
A Supplemental materials

A.1 Verification of Theorem 8 using simulations

Similar to Table 1, we repeated the experiment for the same settings except with two di↵erent scale
factors. The results are shown in this section.

L = 10 K L = 100 K L = 1 M
p = 0.001 0.1 0.2 0.001 0.1 0.2 0.001 0.1 0.2
k = 21 95.4 95.3 94.7 95.0 95.2 95.06 95.0 95.0 94.6
k = 51 95.4 94.8 N/A 94.8 94.6 N/A 94.9 95.1 94.4
k = 100 94.7 N/A N/A 94.6 N/A N/A 95.4 93.7 N/A

Table S1: The percentage of experiments that resulted in the true mutation rate falling within the 95% confidence
interval given in Theorem 8 when using various mutation rates across multiple k-mer sizes and L values. A scale factor
of 0.2 was used. The results show an average over 10,000 simulations for each setting. N/A entries indicate that the
parameters are not particularly meaningful and will not produce interpretable results, either because E[Nmut] ⇡ L
in these cases (almost all k-mers are mutated), or because the scale factor is too small to di↵erentiate between the
two FracMinHash sketches.

L = 10 K L = 100 K L = 1 M
p = 0.001 0.1 0.2 0.001 0.1 0.2 0.001 0.1 0.2
k = 21 96.3 95.0 96.0 95.1 95.0 95.3 95.0 95.2 94.9
k = 51 94.9 94.5 N/A 94.7 95.3 N/A 94.7 95.0 N/A
k = 100 95.2 N/A N/A 95.2 N/A N/A 94.5 N/A N/A

Table S2: The percentage of experiments that resulted in the true mutation rate falling within the 95% confidence
interval given in Theorem 8 when using various mutation rates across multiple k-mer sizes and L values. A scale factor
of 0.05 was used. The results show an average over 10,000 simulations for each setting. N/A entries indicate that the
parameters are not particularly meaningful and will not produce interpretable results, either because E[Nmut] ⇡ L
in these cases (almost all k-mers are mutated), or because the scale factor is too small to di↵erentiate between the
two FracMinHash sketches.

A.2 Expected number of non-mutated k-mers in di↵erent scenarios

To explain the N/A entries in Figures 1, S1 and S2, we show the expected number of non-mutated
k-mers after undergoing the simple mutation process in Table S3. Depending on the scale factor,
only a fraction of these non-mutated k-mers show up in the FracMinHash sketch. Therefore, if the
number of non-mutated k-mers is too small, it would be meaningless to run the experiment.

A.3 Theorems and proofs

Theorem 1. For 0 < s < 1, if A and B are two non-empty sets such that A \ B and A \ B are
non-empty, the following holds:

E
h
Ĉfrac(A,B) |FRACs(A)|>0

i
=

|A \B|
|A|

⇣
1� (1� s)|A|

⌘
.

15

L = 10 K L = 100 K L = 1 M
p = 0.001 0.1 0.2 0.001 0.1 0.2 0.001 0.1 0.2

k = 21 9792.1 1094.2 92.2 97920.9 10941.9 922.3 979208.7 109419.0 9223.3
k = 51 9502.5 46.4 0.11 95025.4 463.8 1.1 950254.4 4638.4 11.4
k = 100 9047.9 0.26 2.04E-6 90479.2 2.7 2.04E-5 904792.1 26.6 2.04E-4

Table S3: The expected number of non-mutated k-mers after undergoing the simple mutation process, shown across
multiple k-mer sizes, L values, and mutation rates.

