobemers
of orders 2 (2,k/2,25,50,q) and 3 (3,k/3,25,50,q) as well as altstrobes of order 2
(2,(k/3),(2k/3),25,50,q). Mulitstrobes was seeded with (2,5,k-5,25,50). In panel B, the
numbers of extracted nucleotides (k=30) is the same for all seeding techniques for fair
comparison.



SI-23

w = 1
Mutation Rate 0.01 0.05 0.1

Seeding Settings m mc sc e m mc sc e m mc sc e
k-mers 30 74.5 96.0 96.0 1.1 22.4 54.7 54.7 43.6 4.7 18.1 18.1 293.8
spaced k-mers dense 67.6 95.6 96.2 1.5 13.8 53.9 50.9 65.7 1.8 16.3 14.2 481.0
spaced k-mers sparse 50.5 89.8 87.8 11.1 3.5 26.8 21.4 493.5 0.1 3.6 2.1 4120.8
altstrobes (2,10,20,25,50) 70.9 99.9 98.6 0.0 18.3 90.0 75.3 6.1 3.4 47.7 33.3 104.4
randstrobes (2,15,25,50) 70.7 99.9 98.2 0.0 18.2 87.8 72.7 8.2 3.4 44.6 21.2 118.1
hybridstrobes (2,15,25,50) 71.7 99.6 97.8 0.1 19.2 85.7 70.0 10.2 3.7 42.0 29.0 132.7
minstrobes (2,15,25,50) 69.1 99.2 94.8 0.2 16.6 72.6 51.9 30.7 3.0 27.4 16.0 304.0
mixedstrobes (2,15,25,50,0.8) 71.5 99.9 98.2 0.1 19.0 86.8 72.9 8.4 3.7 43.8 32.1 113.4
multistrobes (2,5,25,25,50) 71.1 99.9 98.6 0.0 18.6 91.1 75.7 5.5 3.6 48.5 33.7 101.2

w = 10
Mutation Rate 0.01 0.05 0.1

Seeding Settings m mc sc e m mc sc e m mc sc e
k-mers 30 73.2 90.3 90.3 2.6 20.7 42.8 42.8 73.2 3.9 11.4 11.4 501.8
spaced k-mers dense 65.5 90.9 87.3 3.9 12.1 36.5 30.9 147.8 1.4 6.9 5.3 1265.4
spaced k-mers sparse 47.9 84.9 74.4 17.0 2.7 16.7 9.5 945.9 0.1 1.2 0.5 7140.2
altstrobes (2,10,20,25,50) 69.7 98.5 92.3 0.4 17.1 62.7 46.0 46.9 3.0 19.2 12.1 423.3
randstrobes (2,15,25,50) 69.6 98.4 92.3 0.5 16.8 62.3 45.9 48.7 2.9 18.5 11.8 451.6
hybridstrobes (2,15,25,50) 68.4 97.3 90.2 1.2 15.8 58.6 42.5 58.0 2.6 16.8 10.5 506.6
minstrobes (2,15,25,50) 68.0 98.1 87.8 0.7 15.2 58.8 37.1 67.4 2.5 16.5 8.8 611.2
mixedstrobes (2,15,25,50,0.8) 70.5 98.0 92.2 0.7 17.8 60.4 46.8 49.2 3.2 17.8 12.4 425.6
multistrobes (2,5,25,25,50) 70.3 98.6 92.4 0.4 17.2 64.2 47.0 44.1 3.3 20.2 12.7 404.2

w = 20
Mutation Rate 0.01 0.05 0.1

Seeding Settings m mc sc e m mc sc e m mc sc e
k-mers 30 71.8 84.2 84.2 5.8 19.3 33.2 33.2 111.1 3.6 7.8 7.8 737.4
spaced k-mers dense 64.4 85.0 77.9 8.0 11.4 27.9 21.9 221.3 1.4 4.5 3.3 1931.3
spaced k-mers sparse 47.3 79.9 62.2 26.6 2.6 12.2 5.9 1256.4 0.1 0.7 0.3 8242.6
altstrobes (2,10,20,25,50) 68.9 94.8 83.6 2.3 16.4 47.0 32.1 98.5 2.9 11.6 7.1 766.8
randstrobes (2,15,25,50) 68.3 94.8 83.9 2.4 15.6 46.0 31.2 101.3 2.7 11.0 6.7 804.9
hybridstrobes (2,15,25,50) 66.2 92.6 81.8 3.8 13.8 41.1 28.1 124.8 2.2 9.2 5.6 993.7
minstrobes (2,15,25,50) 66.7 95.3 75.8 2.6 14.0 45.4 25.6 129.3 2.2 10.4 5.2 1020.3
mixedstrobes (2,15,25,50,0.8) 69.3 93.3 83.8 2.9 16.6 44.3 32.4 99.0 2.9 10.6 7.2 768.5
multistrobes (2,5,25,25,50) 69.8 95.0 83.6 2.2 17.2 48.3 32.8 93.9 3.1 12.2 7.4 722.8

Table S1: Match statistics for simulated sequences (L = 10000)) under different sampling protocols under mutations rates of 0.01,
0.05, 0.1 using minimizer thinning with w = 1 (no thinning), w = 10, and w = 20.
Here, m denotes the number of matches as a percentage of the total number of extracted subsequences for the protocol, sc (sequence coverage) and
mc (match coverage) is shown as the percentage of the total sequence length, and E is the expected island size. Boldfaced values indicate the most
desirable result across protocols for each of the match statistics.
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