Supplementary Appendix

Increasing Artemisinin-Resistant HRP2-Negative Malaria in Eritrea

Selam Mihreteab*, Lucien Platon*, Araia Berhane, Barbara H. Stokes, Marian Warsame, Pascal Campagne, Alexis Criscuolo, Laurence Ma, Nathalie Petiot, Cécile Doderer-Lang, Eric Legrand, Kurt E. Ward, Assefash Zehaie Kassahun, Pascal Ringwald, David A. Fidock, Didier Ménard.

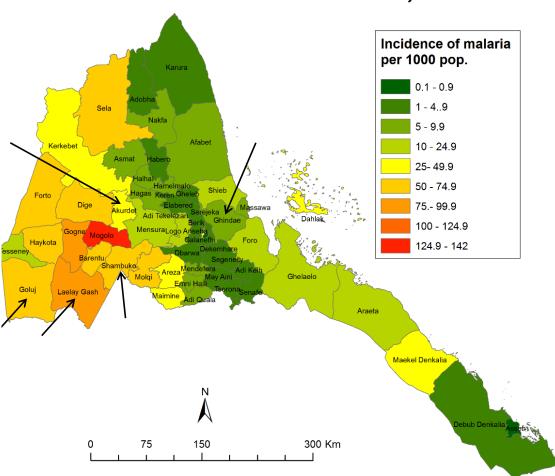
*Co-first authors.

This appendix has been provided by the authors to give readers additional information about their work.

Table of contents

1. Conti	ributions	. 3
2. Suppl	lementary Information	. 4
2.1. Ma	alaria incidence in the study sites	4
2.2 Cli	nical drug efficacy trial oversight and blood sample collection	4
3. Supp	lementary Figures	12
Fig. S1	1. Patient workflow: enrollment and outcomes.	.12
•	2. Comparison of pseudo-haplotypes in a 200 kb window on chromosome 13 around the R622l mutatio b on both sides of the mutation)	
•	3. Principal Coordinate analysis (PCO) based on pairwise genetic distances in a 1 Mb window) at region	
	4. Principal Coordinate analysis (PCO) based on pairwise genetic distances in a 1 Mb window at countr	
_	5. Hierarchical clustering (using Ward's algorithm) based on pairwise genetic distances in a 1Mb windo	
Fig. S6	6. Bifurcation diagram of haplotypes around the R622I mutation	.17
4. Supp	lementary Tables	18
Table	S1. D3+ rate per year and site, Eritrea, 2016-2019	.18
Table	S2. Clinical outcomes of the participants per year and treatment, Eritrea, 2016-2019	.19
recurre	S3. Raw data of $msp-1$, $msp-2$ and $poly\ \alpha$ polymorphisms (band size in bp) detected on day0 and day α ence (dayX) in isolates from recurrent infections, and classification of treatment outcomes, Eritrea, 201	6-
	S4. PCR-corrected Kaplan-Meier and complete-case estimates of ASAQ and AL efficacy by genotyping ach at day28, Eritrea, 2016-2019 (Panel A and Panel B according to the decision algorithm)	_
	S5. Comparison of the classification of treatment outcomes of recurrent infections according by ping approach, Eritrea, 2016-2019	.23
Table 2016-2	S6. Distribution of <i>Pfkelch13</i> mutations in isolates collected prior treatment per site and per year, Eritre 2019	ea, .24
	S7. Proportion of patients with detectable parasitemia on day3 (D3+) and harboring <i>Pfkelch13</i> 622l t parasites in day0 isolates, per age groups, year and site, Eritrea 2016-2019	.25
	S8. <i>Pfkelch13</i> genotypes in isolates collected at day0 and day of recrudescence (dayX) in 17 descent infections, Eritrea 2016-2019.	.26
Southe	S9. Accession identifiers (IDs) of the <i>P. falciparum</i> sequences from African locations, Bangladesh, east Asia, or South America, sourced from the MalariaGEN Plasmodium falciparum Community Project/www.malariagen.net/apps/pf/4.0	
Table	S10. Pairwise genetic differentiation (φST) among <i>P. falciparum</i> isolates depending on their origin	.30
<i>hrp3</i> g	S11. Genetic backgrounds associated with antimalarial drug resistance and polymorphisms of <i>hrp2</i> and genes of Eritrean <i>Pfkelch13</i> wild-type and 622l variants isolates collected prior treatment, Eritrea, 2016-	
5 Defer		33

1. Contributions


S.M., A.B., A.Z.K., P.R., D.A.F. and D.M. contributed to study design. SM, AB and AZK, M.W. supervised the clinical drug studies, collected clinical samples and data. L.P., N.P., E.L., C. D-L, and D.M. prepared the DNA. C. D-L, N.P., L.M., P.C., A.C. and D.M. performed the sequencing and sequence analyses. B.H.S., K.E.W, D.A.F., L.P., E.L. and D.M. performed genome-editing and in vitro assays. S.M., A.B., A.Z.K., P.C., A.C., P.R., D.A.F. and D.M. analyzed data. D.M. wrote the first draft of the manuscript, with contributions from D.A.F, B.H.S., K.E.W., P.R., M.W., S.M. and A.B. All authors reviewed and approved the manuscript. S.M., A.B., A.Z.K., D.A.F, P.R., and D.M. decided to publish the paper

2. Supplementary Information

2.1. Malaria incidence in the study sites.

The malaria incidence in the study sites is presented in the map below, published in the National Malaria Strategic Plan 2021-2026, Ministry of Health, State of Eritrea in March 2020.¹

Malaria incidence in Eritrea, 2019

The study sites are presented by the arrows. They were Ghindae city (located in the Ghindae subzoba/district), Goluj (or Guluj) city (in the Goluj/Guluj subzoba), Akordat city (in the Akordat/Akurdet subzoba), Shambuko town (in the Shambuko subzoba) and Tekombi town (in the Laelay Gash subzoba).

2.2 Clinical drug efficacy trial oversight and blood sample collection

2.2.1. Screening and recruitment of study participants. Eligible patients were at least 6 months of age, presenting with suspected uncomplicated *P. falciparum* infection with fever (axillary temperature ≥37.5°C) and/or history of fever in the past 24 h. Participants were enrolled if they were subsequently confirmed to have parasitemia ranging from 250 to 200,000 parasites per microliter and were able to attend follow-up visits until day28 post initiation of treatment.² Enrolled patients were assigned to receive a supervised standard 3-day course of ASAQ [Sanofi, 25/67.5 (artesunate/amodiaquine) mg/day for 2-11 months (≥4.5kg to <9kg), 50/135 mg/day for 1-5 years (≥9kg to <18kg), 100/270 mg/day (≥18kg to <36kg), 150/405 mg/day (≥36kg to <50kg), 200/540 mg/day (≥50kg)] in 2016 and 2019, or AL (IPCA 20 mg artemether and 120 mg lumefantrine per tablet; 6 tablets for 5kg to <15kg;

12 tablets for 15 to <25kg; 18 tablets for 25 to <35kg; 24 tablets for ≥35kg) in 2017 according to the manufacturer's dosing schedule.