Proof. Using the notation introduced previously, observe that

Ĉfrac(A,B) |FRACs(A)|>0 =
XA\B

XA\B +XA\B
XA\B+XA\B>0,

and that the random variables XA\B and XA\B are independent (which follows directly from the
fact that A\B and A\B are non-empty, distinct sets). We will use the following fact from standard
calculus:

Z 1

0
xtx+y�1 dt =

x

x+ y
x,y>0. (7)

Then using the moment generating function of the binomial distribution, we have

E
⇥
tXA\B

⇤
= (1� s+ st)|A\B| (8)

E
⇥
tXA\B

⇤
= (1� s+ st)|A\B| (9)

We also know by continuity that

E
⇥
XA\B tXA\B�1

⇤
=

d

dt
(1� s+ st)|A\B| (10)

= |A \B|s(1� s+ st)|A\B|�1. (11)

Using these observations, we can then finally calculate that

E


XA\B

XA\B +XA\B
XA\B+XA\B>0,

�
= E

Z 1

0
XA\B tXA\B+XA\B�1 dt

�
(12)

=

Z 1

0
E
⇥
XA\B tXA\B+XA\B�1 dt

⇤
(13)

=

Z 1

0
E
⇥
XA\B tXA\B�1

⇤
E
⇥
tXA\B

⇤
dt (14)

= |A \B|s
Z 1

0
(1� s+ st)|A\B|+|A\B|�1 dt (15)

=
|A \B|s(1� s+ st)|A|

|A|s

����
t=1

t=0

(16)

=
|A \B|
|A|

⇣
1� (1� s)|A|

⌘
, (17)

where Fubini’s theorem is used in Equation (13) and independence in Equation (14). ⌅

16

Theorem 3. For n = |A \ B| and m = |A \ B| where both m and n are non-zero, a first order
Taylor series approximation gives

Var
h
Ĉfrac(A,B)

i
⇡ mn(1� s)

s(m+ n)3
.

Proof. Let g(x, y) = x
x+y , µx = ns, µy = ms and use subscripts to denote partial derivatives:

gx(x, y) =
y

(x+ y)2

gy(x, y) =
�x

(x+ y)2

We then have the first order Taylor series:

Var
�
g
�
XA\B, XA\B

��
= g2x(µx, µy)Var(XA\B)

+ 2gx(µx, µy)gy(µx, µy)E[XA\B � µx]E[XA\B � µy]

+ g2y(µx, µy)Var(XA\B) (18)

=
m2

s2(m+ n)4
ns(1� s) +

n2

s2(m+ n)4
ms(1� s)

=
mn(1� s)

(m+ n)3s
,

with the middle term of eq. (18) factoring due to independence.
⌅

Theorem 4. For g(x, y) = x
x+y , n = |A \B| and m = |A \B| where both m and n are non-zero,

p
n+m

�
g(XA\B, XA\B)� g(n,m)

� D�����!
n,m!1

N

✓
0,

mn(1� s)

(m+ n)3s

◆
.

Proof. The covariance matrix is calculated as

⌃ =


ns(1� s) 0

0 ms(1� s)

�
.

Using the same notation as in Theorem 3, let

� =


gx(µx, µy)
gy(µx, µy)

�
=

"
m

s(n+m)2
�n

s(n+m)2

#
.

The delta method then uses the first order Taylor series from Theorem 3 to obtain thatp
n+m

�
g(XA\B, XA\B)� g(n,m)

�
converges in distribution to a centered normal with variance

�0⌃� =
mn(1� s)

(m+ n)3s
.

⌅

17

Theorem 5. For 0 < s < 1, if A and B are respectively distinct sets of k-mers of a sequence S
and a sequence S0 derived from S under the simple mutation model with mutation probability p such
that A \B is non-empty, then the expectation of Cfrac(A,B) in the product space P,S is given by

EP,S [Cfrac(A,B)] = (1� p)k, (5)

where P = (⌦1,F1,P1) and S = (⌦2,F2,P2) are the probability spaces corresponding to the muta-
tion and FracMinHash sketching random processes, respectively.

Proof.

