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Abstract: BACKGROUND:  The Child Health and Mortality Prevention Surveillance Network
(CHAMPS) identifies causes of under-5 mortality in high mortality countries.
OBJECTIVE: To address challenges in postmortem nutritional assessment, we
evaluated the impact of anthropometry training and the feasibility of 3D imaging on
data quality within the CHAMPS Kenya site.
DESIGN: Staff were trained using World Health Organization (WHO)-recommended
manual anthropometry equipment and novel 3D imaging methods to collect
postmortem measurements. Following training, 76 deceased children were measured
in duplicate and were compared to measurements of 75 pre-training deceased
children. Outcomes included measures of data quality (standard deviations (SD) of
anthropometric indices and digit preference scores (DPS)), precision (absolute and
relative technical errors of measurement, TEMs or rTEMs), and accuracy (Bland-
Altman plots). WHO growth standards (WHO-GS) were used to produce
anthropometric indices. Post-training surveys and in-depth interviews collected
qualitative feedback on measurer experience with performing manual anthropometry
and ease of using 3D imaging software.
RESULTS: Manual anthropometry data quality improved after training, as indicated by
DPS. Standard deviations of anthropometric indices exceeded limits for high data
quality when using the WHO-GS. Reliability of measurements post-training was high as
indicated by rTEMs below 1.5%. 3D imaging was highly correlated with manual
measurements; however, on average 3D scans overestimated length and HC by 1.61
cm and 2.27 cm, respectively. Site staff preferred manual anthropometry to 3D
imaging, as the imaging technology required adequate lighting and additional nuance
when performing the measurements.
CONCLUSIONS: Manual anthropometry was feasible in presence of rigor mortis, and
training improved digit preference. 3D imaging may be an accurate alternative to
manual anthropometry, but technology adjustments are needed to ensure accuracy
and usability. Future research on the appropriate use of current growth standards to
define malnutrition in this severely ill population is needed.
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ABSTRACT  
 
BACKGROUND: The Child Health and Mortality Prevention Surveillance Network (CHAMPS) identifies 
causes of under-5 mortality in high mortality countries.  
 
OBJECTIVE: To address challenges in postmortem nutritional assessment, we evaluated the impact of 
anthropometry training and the feasibility of 3D imaging on data quality within the CHAMPS Kenya site. 
 
DESIGN: Staff were trained using World Health Organization (WHO)-recommended manual 
anthropometry equipment and novel 3D imaging methods to collect postmortem measurements. 
Following training, 76 deceased children were measured in duplicate and were compared to 
measurements of 75 pre-training deceased children. Outcomes included measures of data quality 
(standard deviations (SD) of anthropometric indices and digit preference scores (DPS)), precision 
(absolute and relative technical errors of measurement, TEMs or rTEMs), and accuracy (Bland-Altman 
plots). WHO growth standards (WHO-GS) were used to produce anthropometric indices. Post-training 
surveys and in-depth interviews collected qualitative feedback on measurer experience with performing 
manual anthropometry and ease of using 3D imaging software. 
 
RESULTS: Manual anthropometry data quality improved after training, as indicated by DPS. Standard 
deviations of anthropometric indices exceeded limits for high data quality when using the WHO-GS. 
Reliability of measurements post-training was high as indicated by rTEMs below 1.5%. 3D imaging was 
highly correlated with manual measurements; however, on average 3D scans overestimated length and 
HC by 1.61 cm and 2.27 cm, respectively. Site staff preferred manual anthropometry to 3D imaging, as 
the imaging technology required adequate lighting and additional nuance when performing the 
measurements.  

CONCLUSIONS: Manual anthropometry was feasible in presence of rigor mortis, and training improved 
digit preference. 3D imaging may be an accurate alternative to manual anthropometry, but technology 
adjustments are needed to ensure accuracy and usability. Future research on the appropriate use of 
current growth standards to define malnutrition in this severely ill population is needed. 
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INTRODUCTION 

Malnutrition is estimated to contribute to approximately half of under-5-mortality (U5M) [1-3]. 
Malnutrition is also a major cause of morbidity as malnutrition plays a critical role in child 
neurodevelopment and health across the life course [2-4]. Reliable assessment tools for malnutrition are 
essential to reflect individual status, measure biological function, and predict health outcomes [5-7]. In 
children, inadequate growth is defined according to anthropometric measurements (length, weight,  
head and mid-upper arm circumference) that fall below 2 standard deviations of the normal sex-specific 
weight-for-length (wasting), length-for-age (stunting), and weight-for-age (underweight) [7]. Despite the 
importance of accurate anthropometry to detect early signs of malnutrition and monitor child growth, 
health facilities routinely use non-standardized anthropometric equipment, and as a result, 
measurements are often inaccurate [8]. Inaccurate measurements can lead to spurious classification of 
malnutrition in both individuals and populations[9].   

In addition to the challenges of procuring and using standard anthropometric measurement tools, 
anthropometric measurements are subject to human error and are particularly difficult to collect among 
young children as children are easily distressed, have difficulty staying still, and may be unable to meet 
the requirements (i.e. ability to lie down or stand up) for manual anthropometry [10-12]. 
Anthropometric measurements are particularly challenging in hospitalized settings or in medically 
complex patients due to difficulty taking measurements due to IV’s, feeding tubes, severe illness, or 
limitations in mobility.  These children are also at highest risk of malnutrition [8, 13]. Additionally, 
qualitative findings from a quality improvement study in a children’s hospital found that, wooden 
height-length measuring boards (ShorrBoard®, Weigh and Measure, LLC, Maryland USA) were 
considered to be “heavy, cumbersome to assemble, frightening to patients, and required pre-planning 
and coordination between clinical staff with busy schedules and competing priorities” [8]. Lastly, in field 
settings, the weight of the board may impede transportation and movement within the field and lack of 
standardization and maintenance of anthropometric equipment across study sites may contribute to 
poor data quality and misclassification [10, 11].  The post-mortem setting is another environment in 
which manual anthropometry may be challenging. Morgue capacity, rigor mortis, and edema can impact 
the quality and accuracy of measurements[14]. To our knowledge, no research has been conducted on 
the feasibility of using gold-standard anthropometric assessment in the postmortem setting.  

The Child Health and Mortality Prevention Surveillance (CHAMPS) network is a multi-site surveillance 
system which strives to identify and understand the causes of under-5-mortality (U5M) in seven 
surveillance sites in sub-Saharan Africa and South Asia through detailed cause of death attribution with 
the use of high-quality postmortem anthropometrics, tissue samples, clinical abstraction, verbal 
autopsy, and the ability to integrate data from site-specific health and demographic surveillance systems 
(HDSS) [15, 16].  A recent analysis of the postmortem anthropometric data in CHAMPS suggested that 
nearly 90% of cases 1-59 months had evidence of undernutrition (stunting, wasting, or underweight) 
[17]. Given these data, it is possible that malnutrition is directly or indirectly associated with child 
mortality. However, our understanding of the relationship between malnutrition and mortality may also 
be hindered by poor anthropometric measurement data quality, including digit preference (e.g. 
measurement rounding), high percentage of biologically implausible values, and standard deviations for 
anthropometric indices that exceed acceptable limits, which may lead to misclassification of 
malnutrition [18-20]. These data quality and precision outcomes may be a result of shortages of 
standard equipment in CHAMPS sites, lack of training on manual anthropometry, or difficulty in 
conducting manual anthropometry in the postmortem setting (rigor mortis, poor lighting in morgue 
facilities).   
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Our primary objectives were to determine whether manual anthropometry is feasible in the 
postmortem setting and to quantify the impact of training and standard equipment on data quality. 
Given the practical challenges of performing manual anthropometry in field and hospital-based settings, 
various 3D imaging approaches have also been developed to obtain anthropometric measurements. An 
efficacy study conducted at Emory University found that a 3D imaging software was as accurate as gold-
standard manual anthropometry among under-5 children in Atlanta-area daycare centers [10]. However, 
data are also needed to assess 3D imaging in challenging hospital- or field-based settings. Therefore, our 
secondary objective was to assess the validity and acceptability of 3D imaging for anthropometric 
assessment compared to gold-standard manual anthropometry.  
  