Informed written consent was obtained from the adult patient or parent/caretaker of a child prior to recruitment. If a patient or parent/caretaker was illiterate, consent was obtained in the presence of a witness (witness' signature and the thumbprint of the participant's parent/caretaker). Children aged 12 years and above also signed informed assent in addition to their parents' consent.

Studies were approved by the Health Research Proposal Review and the Ethical Committee in Eritrea (2016, 2017 and 2019) and by the WHO Ethical Review Committee (2019). Studies were registered on the Australian New Zealand Clinical Trials Registry (ANZCTR) (https://www.anzctr.org.au/, ANZCTR12618000353291, ANZCTR12618001223224 and ANZCTR12619000859189).

Trial registration	ACTRN12618001223224	ACTRN12618000353291	ACTRN12619000859189
Date of registration	20/07/2018	08/03/2018	17/06/2019
Date the first patient was enrolled	15/09/2017	08/09/2016	01/08/2019
Number of patients enrolled before registration	280	211	
Explanation of the delay	The first two studies (2016 & by the WHO. The country did was a requirement as theraper considered surveillance and n malaria programme. However study, WHO informed the Errorgramme about this require retrospective registration of the 2017) and proactive registration.	I not know that registration utic efficacy studies were ot research by the national r, while negotiating the 2019 itrean National Malaria ement and supported ne two prior studies (2016 &	

2.2.2. Clinical follow-up assessments. Patients were monitored clinically and parasitologically at recruitment (day0) and on days 1, 2, 3, 7, 14, 21, and 28 post initiation of treatment, and any other unscheduled days if symptoms occurred. Thick and thin smears were obtained by finger prick prior to the initiation of treatment (day0) and on scheduled and unscheduled follow up visits for detection of malaria parasites and estimation of parasite density. Patients were advised to come to the health facilities for unscheduled visits if symptoms developed. The health facilities were open 24/7 for such patients. Supervisory visits were conducted during the study period by the Zoba/province malaria and the National Malaria Control Programme teams to supervise the Study Registers, data collections forms, and laboratory procedures. Blood samples were spotted onto filter papers for molecular studies on days 0, 7, 14, 21 and 28.

Primary outcome

Artemisinin partial resistance (ART-R) is defined as delayed parasite clearance (persistent parasitemia detected by microscopy at day3 in patients enrolled in Therapeutic Efficacy Studies) after treatment with a drug containing an artemisinin derivative (i.e., Artemisinin-based Combination Therapies such as ASAQ and AL), of a parasite strain carrying a particular mutation or set of mutations that are validated as associated with this delayed clearance, despite the administration and absorption of the drug given in doses equal to or higher than those usually recommended. ART-R is confirmed in a site or a country when a quality-controlled study using an ACT or an artesunate monotherapy finds more than 5% of patients with delayed parasite clearance, as shown either by persistent parasitemia detected by microscopy at 72 hours (\pm 2 hours, i.e., day 3, D3+) or a parasite clearance half-life \geq 5h, carrying *Pfkelch13* resistance-validated mutations. Therefore, we evaluated as primary the day3 positivity rate (D3+),³ defined as the proportion of patients who were still parasitemic on day3 after initiation of treatment as assessed by microscopic examination of thick blood smears.

Validated *Pfkelch13* mutations are those that have been significantly associated with delayed parasite clearance and found to confer *in vitro* ART-R using the Ring-stage Survival Assay (RSA). Candidate

markers are *Pfkelch13* mutations significantly associated with delayed parasite clearance or identified to confer *in vitro* ART-R using RSA. The list of validated and candidate markers is kept up to date on the WHO Global Malaria Programme website (<a href="https://www.who.int/teams/global-malaria-programme/case-management/drug-efficacy-and-resistance/antimalarial-drug-efficacy-database, accessed March 3, 2023).

Secondary outcome

The WHO recommends that the national treatment guideline be changed if the treatment failure rate exceeds 10% in a study that complies with the WHO protocol. We evaluated, as secondary outcome, the PCR-adjusted clinical response to the designated treatment on day28. PCR correction (see next section 1.2.3., Parasite genotyping for details), used to differentiate recrudescence from reinfection in recurrent infection samples, was carried out by genotyping the recommended genetic markers msp1, msp2 and polya (a polymorphic microsatellite marker) in the paired pretreatment and post-treatment samples.

PCR-adjusted clinical efficacy rates for ASAQ and AL at day28 were calculated per site to evaluate ACT treatment outcomes using complete-case (proportional) and Kaplan-Meier (cumulative survival) estimates. Patients who were lost or withdrew or had new infection (defined by parasite genotyping) during the follow-up or missing outcome data were excluded from the complete-case estimates. To calculate Kaplan-Meier estimates, patients who were lost or withdrew or had new infection during the follow-up or missing outcome data were censored on the last day of the patient follow-up. Patients with indeterminate PCR results were excluded from both complete-case and Kaplan-Meier estimates.⁴

Sample size

According to the thresholds defined by the WHO for ART-R (5%) and ACT treatment failure (10%), we calculated the sample size (both addressing assessment of ART-R and ACT treatment efficacy) per site based on assumptions summarized in the table below:

Outcomes	Confidence level	Expected proportion (%)	Confidence interval width (2-sided)	Minimum required participant size
Primary	95.0	0.001	0.05	73
Secondary	95.0	0.95	0.1	73

With a 20% increase to allow loss to follow-up and withdrawals during the 28-day follow-up period, the target number of participants was estimated to 88 (73 x 1.2) per site. For the material described in the paper, the power calculations refer to the original protocols and are not directly relevant to the analyses presented herein.

2.2.3. *DNA extraction and molecular analysis.* Parasite DNA was extracted from dried blood spots (DBS) collected pre and post treatment (the latter in case of recurrence) using the QIAamp DNA Blood Mini Kit (Qiagen).

Parasite genotyping. Parasite genotyping was carried out by PCR amplification, according to the recent WHO recommendation (2021). We amplified paired DNA samples (day0 and day of recurrence - dayX) of recurrent patients using the recommended genetic markers msp1, msp2 and $poly\alpha$ (a polymorphic microsatellite marker). Band sizes of amplicons were estimated by capillary electrophoresis (Agilent). The cut-off settings for PCR artefacts and stutter peaks were defined for peaks <10% of the low and upper control bands. The bins used to define a match were \pm 10bp for msp1/msp2 and \pm 5bp for $poly\alpha$. The genotypes of parasites on day0 and on the day of recurrence were compared to classify infections as recrudescence (same genotype) or new infection (different genotype).