EP,S [Cfrac(A,B)] =

Z

P,S
Cfrac(A,B) dµ1⇥µ2 =

Z

P

Z

S
Cfrac(A,B) dµ2 dµ1

= EP [ES [Cfrac(A,B)]] = EP


1� Nmut

L

�

= 1� Lq

L
= 1� (1� (1� p)k)

= (1� p)k.

Here, we used Fubini’s theorem in the second step. We also used the expectation of Nmut from
(Blanca et al 2022), where q = 1� (1� p)k. ⌅

Theorem 6. For 0 < s < 1, if A and B are respectively distinct sets of k-mers of a sequence S
and a sequence S0 derived from S under the simple mutation model with mutation probability p such
that A \B is non-empty, then the variance of Cfrac(A,B) in the product space P,S is given by

Var
P,S

[Cfrac(A,B)] =
(1� s)

sL3 (1� (1� s)L)2
(LEP [N]� EP [N

2]) +
1

L2
Var
P

(Nmut) (6)

where P = (⌦1,F1,P1) and S = (⌦2,F2,P2) are the probability spaces corresponding to the muta-
tion and FracMinHash sketching random processes, respectively.

Proof. First, we calculate the second moment of Cfrac(A,B) in the product space as follows:

EP,S [Cfrac(A,B)2] =

Z

P,S
Cfrac(A,B)2 dµ1⇥µ2 =

Z

P

Z

S
Cfrac(A,B)2 dµ2 dµ1

=

Z

P

"
mn(1� s)

s(m+ n)3 (1� (1� s)L)2
+

✓
L�Nmut

L

◆2
#
dµ1

= EP

"
N(L�N)(1� s)

sL3 (1� (1� s)L)2
+

1

L2
(L2 � 2LN +N2)

#

=
(1� s)

sL3 (1� (1� s)L)2
(LEP [N]� EP [N

2])

+
1

L2
(L2 � 2LEP [N] + EP [N

2])

18

Therefore, we calculate the variance in the product space as follows.

Var
P,S

(Cfrac(A,B)) = EP,S [Cfrac(A,B)2]� EP,S [Cfrac(A,B)]2

=
(1� s)

sL3 (1� (1� s)L)2
(LEP [N]� EP [N

2])

+
1

L2
(L2 � 2LEP [N] + EP [N

2])

� 1

L2
(L� EP [N])2

=
(1� s)

sL3 (1� (1� s)L)2
(LEP [N]� EP [N

2])

+
1

L2
(L2 � 2LEP [N] + EP [N

2])

� 1

L2
(L2 � 2LEP [N] + EP [N]2)

=
(1� s)

sL3 (1� (1� s)L)2
(LEP [N]� EP [N

2]) +
1

L2
Var
P

(Nmut)

⌅
Theorem 7. Let 0 < s < 1, let A and B be two distinct sets of k-mers, respectively of a sequence
S and a sequence S0 derived from S under the simple mutation model with mutation probability p,
such that A \B is non-empty.

Also, let 0 < ↵ < 1, and Clow and Chigh be defined as follows.

Clow = (1� p)k � z↵

s
(1� s)

sL3 (1� (1� s)2)
(LEP [Nmut]� EP [Nmut

2]) +
1

L2
Var
P

(Nmut)

Chigh = (1� p)k + z↵

s
(1� s)

sL3 (1� (1� s)2)
(LEP [Nmut]� EP [Nmut

2]) +
1

L2
Var
P

(Nmut).

Then, the following holds as L!1 and when p and k are independent of L:

Pr[Clow  Cfrac(A,B)  Chigh] = 1� ↵.

Proof. As discussed in the Methods section, Cfrac(A,B) is asymptotically normal when the required
conditions are met. Therefore, the hypothesis test for a random variable following the Gaussian
distribution holds for Cfrac(A,B). Using the expectation and the variance proved in Theorems 5
and 6, we have the results stated in the theorem.