 
METHODS 

This anthropometry study took place from October 2018 to September 2019 in the CHAMPS Manyatta, 
Kenya site located at the Jaramogi Oginga Odinga Teaching and Referral Hospital (JOOTRH). Prior to the 
training, site staff performed manual anthropometry on 75 deceased children as a routine part of the 
minimally invasive tissue sampling (MITS) portion of CHAMPS data collection.  

The MITS procedure is an abridged postmortem examination technique that has been validated for 
cause of death investigation in low-resource settings, described in detail elsewhere [21]. CHAMPS data 
collection procedures were approved by ethics committees in each CHAMPS site as well as Emory 
University (Emory IRB#: 00091706). Consent for MITS, verbal autopsy, and clinical data abstraction was 
obtained from parents or guardians. CHAMPS Ethical protocols are described in greater detail on the 
study website, (https://champshealth.org/protocols/). 

 
Upon conclusion of data collection, a senior nutritionist, pediatrician, and anthropometry expert led and 
conducted an on-site 1-week training on manual anthropometry and the 3D imaging scanner for 6 staff. 
The training on manual anthropometry emphasized best practices for accurate manual measures of 
length, weight, and circumference measurements using two trained anthropometrists and standard 
operating procedures [22]. Standard equipment in both sites, including wooden height-length 
measuring boards (ShorrBoard®, Weigh and Measure, LLC, Maryland USA), digital scales (Rice Lake 
Weighing Systems, Inc., Rice Lake, WI), and standard tape measures (Weigh and Measure LLC, Maryland 
USA), were used to ensure accurate measurement of recumbent length, weight, and head 
circumference (HC) and mid-upper arm circumference (MUAC), respectively. Staff were also trained on 
proper use the 3D imaging software; details on the imaging software are provided elsewhere [10, 23, 
24]. Briefly, the AutoAnthro system uses an iPadTM tablet, and a Structure SensorTM camera attached to 
the tablet to capture non-personally identifiable anthropometric scan images of the deceased child. 
Following the training, two unique site staff each performed manual anthropometry on 76 new cases, 
for a total of 2 manual measures per case. Additionally, 3D scans were completed in duplicate for each 
anthropometrist, for a total of 4 scans per case. Following data collection, it was found that the software 
settings had been inadvertently altered on the scanner resulting in viable scan data on only 23 cases.  
 
 
Outcomes of interest 
Key outcomes of interest included measures of data quality, precision, and accuracy. Data quality 
outcomes indicators included digit preference and standard deviations (SD) of anthropometric indices.  
Digit preference is the examination of a uniform distribution of terminal digits. We also calculated a digit 
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preference score (DPS) to evaluate digit preference [25]. The DPS ranges from 0 to 100.  Scores are low 
in instances of high agreement with the ideal of non-preference of the terminal digits, whereas DPS rises 
as the measures deviate from a uniform distribution across the terminal digits 0 through 9. In previous 
studies, a DPS cutoff above 20 was used to define the presence of digit preference [26, 27]. Previous 
studies have suggested acceptable standard deviation ranges specifically for data quality among living 
children [28]. These include 1.10-1.30, 1.00-1.20, 0.85-1.10 for length-for-age (HAZ), weight-for-age 
(WAZ), and weight-for-length (WLZ) z-scores, respectively. Z-scores for anthropometric indices were 
produced using the World Health Organization growth standards (WHO-GS) anthro R package [29]. 
 
Technical errors of measurement (TEM) were used to assess measurement precision. Following the 
training, the site staff performed manual anthropometry in duplicate. It is important to note that this 
differs from the data collection strategy pre-training in which a single set of measures were taken. As a 
result, we were only able to calculate TEMs for the data post-training in both sites. TEM express the 
error margin in anthropometry; they are unitless and allow comparison of errors across measures (e.g., 
weight, height etc.). Absolute TEMs were calculated using the formula outlined in Equation 1 (Table 4). 
Absolute TEMs can also be transformed into relative TEMs, which express the error as a percentage 
corresponding to the total average. Relative TEMs (rTEM) were calculated using the formula outlined in 
Equation 2 (Table 4). We used a cutoff of <1.5% rTEM to indicate a skillful anthropometrist [25]. 
 
Finally, Bland Altman plots were used to assess the accuracy of the 3D imaging software relative to 
manual anthropometry following the training and were quantified in the unit of the measure (cm or kg).  
Spearman correlation coefficients examined the strength of the relationship between scans and manual 
measures.  
 
Following the study, a short survey was sent to the 6 study participants. The survey collected 
information on whether the participants believed training on manual anthropometry improved the 
accuracy of the measurements, whether 3D imaging reduced the time to measure, and asked about the 
participants preference in measuring using manual anthropometry or the 3D imaging technology. We 
also conducted a 60-minute in-depth interview with the single lead site technician to collect qualitative 
feedback on the team’s experience with performing manual anthropometry and ease of using the 3D 
imaging software. All analyses were conducted in RStudio [30]. 
 
We also conducted a small study in collaboration with the Pediatrics and Pathology departments at 
Children’s Healthcare of Atlanta, Egleston Hospital (CHOA). The goal was to evaluate whether manual 
anthropometry and 3D imaging performed consistently in a high-resource setting with adequate lighting 
and internet. The same training, detailed above, was used, and pathology staff notified the 
anthropometrists upon arrival of a case at the morgue. Manual anthropometry was to be performed 
prior to the start of the diagnostic autopsy. Significant challenges arose during data collection which 
resulted in a limited sample size of 3 cases; thus, our results will focus on the Kenya site.  
 
RESULTS 
Sample characteristics are summarized in Table 1. There were no significant differences in sample 
characteristics between the pre- and post- training groups. The majority of children were under 2 years 
of age, and were evenly distributed by sex. Proportions of stunting, wasting, and underweight were 
high, with a higher prevalence of stunting noted in the post-training group. 
 
Quality- Digit Preference 
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In Table 2, prior to training, there was a clear tendency to round to the nearest 0.0 or 0.5 decimals for 
length, HC, and MUAC. There were no obvious signs of digit preference for weight measurement. The 
distribution of terminal digits post-training was evenly distributed for all measures. Similar patterns exist 
when examining the DPS. The DPS for length, pre-training, exceeded the acceptable limit, and post-
training, the DPS for all measures fell below the acceptable cutoff of 20. 
 