The WHO/Medicines for Malaria Venture decision algorithm was used to define PCR-adjusted clinical efficacy rates. Recrudescence was defined as a genotype that had already been detected in the blood sample taken before treatment (i.e., at least one allele was shared at day0 and dayX for all three loci). A new infection was defined as the absence of a shared allele between day0 and dayX at any of the three loci. We also performed comparative analysis using the *msp1*, *msp2* and *glurp* markers (the

previous WHO recommendation for genotyping). The bins used to define a match were \pm 20bp for glurp. The 2/3 decision algorithm was also used for research purposes. Thereby, recrudescence was defined as a genotype that had already been detected in the blood sample taken before treatment (i.e. at least one allele was shared at day0 and dayX at the msp1 and msp2 loci). In case of discordance between msp1 and msp2, a third genotyping marker ($poly\alpha$ or glurp) was used as the deciding factor.

Molecular signatures associated with antimalarial drug resistance. Parasite DNA extracted from blood obtained at day0 and on the day of recurrence – dayX - was analysed for the presence of point mutations in the *Pfkelch13* propeller domain (codons 430-720) associated with ART-R, and in *pfcrt* (at codons 72-76, 93, 97, 145, 218, 343, 350, 353 and 356), *pfmdr-1* (at codons 86, 184, 1034, 1042 and 1246), *dhfr* (at codons 16, 50, 51, 59, 108, 164), and *dhps* (at codons 431, 436, 437, 540, 581, 613) genes associated with 4-aminoquinoline, amino-alcohol, pyrimethamine and sulfadoxine resistance, respectively.³ We also tested for deletions in *hrp2* and *hrp3*, which results in variable performance of HRP2-based malaria RDTs.⁶

Amplicons from targeted regions (presented in the table below) were generated using multiplexing nested PCR assays with indexed primers containing specific tags (barcodes). A total of 4 μ l of PCR reactions from each sample were mixed in one pool (96 samples) to increase the sample volume and minimize sample usage for downstream protocol steps. For each pool, amplicons were purified with AMPure XP beads (Beckman Coulter) according to manufacturer's protocol to eliminate dNTPs, salts, primers, and primer dimers. The quality of purified PCR products was assessed by analysing eluates containing the purified amplicons on a Fragment Analyzer (Agilent). DNA concentrations of pooled fragments were assessed by fluorometric quantitation (Qubit, Thermo Fischer). The pooled libraries were denatured with NaOH to a final concentration of 0.1 N and diluted with hybridization buffer before sequencing. Sequencing was performed using the MiSeq v2 reagents using the 300-cycle kit (Illumina) according to the manufacturer's recommendations.

List of the targeted regions and number of amplicons generated by multiplexing nested PCR assays.

Gene Name	Gene ID	Chr.	Gene location	SNPs/CNVs detection	No. of amplicons
Pfkelch13	PF3D7_1343700	13	1,724,817 - 1,726,997 (-)	SNP from codon 440 to 727	12
chloroquine resistance transporter	PF3D7_0709000	7	403,222 - 406,317 (+)	Codons 72-76, 93, 97, 145, 218, 343, 350, 353	5
multidrug resistance protein 1	PF3D7_0523000	5	957,890 - 962,149 (+)	Codons 86, 184, 1034, 1042, 1246	5
bifunctional dihydrofolate reductase-thymidylate synthase	PF3D7_0417200	4	748,088 - 749,914 (+)	Codons 16, 50, 51, 59, 108, 164	5
hydroxymethyldihydropterin pyrophosphokinase-dihydropteroate synthase	PF3D7_0810800	8	548,200 - 550,616 (+)	Codons 436, 437, 540, 581, 613	4
histidine-rich protein 2	PF3D7_0831800	8	1,373,212 – 1,376,988 (-)	Deletion	2
histidine-rich protein 3	PF3D7_1372200	13	2,840,236 – 2,842,840 (-)	Deletion	2

Raw sequences were demultiplexed and quality trimmed at a phred score of 30. Primer sequences were trimmed from the 5'-end of the sequences to avoid primer bias in the sequenced fragments. Base calling was performed by comparing reads with a custom database consisting of the 3D7 reference sequence (v45). Bioinformatic analyses were performed using the CLC Genomics Workbench 22 software (Qiagen). Laboratory reference parasite strains (Dd2, 7G8, HB3 and the 3601 strain, a Cambodian culture-adapted parasite) with known alleles of each gene were used as controls, as presented in the table below.

List of the alleles of the parasite strains used as controls

Gene name	Dd2 allele	7G8 allele	HB3 allele	3601 strain
Pfkelch13	Wild-type	Wild-type	Wild-type	C580Y
chloroquine resistance transporter	CVIETTHFIMCGT	S VMN T THFIMCGT	CVMNKTHFIMCGI	CVIETTHFIMCGT
multidrug resistance protein 1	YYSND	NFCDY	NFSDD	NFSND
bifunctional dihydrofolate reductase-thymidylate synthase	ACIRNI	ACICNI	ACNCNI	ACIRNI
hydroxymethyldihydropterin pyrophosphokinase- dihydropteroate synthase	IFGKAS	ISGKAA	ISAKAA	IAGEAA
histidine-rich protein 2	Deletion	-	-	-
histidine-rich protein 3	-	-	Deletion	-

Position of amino acid corresponds to codons 72, 73, 74, 76, 93, 97, 145, 218, 343, 350, 353 and 356 for pfcrt, to codons 86, 184, 1034, 1042 and 1246 for pfmdr-1, to codons 16, 50, 51, 59, 108, 164 for dhfr and to codons 431, 436, 437, 540, 581, 613 for dhps.

Parasite whole-genome sequencing, phylogenetic and haplotype analyses. We performed selective whole-genome amplification (sWGA) using short oligonucleotides of 8–12 mers as primers as previously described,⁷ on 285 DNA extracts from day0 dried blood samples. The choice of samples and the mutant vs wild-type ratio was determined by selecting all *Pfkelch13* 622I mutants (109, of which 107 were successfully sequenced) and including a selection of *Pfkelch13* wild-type parasites paired with *Pfkech13* 622I mutant by site and year. According to the availability of the *Pfkelch13* wild-type parasites and the cost for the SWGA-based sequencing, we selected a range of mutant to wild-type of between 2:1 and 6:1, as described in the following table.

Year	Pfkelch13 variant		Site						
1 eai	FJKeichis variam	Akordat	Guluj	Shambuko	Tokombia	Total			
2016	Pfkelch13 622I	5	4	4	7	20			
2010	Pfkelch13 wild-type	12	12	12	17	53			
2017	Pfkelch13 622I		0	3	6	9			
2017	Pfkelch13 wild-type		11	17	16	44			
2019	Pfkelch13 622I	10	8	8	8	34			
2019	Pfkelch13 wild-type	34	35	8	48	125			
Total		61	70	52	102	285			

The sWGA reaction was performed in a volume of 50 µl containing >5 ng of template DNA, BSA (New England Biolabs), 1 mM dNTPs (New England Biolabs), 2.5 µM of each amplification primer, 1× Phi29 reaction buffer (New England Biolabs), and 30 units of Phi29 polymerase (New England Biolabs). Samples were amplified on a C1000 Touch Thermal Cycler (Bio-Rad) programmed to run a "stepdown" protocol consisting of 35 °C for 5 min, 34 °C for 10 min, 33 °C for 15 min, 32 °C for 20 min, 31 °C for 30 min, 30 °C for 16 h, then heating at 65 °C for 15 min to inactivate the enzymes prior to cooling to 4 °C. Amplicons were then quantified using the Qubit® dsDNA high sensitivity assay (Thermo Fisher Scientific) to determine whether there was enough material for sequencing (minimum required was 500 ng of product). Library preparations of amplified samples and short-read high-throughput sequencing sWGA products (≥500 ng total DNA) were purified using AMPure XP beads (Beckman Coulter) according to the manufacturer's instructions. Purified amplicons were used to prepare a PCR-free Illumina library using the NEBNext DNA sample preparation kit (New England Biolabs) for high-throughput sequencing. DNA libraries were sequenced at the Genomic Platform at Institut Pasteur Paris using Illumina NextSeq 2000 instruments and Illumina V.3 chemistry. For each sequenced sample, read alignments against the chromosome sequences of P. falciparum 3D7 v45 (done with bwa mem) were processed to infer consensus sequences.