⌅
Theorem 8. Let A and B be two distinct sets of k-mers, respectively of a sequence S and a sequence
S0 derived from S under the simple mutation model with mutation rate p, such that A \B is non-
empty. Let Epfixed [X] and Varpfixed [X] denote the expectation and variance of a given random variable
X under the randomness from the mutation process with fixed mutation rate pfixed, respectively.
Then, for fixed ↵, s, k and an observed Cfrac(A,B), there exists an L large enough such that there
exist unique solutions p = plow and p = phigh to the following equations, respectively,

Cfrac(A,B) = (1� plow)
k + z↵

s
(1� s)

sL3 (1� (1� s)L)2
(LEplow [Nmut]� Eplow [Nmut

2]) +
1

L2
Var
plow

(Nmut),

19

Cfrac(A,B) = (1� phigh)
k � z↵

s
(1� s)

sL3 (1� (1� s)L)2
(LEphigh [Nmut]� Ephigh [Nmut

2]) +
1

L2
Var
phigh

(Nmut),

such that the following holds:

lim
L!1

Pr[plow  p  phigh] = 1� ↵.

Proof. Given the results in Theorem 7, we only need to prove that plow and phigh are well defined.
It su�ces to show that

(1� plow)
k + z↵

s
(1� s)

sL3 (1� (1� s)L)2
(LEplow [Nmut]� Eplow [Nmut

2]) +
1

L2
Var
plow

(Nmut)

and

(1� phigh)
k � z↵

s
(1� s)

sL3 (1� (1� s)2)
(LEphigh [Nmut]� Ephigh [Nmut

2]) +
1

L2
Var
phigh

(Nmut)

are strictly monotonic in plow and phigh, respectively under the Stated conditions.
Let us first investigate the function of plow. For simplicity, we will write p instead of plow, z

instead of z↵ and N instead of Nmut. We observe the following:

@

@p

"
(1� p)k + z↵

s
(1� s)

sL3
�
1� (1� s)L

�2 (LEp[N]� Ep[N2]) +
1

L2
Var
p
(N)

#

= �k(1� p)�1+k �
�� 1

L2

�
� kL

�
� 2k +

�
1� (1� p)k

��
� 1 + 2k +

2

p

��
(1� p)�1+k+

L
�
k
�
� 1 + 2k +

2

p

�
(1� p)�1+k �

2
�
1� (1� p)k

�

p2
�
(1� p)k � 2(�1 + k)k2(1� p)�1+2k�

4(1� p)k
�
� 1 + (1� p)k +

�
1 + (�1 + k)(1� p)k

�
p
�

p3
�

2k(1� p)�1+k
�
� 1 + (1� p)k +

�
1 + (�1 + k)(1� p)k

�
p
�

p2
+

2(1� p)k
�
1� k(1� p)�1+k + (�1 + k)(1� p)k � (�1 + k)k(1� p)�1+kp

�

p2
�
+

1

L3
�
1� (1� s)L

�2
s

�
kL2(1� p)�1+k + kL

�
� 2k +

�
1� (1� p)k

��
� 1 + 2k +

2

p

��
(1� p)�1+k�

2kL2
�
1� (1� p)k

�
(1� p)�1+k � L

�
k
�
� 1 + 2k +

2

p

�
(1� p)�1+k �

2
�
1� (1� p)k

�

p2
�
(1� p)k+

2(�1 + k)k2(1� p)�1+2k +
4(1� p)k

�
� 1 + (1� p)k +

�
1 + (�1 + k)(1� p)k

�
p
�

p3
+

2k(1� p)�1+k
�
� 1 + (1� p)k +

�
1 + (�1 + k)(1� p)k

�
p
�

p2
�

2(1� p)k
�
1� k(1� p)�1+k + (�1 + k)(1� p)k � (�1 + k)k(1� p)�1+kp

�

p2
�
(1� s)