Quality- Means and Standard Deviations of Anthropometric Indices 
Table 3 summarizes the means and standard deviations for length-for-age (LAZ), weight-for-age (WAZ), 
and weight-for-length (WLZ), expressed as z scores. The standard deviations of all indices exceeded 
acceptable values both pre- and post-training. There were no differences in WAZ and WLZ pre- and post-
training, but there was a statistically significant increase in LAZ post-training. There was a substantial 
loss in sample size when examining WLZ using WHO growth standards with 12% data loss in the pre- and 
22% loss in the post-training group.  This decrease in sample size when examining WLZ scores is due to 
nearly a fourth of the children having lengths below 45 cm or the smallest length captured by the WHO 
growth standards when calculating WLZ [31]. It is important to note that the WHO growth standards 
were based on a healthy population of children, receiving optimal nutrition, raised in optimal 
environments, and receiving optimal healthcare - unlike the cases captured in CHAMPS. Many of the 
CHAMPS cases, at the end of life, had attained sizes that are more comparable to growth and nutritional 
status in utero and may explain why CHAMPS cases are not compatible with postnatal life and survival at 
their chronologic age. There were no significant changes between the SDs for LAZ and WAZ pre- and 
post-training overall, and when stratified by age (<1 month vs 1-59 months as well as <6 months vs 6-59 
months, data not shown).  

 
Precision-Technical Errors of measurement 
Table 4 presents the TEMs and rTEMs specific to the post-training measures.  
The TEMs for length, weight, HC, and MUAC were, 0.32, 0.01, 0.18, and 0.13 respectively.  The rTEMs for 
length, weight, HC, and MUAC were 0.53%, 0.29%, 0.48%, and 1.24%, respectively. All TEMs and rTEMs 
were within the acceptable range.  
 
Accuracy- Spearman Correlation and Bland Altman Plots 
Spearman correlation coefficients (Figure 1) comparing the manual measures to the 3D scans for length, 
MUAC, and HC were 0.99, 0.91, and 0.93, respectively. While the manual measures were highly 
correlated with the scans, the mean differences between scans and manual measures for length, MUAC, 
and HC were 1.61 cm, -0.20 cm, and 2.27 cm, respectively. These results suggest that the scans 
overestimate length by 1.61 cm, underestimate MUAC by 0.20 cm, and overestimate HC by 2.27 cm.  
 
While there were challenges in securing data at the CHOA site, findings were complementary to those in 
the Kenya site (data not shown). Among the 3 cases, standard anthropometry measurements were 
feasible and showed high precision (rTEMs for manual length, MUAC, and HC were 0.62%, 0.96%, and 
1.80% respectively). For 3D scans, precision for duplicate scans was within acceptable limits when 
measuring length (rTEM=1.05%), but the software had more difficulty capturing precise measurements 
for MUAC (rTEM=4.71%) and HC (rTEM=1.62%).  

 
Qualitative findings: Use of 3D imaging in morgue setting 
The qualitative findings from the in-depth interviews revealed that the team had a clear preference for 
manual anthropometry over the 3D imaging software as they felt the 3D imaging software required 



more time, nuance (better lighting and improved morgue environment), and training to ensure an 
accurate scan. 
 

“We would take manual anthropometric measurements more seriously and would 
choose it well over 3D scanning...A lot of movement and manipulation of the camera to 
capture the entire body. And many times for 3D imaging, you have to repeat the process 
over and over and over again for you to be able to get the entire body into the screen. So 
it takes quite a bit more time…The boards work really well for us. It’s a stable board… it’s 
something we opt for over any other methods.” 

 
Additionally, study investigators cited challenges in using the software when lighting was insufficient or 
when morgue environments varied.  
 

“For what we experienced on the 3D, we had a few issues … our autopsy table had a 
fixed length and was not adjustable, so it was hard to get the complete image as you 
scan. Many times, we had issues with lighting systems. This made us end up with cut 
images—images with some parts of the body missing. So that called for checking and 
re-checking of images for quite a long period of time.” 

 
Lastly, study investigators noted postmortem-specific challenges to manual anthropometry and 
understood the implications for data quality and measurement error if careful measurement and 
attention to detail was not prioritized.  
 

“With rigor mortis, you will find that children stiffening, even the legs stiffening in some 
specific direction. If you are not able to manipulate them properly, one will end up with 
increased length as opposed to getting the accurate length. So that also required a lot of 
keenness.” 
 
“the challenge in checking MUAC with tape measure comes when the subject you are 
measuring has reduced skin turgor. That is the skin of the arm becomes floppy. So that 
one might give you a lesser MUAC.” 

 
 
DISCUSSION 
Following training on manual anthropometry and use of standard equipment for post-mortem 
assessment of nutritional status, data quality and precision were high, however, standard deviations of 
anthropometric indices exceeded acceptable values. 3D imaging scans overestimated length by 
approximately 1.6 cm, underestimated MUAC by 0.2 cm, and overestimated HC by 2.3 cm. The presence 
of rigor mortis did not impede the collection or quality of length measurements; however, additional 
care and pressure are critical to ensuring high quality data. 
 
There was no evidence of digit preference for weight pre- or post-training, which is likely due to how the 
measurements were taken. Weight was read from a digital scale, while length and circumference 
measurements were reliant on the anthropometrist’s ability to use the equipment properly and read a 
tape measure accurately. Previous studies among living children have shown that the SD of 
anthropometric z-scores are reasonably consistent across populations, irrespective of nutritional status, 
and thus can be used to assess the quality of anthropometric data [32]. In Kenya, the SD for all 
anthropometric indices exceeded acceptable limits both pre- and post-training, and sensitivity analyses 



revealed that high SDs for LAZ and WAZ were unlikely to be explained by age. If we continue with the 
conclusion that the intervention may have contributed to high data quality and precision, then the 
persistently high SDs may be explained by capturing anthropometric measurements of small, severely ill 
children.  

We also noted a decrease in sample size when examining WLZ scores. This is because nearly one-fourth 
of children in this sample fell below 45 cm, or the smallest length captured by the WHO growth 
standards when calculating WLZ [31]. It is important to note that the WHO growth standards were 
based on a healthy population of children, receiving optimal nutrition, raised in optimal environments, 
and receiving optimal healthcare - unlike the cases captured in CHAMPS. Many of the CHAMPS cases, at 
the end of life, had attained sizes that are more comparable to growth and nutritional status in utero 
and may explain why CHAMPS cases are not compatible with postnatal life and survival at their 
chronologic age. Future research might consider application of the INTERGROWTH-21 (IG21-GS) 
standards [33] to classify nutritional status of children that fall outside of the WHO-GS, such as in the 
case of CHAMPS enrolled cases. Comparing cases classified using the WHO-GS versus IG21-GS would 
enables us to understand how these children would rank, had they had survived.   

This study has multiple strengths. First, to our knowledge, no research has been conducted on the 
feasibility of using gold-standard anthropometric assessment in the postmortem setting.  Assessment of 
malnutrition and standardization of growth within the field of nutrition is typically based on z-scores 
derived from the 2006 WHO’s Multicentre Growth Reference Study (MGRS). These standards are based 
on healthy, living children, whereas being severely ill does not have a sufficient comparison group based 
on anthropometry.  CHAMPS is a large, multi-site surveillance system, designed to elucidate the causes 
of U5M in high mortality regions of the world, therefore these standardized anthropometric data may 
help inform the possible ranges of anthropometric deficits in severely ill populations. Second, our 
project captured staff reflections and criticisms of conducting manual anthropometry in field-based and 
clinical-morgue settings. These qualitative findings may prove useful in informing strategies to improve 
accurate anthropometry in field-based and clinical-morgue settings given the structural and practical 
constraints of the environment.  