For phylogenetic analyses, each of the 290 read alignments (128/285 Eritrean *P. falciparum* sequences generated for this study, 162 publicly available sequences) were processed using SAM2MSA (https://gitlab.pasteur.fr/GIPhy/SAM2MSA) to infer the pseudo-sequences of the 14 chromosomes (see details in Uwimana et al. 2020). All inferred pseudo-chromosomes were pooled into 14 matrices of aligned nucleotide characters, and every aligned character containing > 15% degenerated character states was discarded. The 14 resulting multiple sequence alignments were concatenated into a supermatrix of 8,468,008 nucleotide characters. Phylogenetic analysis was carried out using IQ-TREE v2.1.3 with evolutionary model TVM+F+R6 (assessed by minimizing the BIC criterion). 9,10

The Genome Analysis Toolkit (GATK) was used to identify single nucleotide polymorphisms (SNPs) in isolates following GATK best practices. ¹¹ Low-quality sites were excluded based primarily on two parameters: $GQ \ge 30$ and $QUAL \ge 40$. Lastly, calls from sites exhibiting a low call rate across the whole dataset were discarded.

Based on genotyped data, pairwise Euclidean genetic distances were computed between samples in extended 200-kb and 1Mb windows around the mutation, to assess genetic structure at finer genomic scale. Principal Coordinate Analysis (PCoA), hierarchical clustering as well as AMOVA (Analysis of Molecular Variance) were then run. Principal Coordinate Analysis (PCoA) and hierarchical clustering were used to evaluate whether *P. falciparum* isolates tended to cluster together depending on (i) their *Pfkelch13* genotype (wild-type or R662I mutation); (ii) their geographical origin (site); (iii) their sampling date (year). Then, AMOVA (Analysis of Molecular Variance) was run to estimate the amount of genetic differentiation among groups (at the same 1Mb genomic window): *P. falciparum* Eritrean isolates were split into three groups (wild-types, R622I mutants, unknown *Pfkelch13* genotype), while other isolates were grouped depending on the country they originated from. A matrix of pairwise indices of genetic differentiation ($0 < \Phi ST < 1$) thus calculated among groups. Further analysis of extended haplotype homozygosity was performed around mutated positions to compare both wild-type and mutant haplotypes.

2.2.4. *Generation of gene-edited lines and in vitro susceptibility assays.* To evaluate the *in vitro* susceptibilities of *Pfkelch13* R622I mutant parasites to dihydroartemisinin, CRISPR-Cas9 was used to genetically modify the *Pfkelch13* locus in the NF54 and Dd2 reference lines, resulting in the NF54^{R622I} and Dd2^{R622I} lines. To achieve this, a *Pfkelch13*-propeller domain-specific guide RNA (gRNA) was cloned into an all-in-one CRISPR-Cas9 vector at the BbsI restriction sites using the primer pair p1/p2 (see list below) to generate the pDC2-cam-coSpCas9-U6-gRNA-hdhfr plasmid. A *Pfkelch13* donor sequence harboring the mutations of interest was generated by site-directed mutagenesis of a 1.5 kb region of the *Pfkelch13*-propeller domain, which was amplified using the primer pair p3/p4 and cloned into the pGEM T-easy vector system (Promega). Silent shield mutations were introduced at the Cas9 cleavage site using the primer pair p5/p6, and allele-specific mutations were introduced using the primer pairs p7/p8 for the R622I mutation. *Pfkelch13* donor sequence was amplified from pGEM using the primer pair p9/p10 and sub-cloned into the pDC2-cam-coSpCas9-U6-gRNA-hdhfr vector at the EcoRI and AatII restriction sites by In-Fusion® Cloning (Takara). The final plasmid (pDC2-cam-coSpCas9-U6-gRNA-*Pfkelch13*^{R622I}-hdhfr) was sequenced using primers p11, p12 and p13.

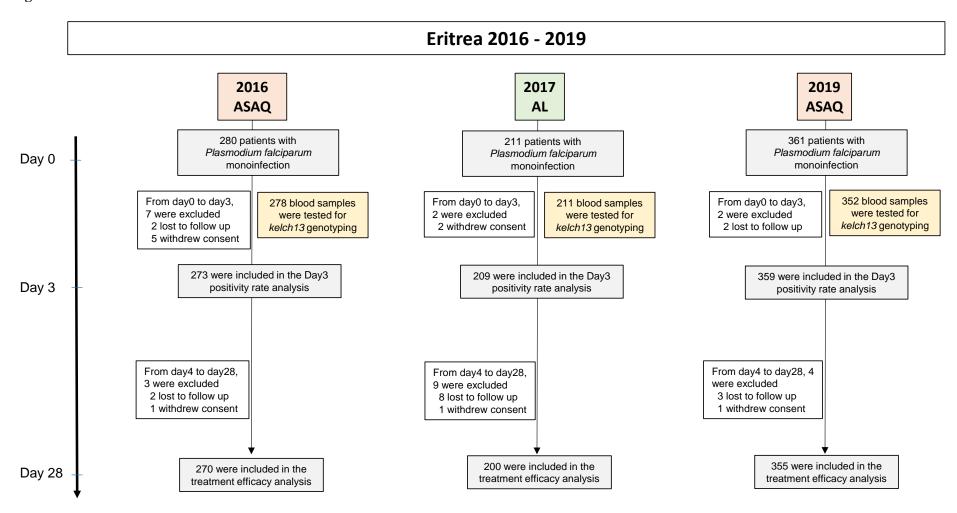
List of oligonucleotides used for the generation of gene-edited lines.