�
z
�
/2
p

f,

20

where

f =
L
�
� 2k +

�
1� (1� p)k

��
� 1 + 2k + 2

p

��
(1� p)k + (�1 + k)k(1� p)2k

L2
+

2(1� p)k
�
� 1 + (1� p)k +

�
1 + (�1 + k)(1� p)k

�
p
�

L2p2
+

1

L3
�
1� (1� s)L

�2
s

�
L2
�
1� (1� p)k

�

� L2
�
1� (1� p)k

�2 � L
�
� 2k +

�
1� (1� p)k

��
� 1 + 2k +

2

p

��
(1� p)k�

(�1 + k)k(1� p)2k �
2(1� p)k

�
� 1 + (1� p)k +

�
1 + (�1 + k)(1� p)k

�
p
�

p2
�
(1� s).

After a tedious, but straightforward (due to the polynomial and rational terms) series expansion
of this derivative about L =1, we obtain that the derivative is

�k(1� p)k�1 +O(L�1/2)

Therefore, as L approaches1, the derivative is always negative, which gives us that the function

(1�plow)k+z↵
q

(1�s)
sL3(1�(1�s)2)(LEplow [N]� Eplow [N

2]) + 1
L2 Varplow(Nmut) is monotonically decreas-

ing in plow in the asymptotic case.

The proof that (1� phigh)k � z↵
q

(1�s)
sL3(1�(1�s)2)(LEphigh [N]� Ephigh [N

2]) + 1
L2 Varphigh(Nmut) is

monotonically decreasing in phigh proceeds in an entirely analogous manner.
⌅

A.4 Dynamic Programming algorithm to compute the PMF of Nmut

Here, we will continue to use the notations of the simple mutation model for this algorithm, namely
the parameters L, k and p. Let a string S of length l undergo the simple mutation process. For
ease of understanding, we will represent the mutations introduced to S using a binary string B
of length l, where B[i] = 1 if position i in S was mutated, and 0 otherwise. Therefore, each 1 in
this binary string comes from a point mutation, occurring with a probability of p, and each 0 with
a probability of 1� p. Note that there are l � k + 1 k-mers in S . If we could account for all such
binary string B’s that result in a total of x mutated k-mers, we can accumulate the probabilities
associated with each of these strings and compute Pr[Nmut = x] by letting l = L+ k � 1 (which is
the length of S and S0). We do this e�ciently by defining the following indicator variable:

I[i] =

(
1 if k-span Ki in S is a mutated k-mer

0 otherwise

for i = 1 up to l � k + 1, and making use of the following subproblems:

P(l, x, z) = Pr

"
l�k+1X

i=1

I[i]

!
= x, 8j s.t. l � z + 1  j  l, B[j] = 0

#
(19)

where 0  z < k, l � k, 0  x  l � k + 1. Put another way, P(l, x, z) is the probability of having
x mutated k-mers in a string of length l with z trailing zeros. Here, l � k is required to make sure
there is at least one k-mer. Equation (19) covers the cases where a string can have at most k � 1
trailing zeros. For the rest of the cases, we define the following subproblem:

21

P(l, x, k) = Pr

"
l�k+1X

i=1

I[i]

!
= x, 8j s.t. l � µ+ 1  j  l, B[j] = 0, µ � k

#
(20)

where l � k, 0  x  l � k + 1. Put another way, P(l, x, k) is the probability of having x mutated
k-mers in a string of length l with k or more trailing zeros.