This project was also subject to several limitations. First, in the CHOA site, we encountered unexpected 
obstacles in reaching our goal sample size. We learned that not all deceased children undergo autopsy 
and not all cases are routed to the morgue via the pathology department. When cases were routed to 
the morgue, there was limited time to conduct standard anthropometry and 3D imaging in duplicate or 
before autopsies were performed. Second, the need for two anthropometrists to arrive at the morgue 
and collect data before autopsy placed a significant burden on clinical staff and led to disruption of 
workflow. It should be noted, that within the CHOA site, autopsies are performed quickly and, in a step-
wise fashion following the death of the child. There was often little time to balance case notification, 
standard equipment assembly and repeated measures. These challenges explain the limited sample size. 
Additionally, we found the pathologists were reluctant to using the 3D imaging software and the 
standard equipment. It appeared that knowledge of the importance of standard equipment was limited, 
although many had been introduced to the equipment earlier in their professional training. In the CHOA 
morgues, standard practice for securing postmortem measurements involved use of a tape measure, 
any deviations to this norm were resisted and were assumed to require additional time. Third, in Kenya, 
challenges arose with the 3D imaging software. The software settings were subject to user error and 
were altered during data collection, which resulted in a compromised final sample size. Among the 
viable scans, our results suggest that the scans overestimated both length and HC. These findings are 
aligned with a recent study [24] and further suggest that before 3D imaging can be considered a viable, 



accurate alternative to manual anthropometry, adjustment of the technology and additional user testing 
is warranted to ensure reliable anthropometric measures.  

Collection of quality anthropometric data and implementation of standardized training and equipment is 
feasible in population-based, postmortem, field studies. Future research on the appropriate use of 
standards to define malnutrition among severely ill populations will elucidate our understanding of the 
role of malnutrition in U5M and inform future malnutrition-specific U5M reduction interventions. 
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TABLES 
 

Table 1. Sample characteristics among pre- and post-intervention groups, CHAMPS 
Study, Manyatta, Kenya, October 2018 to September 2019 

 

 Pre-intervention, 
n=75 

Post-intervention,  
n=76 

p-value4 

 n(%) 

Age category, n (%)  
<1 day 15 (20.0) 21 (27.6) 

0.4821 
1 day – 5 months 28 (37.3) 20 (26.3) 

6 – 23 months 23 (30.7) 25 (32.89) 
24 – 59 months 9 (12.0) 10 (13.1) 

    
Sex, n (%)  

Female 31 (41.3) 35 (46.1) 0.5589 
    

Anthropometric measurements, mean (SD)  
Weight, kg 5.0 (3.8) 4.8 (3.5) 0.7543 
Length, cm 62.0 (18.0) 60.0 (17.6) 0.4899 

Head circumference (HC), cm 39.0 (6.9) 37.9 (7.4) 0.3509 
Mid-Upper Arm Circumference 

(MUAC), cm 
11.0 (3.0) 10.2 (3.0) 0.1064 

    
Nutritional status, n (%)  

Stunting (LAZ1<-2SD) 24 (32.0) 38 (50.0) 0.0246 
Wasting (WLZ2<-2SD) 58 (77.3) 54 (71.2) 0.3780 

Underweight (WAZ3<-2) 40 (53.3) 50 (65.8) 0.1188 
1 LAZ: Length-for-age z-score 
2 WLZ: Length-for-weight z-score 
3 WAZ: Weight-for-age z-score 
4 p-values calculated using Chi Sq tests or t-tests 

 
  



Table 2. Digit preference1 pre- and post-intervention, CHAMPS Study, Manyatta, Kenya, October 2018 to September 
2019 

Pre- intervention, (N=75) 
n(%) 

Post- intervention, (N=76) 
n(%) 

Length Weight HC MUAC Length Weight HC MUAC 

0.0 65 (86.7) 15 (20.0) 57 (77.3) 54 (72.0) 3 (4.0) 10 (13.2) 5 (6.6) 2 (2.6) 
0.1 - 2 (2.7) - - 12 (15.6) 8 (10.5) 11 (14.5) 18 (23.7) 
0.2 - 6 (8.0) - - 7 (9.2) 9 (11.8) 9 (11.8) 10 (13.2) 
0.3 - 9 (12.0) - - 13 (17.1) 4 (5.3) 3 (3.9) 9 (11.8) 
0.4 - 6 (8.0) - - 5 (6.6) 9 (11.8) 9 (11.8) 5 (6.6) 
0.5 10 (13.3) 6 (8.0) 17 (22.7) 21 (28.0) 6 (7.9) 9 (11.8) 8 (10.5) 9 (11.8) 
0.6 - 11 (14.7) - - 7 (9.2) 10 (13.2) 13 (17.1) 5 (6.6) 
0.7 - 9 (12.0) - - 8 (10.5) 4 (5.3) 1 (1.3) 5 (6.6) 
0.8 - 5 (6.7) - - 8 (10.5) 6 (7.9) 12 (15.8) 8 (10.5) 
0.9 - 6 (8.0) - - 7 (9.2) 7 (9.2) 5 (6.6) 5 (6.6) 

         

Digit preference 
score 1 

86.2 15.3 78.1 74.3 10.4 9.5 16.6 18.4 

1 Digit preference scores (DPS) computed using Mark Myatt and Ernest Guevarra (2022).  
2 nipnTK: National Information Platforms for Nutrition 
  Anthropometric Data Toolkit. https://nutriverse.io/nipnTK/, 
  https://github.com/nutriverse/nipnTK  
DPS<20 is acceptable; ≥20 indicates digit preference is problematic 
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Table 3. Means and standard deviations for anthropometric indices, CHAMPS Study, Manyatta, 
Kenya, October 2018 to September 2019  

 Pre-training, (N=75) Post-training, (N=76)  p-
value1 

Expected SD for 
high data quality [28]  n Mean (SD) n Mean (SD) 

LAZ2 overall 75 -1.1 (2.6) 76 -2.5 (2.9) 0.0018 1.1 – 1.3 
< 1 months 35 -0.8 (2.8) 31 -3.0 (3.2)   

1-59 months 40 -1.4 (2.3) 45 -2.2 (2.7)   
       

WAZ3 overall 75 -2.6 (2.3) 76 -3.2 (2.4) 0.0962 1.0 – 1.2 
< 1 months 35 -2.0 (2.2) 31 -2.9 (2.2)   

1-59 m months 40 -3.1 (2.3) 45 -3.5 (2.5)   
       

WLZ4 overall 66 -3.1 (1.8) 59 -2.9 (2.2) 0.4777 0.85 – 1.1 
< 1 months 28 -2.6 (1.1) 15 -1.5 (1.3)   

1-59 months 38 -3.5 (2.1) 44 -3.3 (2.3)   
1 p-values comparing overall pre- and post-training mean z-scores calculated using t-tests 

2 LAZ: Length-for-age z-score 
3 WLZ: Length-for-weight z-score 
4 WAZ: Weight-for-age z-score 

  
  



Table 4. Technical errors of measurement for post-intervention measures, CHAMPS Study, Manyatta, 
Kenya, October 2018 to September 2019 

 Length 
(cm) 

Weight 
(kg) 

Mid-Upper Arm 
Circumference (cm) 

Head Circumference (cm) 

TEMA 0.32 0.01 0.13 0.18 
Acceptable 

TEM [34] 
0.35 0.17 0.26 - 

     
VAV 60.00 4.84 10.22 37.88 

Relative TEM 
(% TEM)c 

0.53% 0.29% 1.24% 0.48% 

     

The technical error of measurement (TEM) is defined as the standard deviation of differences between 
repeated measures in the unit of the measurement, using the following equation 

A Equation 1: absolute technical errors of measurement (TEM) = √
Σ𝑑𝑖

2

2𝑛
 

Where: 

Σ𝑑𝑖
2 = Squared summation of deviations, n = number of individuals measured, and i = number of 

deviations 
 
C Equation 2: relative TEM =100 𝑥 

𝑇𝐸𝑀

𝑉𝐴𝑉
 

 
Where TEM = technical error of measurement expressed as %, VAV= variable average value, the relative 
TEM (%TEM), and the coefficient of reliability (R) were the statistical tests used to assess intra- and inter-
observer reliability. The TEM was defined as the standard deviation of differences between repeated 
measures in the unit of the measurement (e.g., TEM for height measured in centimeters is cm), using the 
following equation: 
 

Skillful anthropometrists relative technical errors of measurement (%TEM) cutoff   1.5% 
[25] 
 

  
 
 



FIGURES 
Figure 1. Bland Altman Plots for Length, Arm Circumference, and Head Circumference, CHAMPS Study, Manyatta, 
Kenya, October 2018 to September 2019 

 

 

 
Y-axis: the difference between the scans and the manual measurements by the average of the two methods  
X-axis: the average of the scan and manual measures.  
 