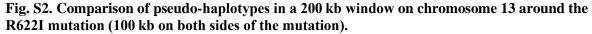
Name	Nucleotide sequence (5'-3')	Description	Fidock Lab Name
p1	TATTACACATAGCTGATGATCTAG	Pfkelch13 gRNA fwd	p6558
p2	AAACCTAGATCATCAGCTATGTGT	Pfkelch13 gRNA rev	p6287
p 3	GTGACGTCGATTGATATTAATGTTGGTGGA GC	Pfkelch13 CRISPR/Cas9 donor amplification fwd	p3984
p4	CCGCATATGGTGCAAACGGAGTGACCAAA TCTGGG	<i>Pfkelch13</i> CRISPR/Cas9 donor amplification rev	p3986

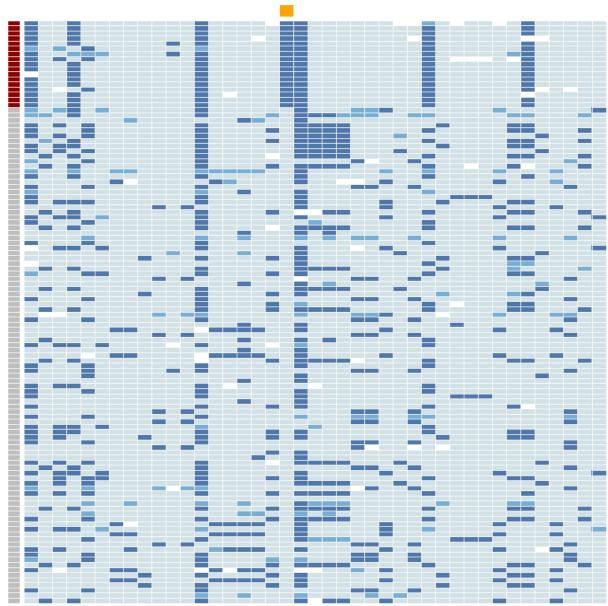
p5	GAATACGCCAAGATCATCAGCTATGTGTG TTGCTTTTGATAATAAAATTTATGTCATTG G	SDM <i>Pfkelch13</i> shield mutations fwd	p6090
р6	GCAACACACATAGCTGATGATCTTGGCGT ATTCAAAGGTGCCACCTCTACCC	SDM <i>Pfkelch13</i> shield mutations rev	p6091
p7	CCATATGCCTTATTAGAAGCTAtAAGTTCAG GAGCAGCTTTTAATTACC	SDM <i>Pfkelch13</i> R622I fwd	p7912
p8	GGTAATTAAAAGCTGCTCCTGAACTTaTAGC TTCTAATAAGGCATATGG	SDM <i>Pfkelch13</i> R622I rev	p7913
p9	GAGGTACCGAGCTCGAATTCGAAACGGAA TTAAGTGATGCTAG	Pfkelch13 CRISPR/Cas9 donor EcoRI In-Fusion fwd	p6655
p10	CGAAAAGTGCCACCTGACGTCAAACGGAG TGACCAAATCTGGG	Pfkelch13 CRISPR/Cas9 donor AatII In-Fusion rev	p6656
p11	AACATATGTTAAATATTTATTTCTC	CRISPR/Cas9 donor sequencing fwd	p282
p12	AGGGTTATTGTCTCATGAGCGG	CRISPR/Cas9 donor sequencing fwd	p283
p13	AAGCACCGACTCGGTGCCAC	gRNA sequencing rev	p35
p14	GGGAATCTGGTGGTAACAGC	Pfkelch13 integration primer fwd (5' end)	p6176
p15	CGGAGTGACCAAATCTGGGA	Pfkelch13 integration primer rev (3' end)	p6175
p16	GGTATTAAATTTTTACCATTCCCATTAGTA TTTTGTATAGG	Pfkelch13 sequencing fwd (internal)	p4186

fwd, forward; rev, reverse; SDM, site-directed mutagenesis

P. falciparum asexual blood-stage parasites were cultured in human erythrocytes (at 3% hematocrit) and RPMI-1640 medium supplemented with 2 mM L-glutamine, 50 mg/L hypoxanthine, 25 mM HEPES, 0.225% NaHCO₃, 10 mg/L gentamycin and 0.5% w/v Albumax II (Invitrogen). At Institut Pasteur, Paris, human red blood cells were extracted from human peripheral blood sampled on healthy volunteers through the ICAReB platform (Clinical Investigation & Access to Research Bioresources) from the center for translational science, Institut Pasteur. All participants received an oral and written information about the research and gave written informed consent in the frame of the healthy volunteers Diagmicoll cohort (Clinical trials NCT 03912246) after approval of the CPP Ile-de-France I Ethics Committee (April 30th, 2009) and CoSImmGEn cohort (Clinical trials NCT 03925272). At Columbia University, Irving Medical Center, human red blood cells were obtained as anonymized, deidentified samples from a commercial blood bank (Interstate Blood Bank, Memphis, TN, USA) and washed to remove leukocytes. Parasites were maintained at 37°C in 5% O₂, 5% CO₂, and 90% N₂. Cultures were monitored by blood smears fixed in methanol, stained with Giemsa, and viewed by light microscopy.

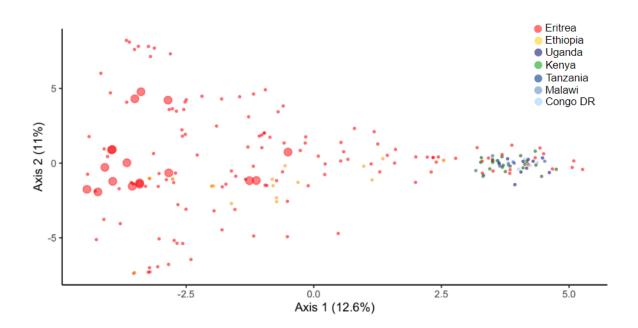

Transfections were performed by electroporating ring-stage parasites at 5–10% parasitemia with 50 μg of purified circular plasmid DNA resuspended in Cytomix. Transfected parasites were maintained under 2.5 nM WR99210 (Jacobus Pharmaceuticals, Princeton, NJ, USA) to select for editing events. Parasite cultures were monitored for recrudescence microscopically for up six weeks post electroporation. To test for successful editing, the *Pfkelch13* locus was amplified directly from whole blood using the primer pair p14/p15 and the MyTaqTM Blood-PCR Kit (Bioline Meridian Bioscience, Cincinnati, OH, USA). PCR products were submitted for Sanger sequencing using primer p16. Bulk-edited cultures were cloned via limiting dilution and flow cytometry was used to screen for positive wells after 17-20 days. Parasites were stained with 1× SYBR Green (Thermo Fisher, Waltham, MA, USA) and 100 nM MitoTracker Deep Red (Invitrogen, Grand Island, USA), and positive wells were detected by flow cytometry using an iQue flow cytometer (IntelliCyt, Albuquerque, NM, USA).


In vitro ring-stage survival assays (RSA_{0-3h}) were conducted on early ring-stage parasites (0-3 hours post-invasion; hpi). These assays included the NF54^{R622I} and Dd2^{R622I} CRISPR/Cas9-edited lines, as well as the NF54^{WT}, Dd2^{WT} and the NF54^{C580Y} line as controls. Briefly, tightly synchronized 0-3 hpi rings were exposed to a pharmacologically-relevant dose of 700 nM dihydroartemisinin (DHA) or 0.1% dimethyl sulfoxide (DMSO; vehicle control) for 6h, washed three times with RPMI to remove drug, transferred, and cultured for an addition 66h in drug-free medium. Parasitemia were measured at 72 h by microscopy (D. Ménard lab, Institut Pasteur) as previously described¹³ or by flow cytometry (D. Fidock Lab, Columbia University) with 50,000-100,000 events captured per sample. Parasite survival rates are expressed as ratios of viable parasites in DHA- to DMSO-treated samples. The threshold for resistance in the RSA_{0-3h} was considered to be a survival rate of >1%.