The base cases of these subproblems are when the string has a length of k, and there can only be
one k-mer. This k-mer will be non-mutated when the corresponding binary string has k zeros, giving
us a probability of P(l = k, 0, k) = (1� p)k. On the other hand, if we have z < k trailing zeros, all
we need is a 1 preceding these zeros for the k-mer to be mutated, giving us P(l = k, 1, z) = p(1�p)z

for 0  z < k. It is straightforward to verify that summing these probabilities indeed gives us 1.
We next turn to using the smaller subproblems to solve the larger ones. The core idea is that if

we append a 1 at the end of a binary string, then the number of mutated k-mers will increase by
one, and there are no trailing zeros in the resulting string. On the other hand, if we append a 0 at
the end of the string, then the number of mutated k-mers will stay the same if the total number of
trailing zeros is k or more. Appending a 0 at the end will increase the number of mutated k-mers
by one if the total number of trailing zeros is less than k. In both of these latter scenarios, the
number of trailing zeros will increase by one. These observations lead to the following recurrence
relation:

P(l, x, z) =

8
>><

>>:

⇣Pk�1
z0=0P(l � 1, x� 1, z0) +P(l � 1, x� 1, k)

⌘
⇥ p if z = 0

P(l � 1, x� 1, z � 1)⇥ (1� p) if 1  z < k⇣
P(l � 1, x, k � 1) +P(l � 1, x, k)

⌘
⇥ (1� p) if z = k.

(21)

For our parameters L, k and p, we would need to solve the subproblems for l = L + k � 1.
Finally, we would compute Pr[Nmut = x], x = 0 up to L as follows:

Pr[Nmut = x] = P(L+ k � 1, x, k) +
k�1X

z0=0

P(L+ k � 1, x, z0). (22)

These base cases and recurrence relations give us Algorithm 1 to compute the PMF of Nmut.
The loop at Step 5 of the algorithm iterates L times. The inner loop at Step 6 iterates at most
L times. It is straightforward to count that Steps 7 – 11 take O(k) number of operations. These
observations give us a running time of O(L2k). Note that k is usually in the magnitude of 20 to 50.
Considering k << L, we have an O(L2) algorithm to compute the PMF of Nmut.

A.5 Theoretical guarantees to accurately estimate containment index

In this section, we present theoretical evidence that Cfrac(A,B) is able to estimate the true con-
tainment index C(A,B) with high accuracy. Let the elements in A [B be ei for i = 1 to N . We
define an indicator variable Yi associated with an element ei as follows:

Yi =

(
1 if ei 2 FRACs(A) \ FRACs(B)

0 otherwise
.

Let Y be the number of elements in FRACs(A) \ FRACs(B). Naturally, Y =
PN

i=1 Yi. The

probability of Yi being 1 is |A\B|s
|A[B| . Therefore, we have:

22

Algorithm 1 : PMF�Nmut

Input:

L, total number of k-mers
k, length of a k-mer
p, mutation rate

Initialization:

P(l, x, z) = 0 for l = k up to L+ k � 1, x = 0 up to L, z = 0 up to k

Steps:

1: P(k, 0, k) = (1� p)k

2: for z = 0, . . . , k � 1 do
3: p(k, 1, z) = P(1� p)z

4: end for

5: for l = k + 1, . . . , L+ k � 1 do
6: for x = 0, . . . , l � k + 1 do

7: P(l, x, 0) =
⇣Pk�1

z0=0P(l � 1, x� 1, z0) +P(l � 1, x� 1, k)
⌘
⇥ p

8: for z = 1, . . . , k � 1 do
9: P(l, x, z) = P(l � 1, x� 1, z � 1)⇥ (1� p)

10: end for
11: P(l, x, k) =

⇣
P(l � 1, x, k � 1) +P(l � 1, x, k)

⌘
⇥ (1� p)

12: end for
13: end for

14: for x = 0, . . . , L do
15: PMF[x] = P(L+ k � 1, x, k) +

Pk�1
z0=0P(L+ k � 1, x, z0)

16: end for

Output:

PMF, where PMF[x] = Pr[Nmut = x]

E[Y] =
NX

i=1

Pr[Yi = 1] = |A \B|s.