Dotted lines: represent the mean difference ± 3 standard deviations 
Dashed lines: represent the mean difference ± 2 SD.  
Solid line: across the plot is the no difference line.  
 
Black points on the chart represent the 23 cases for which we had viable 3D scan data. Spearman correlation coefficients were examined to measure the strength of the relationship between 
scans and manual measures.  
 
AC: Arm Circumference 
HC: Head Circumference 
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ABSTRACT  
 
BACKGROUND: The Child Health and Mortality Prevention Surveillance Network (CHAMPS) identifies 
causes of under-5 mortality in high mortality countries.  
 
OBJECTIVE: To address challenges in postmortem nutritional assessment, we evaluated the impact of 
anthropometry training and the feasibility of 3D imaging on data quality within the CHAMPS Kenya site. 
 
DESIGN: Staff were trained using World Health Organization (WHO)-recommended manual 
anthropometry equipment and novel 3D imaging methods to collect postmortem measurements. 
Following training, 76 deceased children were measured in duplicate and were compared to 
measurements of 75 pre-training deceased children. Outcomes included measures of data quality 
(standard deviations (SD) of anthropometric indices and digit preference scores (DPS)), precision 
(absolute and relative technical errors of measurement, TEMs or rTEMs), and accuracy (Bland-Altman 
plots). WHO growth standards (WHO-GS) were used to produce anthropometric indices. Post-training 
surveys and in-depth interviews collected qualitative feedback on measurer experience with performing 
manual anthropometry and ease of using 3D imaging software. 
 
RESULTS: Manual anthropometry data quality improved after training, as indicated by DPS. Standard 
deviations of anthropometric indices exceeded limits for high data quality when using the WHO-GS. 
Reliability of measurements post-training was high as indicated by rTEMs below 1.5%. 3D imaging was 
highly correlated with manual measurements; however, on average 3D scans overestimated length and 
HC by 1.61 cm and 2.27 cm, respectively. Site staff preferred manual anthropometry to 3D imaging, as 
the imaging technology required adequate lighting and additional nuance when performing the 
measurements.  

CONCLUSIONS: Manual anthropometry was feasible in presence of rigor mortis, and training improved 
digit preference. 3D imaging may be an accurate alternative to manual anthropometry, but technology 
adjustments are needed to ensure accuracy and usability. Future research on the appropriate use of 
current growth standards to define malnutrition in this severely ill population is needed. 
  



INTRODUCTION 

Malnutrition is estimated to contribute to approximately half of under-5-mortality (U5M) [1-3]. 
Malnutrition is also a major cause of morbidity as malnutrition plays a critical role in child 
neurodevelopment and health across the life course [2-4]. Reliable assessment tools for malnutrition are 
essential to reflect individual status, measure biological function, and predict health outcomes [5-7]. In 
children, inadequate growth is defined according to anthropometric measurements (length, weight,  
head and mid-upper arm circumference) that fall below 2 standard deviations of the normal sex-specific 
weight-for-length (wasting), length-for-age (stunting), and weight-for-age (underweight) [7]. Despite the 
importance of accurate anthropometry to detect early signs of malnutrition and monitor child growth, 
health facilities routinely use non-standardized anthropometric equipment, and as a result, 
measurements are often inaccurate [8]. Inaccurate measurements can lead to spurious classification of 
malnutrition in both individuals and populations[9].   

In addition to the challenges of procuring and using standard anthropometric measurement tools, 
anthropometric measurements are subject to human error and are particularly difficult to collect among 
young children as children are easily distressed, have difficulty staying still, and may be unable to meet 
the requirements (i.e. ability to lie down or stand up) for manual anthropometry [10-12]. 
Anthropometric measurements are particularly challenging in hospitalized settings or in medically 
complex patients due to difficulty taking measurements due to IV’s, feeding tubes, severe illness, or 
limitations in mobility.  These children are also at highest risk of malnutrition [8, 13]. Additionally, 
qualitative findings from a quality improvement study in a children’s hospital found that, wooden 
height-length measuring boards (ShorrBoard®, Weigh and Measure, LLC, Maryland USA) were 
considered to be “heavy, cumbersome to assemble, frightening to patients, and required pre-planning 
and coordination between clinical staff with busy schedules and competing priorities” [8]. Lastly, in field 
settings, the weight of the board may impede transportation and movement within the field and lack of 
standardization and maintenance of anthropometric equipment across study sites may contribute to 
poor data quality and misclassification [10, 11].  The post-mortem setting is another environment in 
which manual anthropometry may be challenging. Morgue capacity, rigor mortis, and edema can impact 
the quality and accuracy of measurements[14]. To our knowledge, no research has been conducted on 
the feasibility of using gold-standard anthropometric assessment in the postmortem setting.  

The Child Health and Mortality Prevention Surveillance (CHAMPS) network is a multi-site surveillance 
system which strives to identify and understand the causes of under-5-mortality (U5M) in seven 
surveillance sites in sub-Saharan Africa and South Asia through detailed cause of death attribution with 
the use of high-quality postmortem anthropometrics, tissue samples, clinical abstraction, verbal 
autopsy, and the ability to integrate data from site-specific health and demographic surveillance systems 
(HDSS) [15, 16].  A recent analysis of the postmortem anthropometric data in CHAMPS suggested that 
nearly 90% of cases 1-59 months had evidence of undernutrition (stunting, wasting, or underweight) 
[17]. Given these data, it is possible that malnutrition is directly or indirectly associated with child 
mortality. However, our understanding of the relationship between malnutrition and mortality may also 
be hindered by poor anthropometric measurement data quality, including digit preference (e.g. 
measurement rounding), high percentage of biologically implausible values, and standard deviations for 
anthropometric indices that exceed acceptable limits, which may lead to misclassification of 
malnutrition [18-20]. These data quality and precision outcomes may be a result of shortages of 
standard equipment in CHAMPS sites, lack of training on manual anthropometry, or difficulty in 
conducting manual anthropometry in the postmortem setting (rigor mortis, poor lighting in morgue 
facilities).   



Our primary objectives were to determine whether manual anthropometry is feasible in the 
postmortem setting and to quantify the impact of training and standard equipment on data quality. 
Given the practical challenges of performing manual anthropometry in field and hospital-based settings, 
various 3D imaging approaches have also been developed to obtain anthropometric measurements. An 
efficacy study conducted at Emory University found that a 3D imaging software was as accurate as gold-
standard manual anthropometry among under-5 children in Atlanta-area daycare centers [10]. However, 
data are also needed to assess 3D imaging in challenging hospital- or field-based settings. Therefore, our 
secondary objective was to assess the validity and acceptability of 3D imaging for anthropometric 
assessment compared to gold-standard manual anthropometry.  
  