2.2.5. Outcome classification, molecular and statistical analysis. Data were reported in Microsoft Excel and analysed with MedCalc 20.027 (MedCalc Software) and GraphPad Prism 9.3.1 (GraphPad Software). The primary analysis used complete cases only and ignored data from subjects with missing outcome data. The Kaplan-Meier analyses were conducted as an alternative to the complete-case analysis. Because the analyses presented here were not originally specified in the protocols for the three component studies, all analyses are descriptive. 95% confidence intervals [CI] are provided for all estimates, but these have not been adjusted for multiple comparisons and were not used in place of hypothesis tests.

3. Supplementary Figures

Fig. S1. Patient workflow: enrollment and outcomes.



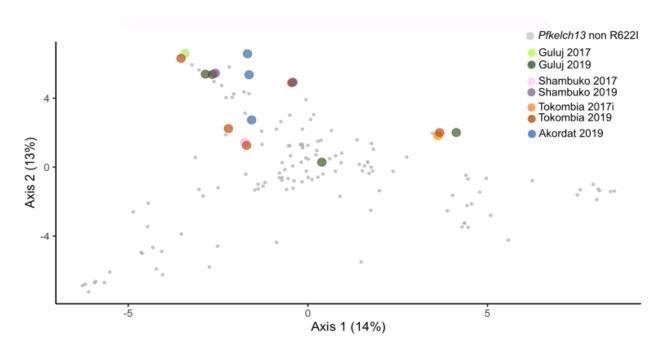

Each cell represents a single position. The *Pfkelch13* 622I mutation is flagged with the orange cell at the top. Light blue cells correspond to the reference allele (from the 3D7 genome), dark blue cells correspond to the alternate allele, medium-blue cells correspond to ambiguous non-haploid type at this position, and empty cells to missing values. Each row represents one isolate, with isolates color-coded according to their wild-type (grey) or mutant (red) status. The presence of a single shared haplotype surrounding the 622I mutation in Eritrean isolates of *P. falciparum* is consistent with a single origin of the genetic background on which the mutation arose. Further hierarchical clustering and bifurcation analyses (*Fig. S5 & S6*) provide evidence that this origin of the 622I mutation in Eritrean isolates was not a recent event.

Fig. S3. Principal Coordinate analysis (PCO) based on pairwise genetic distances in a 1 Mb window) at regional level.

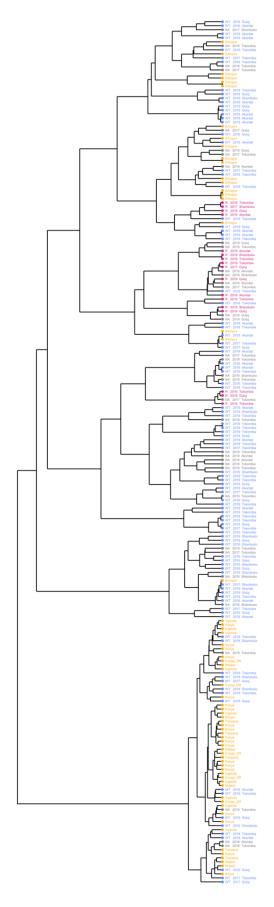

Pfkelch13 622I mutants are represented by large dots, and *Pfkelch13* wild-type isolates from Eritrea as well as isolates originating from various other East African countries sourced from a public database (the MalariaGEN Plasmodium falciparum Community Project; https://www.malariagen.net/apps/pf/4.0) are represented by small dots color coded according to their origin.

Fig. S4. Principal Coordinate analysis (PCO) based on pairwise genetic distances in a 1 Mb window at country level.

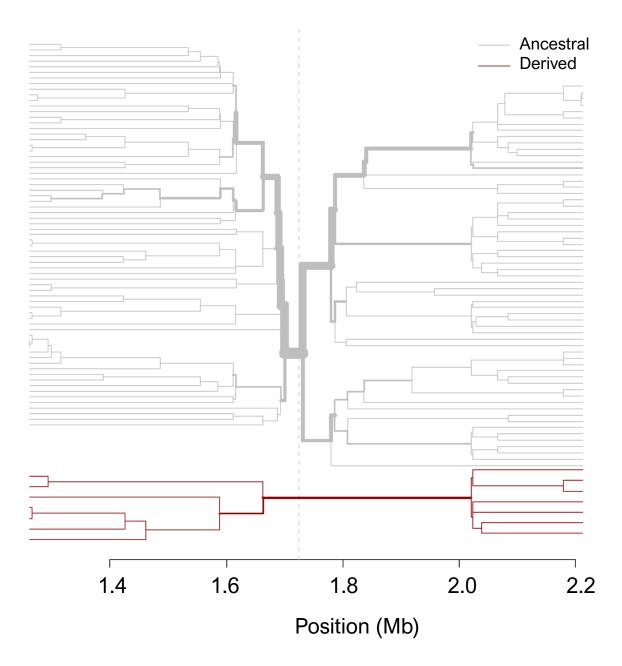

Pfkelch13 622I isolates are represented by large dots and the *Pfkelch13* wild-type isolates from Eritrea by grey small dots. Dot color represents the year and site at which the mutant isolate was collected.

Fig. S5. Hierarchical clustering (using Ward's algorithm) based on pairwise genetic distances in a 1Mb window.

Pfkelch13 622I mutants are represented in red and Pfkelch13 wild-type isolates from Eritrea in blue. Isolates for which mutational status could not be properly determined are represented in grey. Orange labels correspond to individuals originating from various East African countries, sourced from a public database (the MalariaGEN Plasmodium falciparum Community Project; https://www.malariagen.net/apps/pf/4.0). The labels of Eritrean isolates display the following information: type WT or M (wild-type or mutant), sampling year, site of origin. NA, missing information.

The genomic position at which the 622I mutation was observed is indicated by the dashed vertical line. Wild-type (ancestral) individuals are in grey and *Pfkelch13* 622I mutant isolates are in red.

4. Supplementary Tables

Table S1. D3+ rate per year and site, Eritrea, 2016-2019

	Year										
Site		2016		2017	2	2019					
	N	% D3 +	N	% D3 +	N	% D3 +					
Akordat	54	0	19	0	88	0					
Ghindae	-	-	15	0	-	-					
Guluj	71	0	23	0	95	1.1					
Shambuko	73	1.4	64	6.2	88	5.7					
Tokombia	75	0	88	88 0		10.2					
Total	273	0.4	209	1.9	359	4.2					

[%] D3+: Percentage of patients who were still parasitemic on day3 after initiation of treatment as assessed by microscopic examination of thick blood smears, (D3+). N: Sample size.