Let us make a simplifying assumption that the exact cardinality of the set A is known. Let us
define Y 0 as Y 0 = Y

|A|s . Therefore, E[Y 0] = |A \B|/|A| = C(A,B). If we use Y 0 as the estimator to

measure C(A,B), then we have

Pr
h���
Y 0 � C(A,B)

C(A,B)

��� � �
i
= Pr

h���
Y � |A \B|s

|A \B|s

��� � �
i
 2e��

2|A\B|s/3,

where we used Cherno↵ bound for a sum of Bernoulli random variables in the last step. The results
are trivial, stating that when the two sets have more in common, or when we work with a larger
scale factor, the estimate Y 0 performs better. This is expected, and conforms to the concept of using
a scale factor. Cfrac(A,B) estimates C(A,B) slightly di↵erently than Y 0, and further investigations
are required to narrow down the theoretical guarantees of Cfrac(A,B) estimating C(A,B).

23

A.6 Estimating number of distinct k-mers from FracMinHash

In this section, we detail a simple method to estimate the total number of distinct k-mers in a given
set from its FracMinHash. This can be useful for applications such as the de-biasing in eq. (3) when
the set under consideration is small. We have already observed that for XA := |FRACs(A)| the
size of the sketch, XA is distributed as a binomial random variable: XA ⇠ Binom(|A|, s). Hence
E[XA/s] = |A|, so a point estimate of the number of distinct k-mers |A| can be had by dividing
the sketch size by the scale factor. As the underlying distribution is binomial, we can easily obtain
a Cherno↵ bound for the probability of deviating from this expected value by some relative error
�:

P

✓����
Xa/s� |A|

|A|

���� < �

◆
> 1� 2e��

2|A|s/3.

So, for example, if using a scale factor of s = 1/1000, if one wants to be at least 95% sure that the
estimate XA/s is o↵ by less than � = 5%, this would require that |A| � 4.4⇥ 106.

A.7 Jaccard calculated using FracMinHash sketches has bias

The theoretical analyses of Cfrac(A,B) presented in this work reveal the bias in containment index
when computed from two FracMinHash sketches. Similarly, a bias in the Jaccard index computed
from two FracMinHash sketches can also be proved. Please note that a similar confidence interval
can not be derived for the Jaccard index as we were able to for the containment index. This is
primarily because we found that the Jaccard index cannot be proved to be asymptotically Normal.
Nonetheless, the following analysis proves that Jaccard version has a bias associated with it as well.
Let us define

Ĵfrac :=
|FRACs(A) \ FRACs(B)|
|FRACs(A) [FRACs(B)| (23)

and investigate how well Ĵfrac approximates the Jaccard index

J :=
|A \B|
|A [B| . (24)

Using the same notations introduced previously, we have the following theorem.

Theorem 9. For 0 < s < 1, if A and B are two non-empty sets such that A \ B and A \ B are
non-empty and B 6⇢ A as well as A 6⇢ B, the following holds:

E
h
Ĵfrac |FRACs(A)[FRACs(B)|>0

i
=

|A \B|
|A [B|

⇣
1� (1� s)|A[B|

⌘
.

Proof. We observe that

Ĵfrac |FRACs(A)[FRACs(B)|>0 =
XA\B

XA\B +XA B
XA\B+XA B>0,

and that the random variables XA\B and XA B are independent assuming the conditions of
the theorem. Here, A B = (A \B) [(B \A). From standard calculus, we have:

24

Z 1

0
xtx+y�1 dt =

x

x+ y
x+y>0. (25)

Then using the moment generating function of the binomial distribution, we have

E
⇥
tXA\B

⇤
= (1� s+ st)|A\B| (26)

E
⇥
tXA B

⇤
= (1� s+ st)|A B|. (27)

We also know by continuity that

E
⇥
XA\B tXA\B�1

⇤
=

d

dt
(1� s+ st)|A\B| (28)

= |A \B|s(1� s+ st)|A\B|�1. (29)

Using these observations, we can then finally calculate that

E


XA\B

XA\B +XA B
XA\B+XA B>0,

�
= E

Z 1

0
XA\B tXA\B+XA B�1 dt

�
(30)