 
METHODS 

This anthropometry study took place from October 2018 to September 2019 in the CHAMPS Manyatta, 
Kenya site located at the Jaramogi Oginga Odinga Teaching and Referral Hospital (JOOTRH). Prior to the 
training, site staff performed manual anthropometry on 75 deceased children as a routine part of the 
minimally invasive tissue sampling (MITS) portion of CHAMPS data collection.  

The MITS procedure is an abridged postmortem examination technique that has been validated for 
cause of death investigation in low-resource settings, described in detail elsewhere [21]. CHAMPS data 
collection procedures were approved by ethics committees in each CHAMPS site as well as Emory 
University (Emory IRB#: 00091706). Consent for MITS, verbal autopsy, and clinical data abstraction was 
obtained from parents or guardians. CHAMPS Ethical protocols are described in greater detail on the 
study website, (https://champshealth.org/protocols/). 

 
Upon conclusion of data collection, a senior nutritionist, pediatrician, and anthropometry expert led and 
conducted an on-site 1-week training on manual anthropometry and the 3D imaging scanner for 6 staff. 
The training on manual anthropometry emphasized best practices for accurate manual measures of 
length, weight, and circumference measurements using two trained anthropometrists and standard 
operating procedures [22]. Standard equipment in both sites, including wooden height-length 
measuring boards (ShorrBoard®, Weigh and Measure, LLC, Maryland USA), digital scales (Rice Lake 
Weighing Systems, Inc., Rice Lake, WI), and standard tape measures (Weigh and Measure LLC, Maryland 
USA), were used to ensure accurate measurement of recumbent length, weight, and head 
circumference (HC) and mid-upper arm circumference (MUAC), respectively. Staff were also trained on 
proper use the 3D imaging software; details on the imaging software are provided elsewhere [10, 23, 
24]. Briefly, the AutoAnthro system uses an iPadTM tablet, and a Structure SensorTM camera attached to 
the tablet to capture non-personally identifiable anthropometric scan images of the deceased child. 
Following the training, two unique site staff each performed manual anthropometry on 76 new cases, 
for a total of 2 manual measures per case. Additionally, 3D scans were completed in duplicate for each 
anthropometrist, for a total of 4 scans per case. Following data collection, it was found that the software 
settings had been inadvertently altered on the scanner resulting in viable scan data on only 23 cases.  
 
 
Outcomes of interest 
Key outcomes of interest included measures of data quality, precision, and accuracy. Data quality 
outcomes indicators included digit preference and standard deviations (SD) of anthropometric indices.  
Digit preference is the examination of a uniform distribution of terminal digits. We also calculated a digit 
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preference score (DPS) to evaluate digit preference [25]. The DPS ranges from 0 to 100.  Scores are low 
in instances of high agreement with the ideal of non-preference of the terminal digits, whereas DPS rises 
as the measures deviate from a uniform distribution across the terminal digits 0 through 9. In previous 
studies, a DPS cutoff above 20 was used to define the presence of digit preference [26, 27]. Previous 
studies have suggested acceptable standard deviation ranges specifically for data quality among living 
children [28]. These include 1.10-1.30, 1.00-1.20, 0.85-1.10 for length-for-age (HAZ), weight-for-age 
(WAZ), and weight-for-length (WLZ) z-scores, respectively. Z-scores for anthropometric indices were 
produced using the World Health Organization growth standards (WHO-GS) anthro R package [29]. 
 
Technical errors of measurement (TEM) were used to assess measurement precision. Following the 
training, the site staff performed manual anthropometry in duplicate. It is important to note that this 
differs from the data collection strategy pre-training in which a single set of measures were taken. As a 
result, we were only able to calculate TEMs for the data post-training in both sites. TEM express the 
error margin in anthropometry; they are unitless and allow comparison of errors across measures (e.g., 
weight, height etc.). Absolute TEMs were calculated using the formula outlined in Equation 1 (Table 4). 
Absolute TEMs can also be transformed into relative TEMs, which express the error as a percentage 
corresponding to the total average. Relative TEMs (rTEM) were calculated using the formula outlined in 
Equation 2 (Table 4). We used a cutoff of <1.5% rTEM to indicate a skillful anthropometrist [25]. 
 
Finally, Bland Altman plots were used to assess the accuracy of the 3D imaging software relative to 
manual anthropometry following the training and were quantified in the unit of the measure (cm or kg).  
Spearman correlation coefficients examined the strength of the relationship between scans and manual 
measures.  
 
Following the study, a short survey was sent to the 6 study participants. The survey collected 
information on whether the participants believed training on manual anthropometry improved the 
accuracy of the measurements, whether 3D imaging reduced the time to measure, and asked about the 
participants preference in measuring using manual anthropometry or the 3D imaging technology. We 
also conducted a 60-minute in-depth interview with the single lead site technician to collect qualitative 
feedback on the team’s experience with performing manual anthropometry and ease of using the 3D 
imaging software. All analyses were conducted in RStudio [30]. 
 
We also conducted a small study in collaboration with the Pediatrics and Pathology departments at 
Children’s Healthcare of Atlanta, Egleston Hospital (CHOA). The goal was to evaluate whether manual 
anthropometry and 3D imaging performed consistently in a high-resource setting with adequate lighting 
and internet. The same training, detailed above, was used, and pathology staff notified the 
anthropometrists upon arrival of a case at the morgue. Manual anthropometry was to be performed 
prior to the start of the diagnostic autopsy. Significant challenges arose during data collection which 
resulted in a limited sample size of 3 cases; thus, our results will focus on the Kenya site.  
 
RESULTS 
Sample characteristics are summarized in Table 1. There were no significant differences in sample 
characteristics between the pre- and post- training groups. The majority of children were under 2 years 
of age, and were evenly distributed by sex. Proportions of stunting, wasting, and underweight were 
high, with a higher prevalence of stunting noted in the post-training group. 
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In Table 2, prior to training, there was a clear tendency to round to the nearest 0.0 or 0.5 decimals for 
length, HC, and MUAC. There were no obvious signs of digit preference for weight measurement. The 
distribution of terminal digits post-training was evenly distributed for all measures. Similar patterns exist 
when examining the DPS. The DPS for length, pre-training, exceeded the acceptable limit, and post-
training, the DPS for all measures fell below the acceptable cutoff of 20. 
 
Quality- Means and Standard Deviations of Anthropometric Indices 
Table 3 summarizes the means and standard deviations for length-for-age (LAZ), weight-for-age (WAZ), 
and weight-for-length (WLZ), expressed as z scores. The standard deviations of all indices exceeded 
acceptable values both pre- and post-training. There were no differences in WAZ and WLZ pre- and post-
training, but there was a statistically significant increase in LAZ post-training. There was a substantial 
loss in sample size when examining WLZ using WHO growth standards with 12% data loss in the pre- and 
22% loss in the post-training group.  This decrease in sample size when examining WLZ scores is due to 
nearly a fourth of the children having lengths below 45 cm or the smallest length captured by the WHO 
growth standards when calculating WLZ [31]. It is important to note that the WHO growth standards 
were based on a healthy population of children, receiving optimal nutrition, raised in optimal 
environments, and receiving optimal healthcare - unlike the cases captured in CHAMPS. Many of the 
CHAMPS cases, at the end of life, had attained sizes that are more comparable to growth and nutritional 
status in utero and may explain why CHAMPS cases are not compatible with postnatal life and survival at 
their chronologic age. There were no significant changes between the SDs for LAZ and WAZ pre- and 
post-training overall, and when stratified by age (<1 month vs 1-59 months as well as <6 months vs 6-59 
months, data not shown).  