Table S2. Clinical outcomes of the participants per year and treatment, Eritrea, 2016-2019.

Year			2016		2019					
Treatment		1	ASAQ		ASAQ					
Site	Akordat	Guluj	Shambuko	Tokombia	a Akordat Guluj Shambuko Toko					
Sample size	58	73	73	76	88	97	88	88		
Early treatment failure	0	0	0	0	0	0	0	0		
Recurrent infections	0	6	3	5	0	2	6	5		
Days 15-21	-	3	2	3	-	-	3	3		
Days 22-28	-	3	1	2	-	2	3	2		
ACPR	54	64	70	68	88	92	80	82		
Withdrawn	3	2	0	1	0	0	1	0		
Lost to follow-up	1	1	0	2	0	3	1	1		

ASAQ: Artesunate-Amodiaquine; ACPR: Adequate Clinical and Parasitological Response.

Year		2017											
Treatment		AL											
Site	Akordat	Akordat Ghindae Guluj S		Shambuko	Tokombia								
Sample size	19	15	25	64	88								
Early treatment failure	0	0	0	0	0								
Recurrent infections	0	0	0	0	0								
Days 15-21	-	-	-	-	-								
Days 22-28	-	-	-	-	-								
ACPR	16	14	23	61	86								
Withdrawn	0	0	2	1	0								
Lost to follow-up	3	1	0	2	2								

AL: Artemether-Lumefantrine; ACPR: Adequate Clinical and Parasitological Response.

Table S3. Raw data of msp-1, msp-2 and $poly\ \alpha$ polymorphisms (band size in bp) detected on day0 and day of recurrence (dayX) in isolates from recurrent infections, and classification of treatment outcomes, Eritrea, 2016-2019.

							(-11-1-)							(-11-1.)			
ID D. 41 4	G*4	T 7	TD 4 4	Uncorrected	Day of	msp-1 ger	ne (allele)	17.1		D 022			msp-2 ger	ne (allele)	FC07		
ID Patient	Site	Year	Treatment	Outcome	recrudescence (DayX)	Mad20 Day0	DayX	K1 Day0	DayX	RO33 Day0	DayX	Conclusion msp-1	3D7 Day0	DayX	FC27	DayX	Conclusion msp-2
2016 01 112	C1:	2016	A C . A O	TE	D29				,	Dayo	DayA		,		Day0		•
2016_01_113	Guluj	2016	AS+AQ	TF	Day28	180	220	250	580	105	105	Reinfection	250	250	900	800	Recrudescence
2016_01_15	Guluj	2016	AS+AQ	TF	Day28	-	180	120/420	-	135	135	Recrudescence	-	250	-	550	Indeterminate
2016_01_50	Guluj	2016	AS+AQ	TF	Day28	-	-	-	-	135	135	Recrudescence	250	250	800	800	Recrudescence
2016_01_54	Guluj	2016	AS+AQ	TF	Day21	-	-	-	-	135	135	Recrudescence	250/300	250/300	850	-	Recrudescence
2016_01_68	Guluj	2016	AS+AQ	TF	Day21	-	-	200	-	135	135	Recrudescence	270	-	950	650	Reinfection
2016_01_79	Guluj	2016	AS+AQ	TF	Day21	180	-	500/580	-	135	135	Recrudescence	270	270	-	-	Recrudescence
2016_21_175	Shambuko	2016	AS+AQ	TF	Day21	180	180	-	-	-	-	Recrudescence	350	350	-	-	Recrudescence
2016_32_192	Shambuko	2016	AS+AQ	TF	Day28	-	220/280	-	-	135	135	Recrudescence	250	250	-	-	Recrudescence
2016_55_227	Shambuko	2016	AS+AQ	TF	Day21	180	220/280	500/580	580	135	135	Recrudescence	250	-	-	750	Reinfection
2016_03_07	Tokombia	2016	AS+AQ	TF	Day26	220	-	-	-	135	135	Recrudescence	250	250	-	750	Recrudescence
2016_03_108	Tokombia	2016	AS+AQ	TF	Day21	220	-	-	-	135	135	Recrudescence	250	-	750	750	Recrudescence
2016_03_15	Tokombia	2016	AS+AQ	TF	Day21	180	220	500/580	500/580	135	135	Recrudescence	250	250	700	900	Recrudescence
2016_03_69	Tokombia	2016	AS+AQ	TF	Day25	-	220	220	-	135	135	Recrudescence	-	200/350	700	900	Reinfection
2016_03_98	Tokombia	2016	AS+AQ	TF	Day21	180	180	-	-	135	135	Recrudescence	-	-	700	700	Recrudescence
01_259_19	Guluj	2019	AS+AQ	TF	Day28	190	190	232	-	-	-	Recrudescence	280/410	280/410	-	-	Recrudescence
01_85_19	Guluj	2019	AS+AQ	TF	Day21	-	-	-	-	135	135	Recrudescence	280	280	-	500	Recrudescence
05_208_19	Shambuko	2019	AS+AQ	TF	Day21	-	-	-	-	135	135	Recrudescence	-	-	500	500	Recrudescence
05_246_19	Shambuko	2019	AS+AQ	TF	Day28	-	-	295	-	-	135	Reinfection	423	-	501	-	Indeterminate
05_356_19	Shambuko	2019	AS+AQ	TF	Day28	266	-	293	-	135	135	Recrudescence	280	280	340	-	Recrudescence
05_371_19	Shambuko	2019	AS+AQ	TF	Day21	216/253	268	-	295	135	135	Recrudescence	270	270	-	500	Recrudescence
05_512_19	Shambuko	2019	AS+AQ	TF	Day28	230	232	-	-	135	135	Recrudescence	280/300	280/300	505	-	Recrudescence
05_544_19	Shambuko	2019	AS+AQ	TF	Day21	214	_	-	223	_	135	Reinfection	-	280	480	340/500	Reinfection
03_01_19	Tokombia	2019	AS+AQ	TF	Day21	_	-	_	-	-	_	Indeterminate	310	310	-	-	Recrudescence
03_155_19	Tokombia	2019	AS+AQ	TF	Day28	264	264		_	_	_	Recrudescence	200/400	200/400	_	_	Recrudescence
03_183_19	Tokombia	2019	AS+AQ	TF	Day21	248	232	_	_	135	135	Recrudescence	275	275	_	_	Recrudescence
03_26_19	Tokombia	2019	AS+AQ	TF	Day28	220	220		_	_	_	Recrudescence	310	310	_	_	Recrudescence
03_84_19	Tokombia	2019	AS+AQ	TF	Day21		_	_	_	135	135	Recrudescence	_	_	500	500	Recrudescence