=

Z 1

0
E
⇥
XA\B tXA\B+XA B�1 dt

⇤
(31)

=

Z 1

0
E
⇥
XA\B tXA\B�1

⇤
E
⇥
tXA B

⇤
dt (32)

= |A \B|
Z 1

0
(1� s+ st)|A\B|+|A B|�1 dt (33)

=
|A \B|(1� s+ st)|A[B|

|A [B|

����
t=1

t=0

(34)

=
|A \B|
|A [B|

⇣
1� (1� s)|A[B|

⌘
, (35)

where Fubini’s theorem is used in eq. (31) and independence in eq. (32).

Theorem 9 gives us the following result:

Jfrac =
Ĵfrac

1� (1� s)|A[B| (36)

is an unbiased estimator of the Jaccard index J . Using the same terminologies introduces in the
Methods section, the expectation of this unbiased estimator (considering only the sletching random
process) is given by

E[Jfrac] =
L�Nmut

L+Nmut
(37)

A.8 Point estimate of mutation rate p can be calculated using the Jaccard index

Much like the analysis shown in Theorem 5, we can also obtain a point estimate of the mutation
rate p using the Jaccard index estimator Jfrac.

25

Theorem 10. For 0 < s < 1, if A and B are respectively distinct sets of k-mers of a sequence S
and a sequence S0 derived from S under the simple mutation model with mutation probability p such
that A \ B is non-empty, then the expectation of Jfrac in the product space P,S is approximately
given by

EP,S [Jfrac] =
(1� p)k

2� (1� p)k
, (38)

where P = (⌦1,F1,P1) and S = (⌦2,F2,P2) are the probability spaces corresponding to the muta-
tion and FracMinHash sketching random processes, respectively.

Proof.

EP,S [Jfrac] =

Z

P,S
Jfrac dµ1⇥µ2 =

Z

P

Z

S
Jfrac dµ2 dµ1

= EP [ES [Jfrac]] = EP


L�Nmut

L+Nmut

�

⇡ L� EP [Nmut]

L+ EP [Nmut]

=
L� Lq

L+ Lq

=
(1� p)k

2� (1� p)k

Here, we used Fubini’s theorem in the second step. Using First-Order Taylor approximation,
we approximated E[X/Y], the expectation of ratio of two random variables, using E[X]/E[Y], the
ratio of expectations of the same random variables. We also used the expectation of Nmut from
(Blanca et al 2022), where q = 1� (1� p)k. ⌅

Theorem 10 allows us to obtain the following point estimate of mutation rate p using an observed
Jaccard index Jfrac obtained through FracMinHash sketches.

p = 1�
⇣ 2Jfrac
1 + Jfrac

⌘1/k
(39)

Unfortunately, the random variable L�Nmut
L+Nmut

cannot be expressed as Normally distributed –
which is the core reason why we could not obtain a confidence interval similar to Theorem 8 using
the Jaccard index.

Nevertheless, the point estimate shown above can still be useful. To demonstrate the usefulness
of the point estimate obtained in Equation (39), we ran the same set of experiments presented
in Figure 3a and Figure 3b. The results are shown in Figure S1 – which show that the point
estimate obtained using the Jaccard index is pretty close to the point estimate obtained using the
containment index, both in the cases of simulated and real data.

26

(a) Estimates of evolutionary distances between
original and mutated Staphylococcus genome

(b) Estimates of evolutionary distances between
pairs of real bacterial genomes

Fig. S1: Mash distances and FracMinHash estimates of evolutionary distance (given in terms of one minus the average
nucleotide identity: ANI) when (a) introducing point mutations to a Staphylococcus genome at a known rate, and (b)
between pairs of real bacterial genomes.

27

	Deriving confidence intervals for mutation rates across a wide range of evolutionary distances using FracMinHash