 
Precision-Technical Errors of measurement 
Table 4 presents the TEMs and rTEMs specific to the post-training measures.  
The TEMs for length, weight, HC, and MUAC were, 0.32, 0.01, 0.18, and 0.13 respectively.  The rTEMs for 
length, weight, HC, and MUAC were 0.53%, 0.29%, 0.48%, and 1.24%, respectively. All TEMs and rTEMs 
were within the acceptable range.  
 
Accuracy- Spearman Correlation and Bland Altman Plots 
Spearman correlation coefficients (Figure 1) comparing the manual measures to the 3D scans for length, 
MUAC, and HC were 0.99, 0.91, and 0.93, respectively. While the manual measures were highly 
correlated with the scans, the mean differences between scans and manual measures for length, MUAC, 
and HC were 1.61 cm, -0.20 cm, and 2.27 cm, respectively. These results suggest that the scans 
overestimate length by 1.61 cm, underestimate MUAC by 0.20 cm, and overestimate HC by 2.27 cm.  
 
While there were challenges in securing data at the CHOA site, findings were complementary to those in 
the Kenya site (data not shown). Among the 3 cases, standard anthropometry measurements were 
feasible and showed high precision (rTEMs for manual length, MUAC, and HC were 0.62%, 0.96%, and 
1.80% respectively). For 3D scans, precision for duplicate scans was within acceptable limits when 
measuring length (rTEM=1.05%), but the software had more difficulty capturing precise measurements 
for MUAC (rTEM=4.71%) and HC (rTEM=1.62%).  

 
Qualitative findings: Use of 3D imaging in morgue setting 
The qualitative findings from the in-depth interviews revealed that the team had a clear preference for 
manual anthropometry over the 3D imaging software as they felt the 3D imaging software required 
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more time, nuance (better lighting and improved morgue environment), and training to ensure an 
accurate scan. 
 

“We would take manual anthropometric measurements more seriously and would 
choose it well over 3D scanning...A lot of movement and manipulation of the camera to 
capture the entire body. And many times for 3D imaging, you have to repeat the process 
over and over and over again for you to be able to get the entire body into the screen. So 
it takes quite a bit more time…The boards work really well for us. It’s a stable board… it’s 
something we opt for over any other methods.” 

 
Additionally, study investigators cited challenges in using the software when lighting was insufficient or 
when morgue environments varied.  
 

“For what we experienced on the 3D, we had a few issues … our autopsy table had a 
fixed length and was not adjustable, so it was hard to get the complete image as you 
scan. Many times, we had issues with lighting systems. This made us end up with cut 
images—images with some parts of the body missing. So that called for checking and 
re-checking of images for quite a long period of time.” 

 
Lastly, study investigators noted postmortem-specific challenges to manual anthropometry and 
understood the implications for data quality and measurement error if careful measurement and 
attention to detail was not prioritized.  
 

“With rigor mortis, you will find that children stiffening, even the legs stiffening in some 
specific direction. If you are not able to manipulate them properly, one will end up with 
increased length as opposed to getting the accurate length. So that also required a lot of 
keenness.” 
 
“the challenge in checking MUAC with tape measure comes when the subject you are 
measuring has reduced skin turgor. That is the skin of the arm becomes floppy. So that 
one might give you a lesser MUAC.” 

 
 
DISCUSSION 
Following training on manual anthropometry and use of standard equipment for post-mortem 
assessment of nutritional status, data quality and precision were high, however, standard deviations of 
anthropometric indices exceeded acceptable values. 3D imaging scans overestimated length by 
approximately 1.6 cm, underestimated MUAC by 0.2 cm, and overestimated HC by 2.3 cm. The presence 
of rigor mortis did not impede the collection or quality of length measurements; however, additional 
care and pressure are critical to ensuring high quality data. 
 
There was no evidence of digit preference for weight pre- or post-training, which is likely due to how the 
measurements were taken. Weight was read from a digital scale, while length and circumference 
measurements were reliant on the anthropometrist’s ability to use the equipment properly and read a 
tape measure accurately. Previous studies among living children have shown that the SD of 
anthropometric z-scores are reasonably consistent across populations, irrespective of nutritional status, 
and thus can be used to assess the quality of anthropometric data [32]. In Kenya, the SD for all 
anthropometric indices exceeded acceptable limits both pre- and post-training, and sensitivity analyses 
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revealed that high SDs for LAZ and WAZ were unlikely to be explained by age. If we continue with the 
conclusion that the intervention may have contributed to high data quality and precision, then the 
persistently high SDs may be explained by capturing anthropometric measurements of small, severely ill 
children.  

We also noted a decrease in sample size when examining WLZ scores. This is because nearly one-fourth 
of children in this sample fell below 45 cm, or the smallest length captured by the WHO growth 
standards when calculating WLZ [31]. It is important to note that the WHO growth standards were 
based on a healthy population of children, receiving optimal nutrition, raised in optimal environments, 
and receiving optimal healthcare - unlike the cases captured in CHAMPS. Many of the CHAMPS cases, at 
the end of life, had attained sizes that are more comparable to growth and nutritional status in utero 
and may explain why CHAMPS cases are not compatible with postnatal life and survival at their 
chronologic age. Future research might consider application of the INTERGROWTH-21 (IG21-GS) 
standards [33] to classify nutritional status of children that fall outside of the WHO-GS, such as in the 
case of CHAMPS enrolled cases. Comparing cases classified using the WHO-GS versus IG21-GS would 
enables us to understand how these children would rank, had they had survived.   

This study has multiple strengths. First, to our knowledge, no research has been conducted on the 
feasibility of using gold-standard anthropometric assessment in the postmortem setting.  Assessment of 
malnutrition and standardization of growth within the field of nutrition is typically based on z-scores 
derived from the 2006 WHO’s Multicentre Growth Reference Study (MGRS). These standards are based 
on healthy, living children, whereas being severely ill does not have a sufficient comparison group based 
on anthropometry.  CHAMPS is a large, multi-site surveillance system, designed to elucidate the causes 
of U5M in high mortality regions of the world, therefore these standardized anthropometric data may 
help inform the possible ranges of anthropometric deficits in severely ill populations. Second, our 
project captured staff reflections and criticisms of conducting manual anthropometry in field-based and 
clinical-morgue settings. These qualitative findings may prove useful in informing strategies to improve 
accurate anthropometry in field-based and clinical-morgue settings given the structural and practical 
constraints of the environment.  

This project was also subject to several limitations. First, in the CHOA site, we encountered unexpected 
obstacles in reaching our goal sample size. We learned that not all deceased children undergo autopsy 
and not all cases are routed to the morgue via the pathology department. When cases were routed to 
the morgue, there was limited time to conduct standard anthropometry and 3D imaging in duplicate or 
before autopsies were performed. Second, the need for two anthropometrists to arrive at the morgue 
and collect data before autopsy placed a significant burden on clinical staff and led to disruption of 
workflow. It should be noted, that within the CHOA site, autopsies are performed quickly and, in a step-
wise fashion following the death of the child. There was often little time to balance case notification, 
standard equipment assembly and repeated measures. These challenges explain the limited sample size. 
Additionally, we found the pathologists were reluctant to using the 3D imaging software and the 
standard equipment. It appeared that knowledge of the importance of standard equipment was limited, 
although many had been introduced to the equipment earlier in their professional training. In the CHOA 
morgues, standard practice for securing postmortem measurements involved use of a tape measure, 
any deviations to this norm were resisted and were assumed to require additional time. Third, in Kenya, 
challenges arose with the 3D imaging software. The software settings were subject to user error and 
were altered during data collection, which resulted in a compromised final sample size. Among the 
viable scans, our results suggest that the scans overestimated both length and HC. These findings are 
aligned with a recent study [24] and further suggest that before 3D imaging can be considered a viable, 



accurate alternative to manual anthropometry, adjustment of the technology and additional user testing 
is warranted to ensure reliable anthropometric measures.  

Collection of quality anthropometric data and implementation of standardized training and equipment is 
feasible in population-based, postmortem, field studies. Future research on the appropriate use of 
standards to define malnutrition among severely ill populations will elucidate our understanding of the 
role of malnutrition in U5M and inform future malnutrition-specific U5M reduction interventions. 
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TABLES 
 

Table 1. Sample characteristics among pre- and post-intervention groups, CHAMPS 
Study, Manyatta, Kenya, October 2018 to September 2019 

 

 Pre-intervention, 
n=75 

Post-intervention,  
n=76 

p-value4 

 n(%) 

Age category, n (%)  
<1 day 15 (20.0) 21 (27.6) 

0.4821 
1 day – 5 months 28 (37.3) 20 (26.3) 

6 – 23 months 23 (30.7) 25 (32.89) 
24 – 59 months 9 (12.0) 10 (13.1) 

    
Sex, n (%)  

Female 31 (41.3) 35 (46.1) 0.5589 
    

Anthropometric measurements, mean (SD)  
Weight, kg 5.0 (3.8) 4.8 (3.5) 0.7543 
Length, cm 62.0 (18.0) 60.0 (17.6) 0.4899 

Head circumference (HC), cm 39.0 (6.9) 37.9 (7.4) 0.3509 
Mid-Upper Arm Circumference 

(MUAC), cm 
11.0 (3.0) 10.2 (3.0) 0.1064 

    
Nutritional status, n (%)  

Stunting (LAZ1<-2SD) 24 (32.0) 38 (50.0) 0.0246 
Wasting (WLZ2<-2SD) 58 (77.3) 54 (71.2) 0.3780 

Underweight (WAZ3<-2) 40 (53.3) 50 (65.8) 0.1188 
1 LAZ: Length-for-age z-score 
2 WLZ: Length-for-weight z-score 
3 WAZ: Weight-for-age z-score 
4 p-values calculated using Chi Sq tests or t-tests 

 
  

Sticky Note
The n value for each variable should be stated in parenthesis after the variable. There is no need putting n (%) in front of each variable since it is already in the table heading.

Sticky Note
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Sticky Note
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Table 2. Digit preference1 pre- and post-intervention, CHAMPS Study, Manyatta, Kenya, October 2018 to September 
2019 

Pre- intervention, (N=75) 
n(%) 

Post- intervention, (N=76) 
n(%) 

Length Weight HC MUAC Length Weight HC MUAC 

0.0 65 (86.7) 15 (20.0) 57 (77.3) 54 (72.0) 3 (4.0) 10 (13.2) 5 (6.6) 2 (2.6) 
0.1 - 2 (2.7) - - 12 (15.6) 8 (10.5) 11 (14.5) 18 (23.7) 
0.2 - 6 (8.0) - - 7 (9.2) 9 (11.8) 9 (11.8) 10 (13.2) 
0.3 - 9 (12.0) - - 13 (17.1) 4 (5.3) 3 (3.9) 9 (11.8) 
0.4 - 6 (8.0) - - 5 (6.6) 9 (11.8) 9 (11.8) 5 (6.6) 
0.5 10 (13.3) 6 (8.0) 17 (22.7) 21 (28.0) 6 (7.9) 9 (11.8) 8 (10.5) 9 (11.8) 
0.6 - 11 (14.7) - - 7 (9.2) 10 (13.2) 13 (17.1) 5 (6.6) 
0.7 - 9 (12.0) - - 8 (10.5) 4 (5.3) 1 (1.3) 5 (6.6) 
0.8 - 5 (6.7) - - 8 (10.5) 6 (7.9) 12 (15.8) 8 (10.5) 
0.9 - 6 (8.0) - - 7 (9.2) 7 (9.2) 5 (6.6) 5 (6.6) 

         

Digit preference 
score 1 

86.2 15.3 78.1 74.3 10.4 9.5 16.6 18.4 

1 Digit preference scores (DPS) computed using Mark Myatt and Ernest Guevarra (2022).  
2 nipnTK: National Information Platforms for Nutrition 
  Anthropometric Data Toolkit. https://nutriverse.io/nipnTK/, 
  https://github.com/nutriverse/nipnTK  
DPS<20 is acceptable; ≥20 indicates digit preference is problematic 
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Table 3. Means and standard deviations for anthropometric indices, CHAMPS Study, Manyatta, 
Kenya, October 2018 to September 2019  

 Pre-training, (N=75) Post-training, (N=76)  p-
value1 

Expected SD for 
high data quality [28]  n Mean (SD) n Mean (SD) 

LAZ2 overall 75 -1.1 (2.6) 76 -2.5 (2.9) 0.0018 1.1 – 1.3 
< 1 months 35 -0.8 (2.8) 31 -3.0 (3.2)   

1-59 months 40 -1.4 (2.3) 45 -2.2 (2.7)   
       

WAZ3 overall 75 -2.6 (2.3) 76 -3.2 (2.4) 0.0962 1.0 – 1.2 
< 1 months 35 -2.0 (2.2) 31 -2.9 (2.2)   

1-59 m months 40 -3.1 (2.3) 45 -3.5 (2.5)   
       

WLZ4 overall 66 -3.1 (1.8) 59 -2.9 (2.2) 0.4777 0.85 – 1.1 
< 1 months 28 -2.6 (1.1) 15 -1.5 (1.3)   

1-59 months 38 -3.5 (2.1) 44 -3.3 (2.3)   
1 p-values comparing overall pre- and post-training mean z-scores calculated using t-tests 

2 LAZ: Length-for-age z-score 
3 WLZ: Length-for-weight z-score 
4 WAZ: Weight-for-age z-score 

  
  



Table 4. Technical errors of measurement for post-intervention measures, CHAMPS Study, Manyatta, 
Kenya, October 2018 to September 2019 

 Length 
(cm) 

Weight 
(kg) 

Mid-Upper Arm 
Circumference (cm) 

Head Circumference (cm) 

TEMA 0.32 0.01 0.13 0.18 
Acceptable 

TEM [34] 
0.35 0.17 0.26 - 

     
VAV 60.00 4.84 10.22 37.88 

Relative TEM 
(% TEM)c 

0.53% 0.29% 1.24% 0.48% 

     

The technical error of measurement (TEM) is defined as the standard deviation of differences between 
repeated measures in the unit of the measurement, using the following equation 

A Equation 1: absolute technical errors of measurement (TEM) = √
Σ𝑑𝑖

2

2𝑛
 

Where: 

Σ𝑑𝑖
2 = Squared summation of deviations, n = number of individuals measured, and i = number of 

deviations 
 
C Equation 2: relative TEM =100 𝑥 

𝑇𝐸𝑀

𝑉𝐴𝑉
 

 
Where TEM = technical error of measurement expressed as %, VAV= variable average value, the relative 
TEM (%TEM), and the coefficient of reliability (R) were the statistical tests used to assess intra- and inter-
observer reliability. The TEM was defined as the standard deviation of differences between repeated 
measures in the unit of the measurement (e.g., TEM for height measured in centimeters is cm), using the 
following equation: 
 

Skillful anthropometrists relative technical errors of measurement (%TEM) cutoff   1.5% 
[25] 
 

  
 
 