						Poly α microsat	ellite		
ID Patient	Site	Year	Treatment	Outcome	Day of recrudescence (DayX)	Day0	DayX	Conclusion	WHO/MMV interpretation
2016_01_113	Guluj	2016	AS+AQ	TF	Day28	184	211	Reinfection	Reinfection
2016_01_15	Guluj	2016	AS+AQ	TF	Day28	184	184/223	Recrudescence	Recrudescence
2016_01_50	Guluj	2016	AS+AQ	TF	Day28	182/208	183	Recrudescence	Recrudescence
2016_01_54	Guluj	2016	AS+AQ	TF	Day21	184	184/234	Recrudescence	Recrudescence
2016_01_68	Guluj	2016	AS+AQ	TF	Day21	188	175	Reinfection	Reinfection
2016_01_79	Guluj	2016	AS+AQ	TF	Day21	168	182/205	Reinfection	Reinfection
2016_21_175	Shambuko	2016	AS+AQ	TF	Day21	184	184	Recrudescence	Recrudescence
2016_32_192	Shambuko	2016	AS+AQ	TF	Day28	198	198	Recrudescence	Recrudescence
2016_55_227	Shambuko	2016	AS+AQ	TF	Day21	182	200	Reinfection	Reinfection
2016_03_07	Tokombia	2016	AS+AQ	TF	Day26	182	182	Recrudescence	Recrudescence
2016_03_108	Tokombia	2016	AS+AQ	TF	Day21	192	192	Recrudescence	Recrudescence
2016_03_15	Tokombia	2016	AS+AQ	TF	Day21	198	184	Reinfection	Reinfection
2016_03_69	Tokombia	2016	AS+AQ	TF	Day25	201	211	Reinfection	Reinfection
2016_03_98	Tokombia	2016	AS+AQ	TF	Day21	192	190	Recrudescence	Recrudescence
01_259_19	Guluj	2019	AS+AQ	TF	Day28	186	183	Recrudescence	Recrudescence
01_85_19	Guluj	2019	AS+AQ	TF	Day21	186	188	Recrudescence	Recrudescence
05_208_19	Shambuko	2019	AS+AQ	TF	Day21	214/241	213	Recrudescence	Recrudescence
05_246_19	Shambuko	2019	AS+AQ	TF	Day28	201	211	Reinfection	Reinfection
05_356_19	Shambuko	2019	AS+AQ	TF	Day28	190	209	Reinfection	Reinfection
05_371_19	Shambuko	2019	AS+AQ	TF	Day21	191	211/241	Reinfection	Reinfection
05_512_19	Shambuko	2019	AS+AQ	TF	Day28	201/214/240	203	Recrudescence	Recrudescence
05_544_19	Shambuko	2019	AS+AQ	TF	Day21	206	177	Reinfection	Reinfection
03_01_19	Tokombia	2019	AS+AQ	TF	Day21	198	198	Recrudescence	Recrudescence
03_155_19	Tokombia	2019	AS+AQ	TF	Day28	211	211	Recrudescence	Recrudescence
03_183_19	Tokombia	2019	AS+AQ	TF	Day21	183/208	211	Recrudescence	Recrudescence
03_26_19	Tokombia	2019	AS+AQ	TF	Day28	198	200	Recrudescence	Recrudescence
03_84_19	Tokombia	2019	AS+AQ	TF	Day21	208	211	Recrudescence	Recrudescence

ASAQ: Artesunate-Amodiaquine; MMV: Medicines for Malaria Venture; TF: treatment failure, WHO: World Health Organization.

Table S4. PCR-corrected Kaplan-Meier and complete-case estimates of ASAQ and AL efficacy by genotyping approach at day28, Eritrea, 2016-2019 (Panel A and Panel B according to the decision algorithm).

Molecular genotyping (= PCR correction) was performed to distinguish new *P. falciparum* infections from recrudescence in patients in whom recurrent parasitemia appeared during follow-up.

Panel A. Genotyping interpretation based on 3/3 decision (or WHO/MMV) algorithm (Recrudescence was defined as a genotype that had already been detected in the blood sample taken before treatment; at least one allele was shared at day0 and day X at all three loci. A new infection was defined as the absence of a shared allele between day0 and dayX at any of the three loci).

				Treatment efficacy (PCR-corrected), % (95%	(CI)		
Genotyping mark	ters		msp1/msp2/Polyα		msp1/msp2/glurp			
Analysis	Site	ASAQ 2016	AL 2017	ASAQ 2019	ASAQ 2016	AL 2017	ASAQ 2019	
	Akordat	100 (93.4-100)	100 (79.4-100)	100 (95.9-100)	100 (93.4-100)	100 (79.4-100)	100 (96.4-100)	
	Ghindae	-	100 (76.8-100)	-	-	100 (76.8-100)	-	
Complete-case	Guluj	95.9 (88.5-99.1)	100 (85.2-100)	98.9 (94.1-99.9)	94.1 (85.6-98.4)	100 (85.2-100)	97.9 (92.5-99.7)	
	Shambuko	97.3 (90.4-99.7)	100 (94.1-100)	97.6 (91.5-99.7)	97.2 (90.3-99.7)	100 (94.1-100)	96.4 (89.8-99.2)	
	Tokombia	96.0 (88.8-99.2)	100 (95.8-100)	94.3 (87.1-98.1)	95.8 (88.1-99.1)	100 (95.8-100)	95.3 (88.5-98.7)	
	Akordat	100 (93.8-100)	100 (82.3-100)	100 (95.9-100)	100 (93.4-100)	100 (82.3-100)	100 (95.9-100)	
	Ghindae	-	100 (78.2-100)	-	-	100 (78.2-100)	-	
Kaplan-Meier	Guluj	95.9 (88.5-99.1)	100 (86.3-100)	98.9 (94.4-99.9)	94.2 (88.6-98.5)	100 (86.3-100)	97.9 (92.7-99.7)	
	Shambuko	97.3 (90.4-99.7)	100 (94.4-100)	97.7 (92.0-99.7)	97.2 (90.4-99.7)	100 (94.4-100)	96.6 (90.4-99.3)	
	Tokombia	96.0 (88.9-99.2)	100 (95.9-100)	94.3 (87.2-98.1)	96.0 (88.9-99.2)	100 (95.9-100)	95.4 (88.8-98.7)	

Panel B. Genotyping interpretation based on 2/3 decision algorithm. [Recrudescence was defined as a genotype that had already been detected in the blood sample taken before treatment; at least one allele was shared at day0 and dayX at msp1 and msp2 loci. In case of discordance between msp1 and msp2, a third genotyping marker (poly α or glurp) was used as the deciding factor].

				Treatment efficacy (PCR-corrected), % (95%	(CI)	
Genotyping mark	ers		msp1/msp2/Polyα			msp1/msp2/glurp	
Analysis	Site	2016	2017	2019	2016	2017	2019
	Akordat	100 (93.4-100)	100 (79.4-100)	100 (96.4-100)	100 (93.4-100)	100 (79.4-100)	100 (96.4-100)
	Ghindae	-	100 (76.8-100)	-	-	100 (76.8-100)	-
Complete-case	Guluj	94.5 (86.6-98.5)	100 (85.2-100)	97.9 (92.5-99.7)	94.1 (85.6-98.3)	100 (85.2-100)	97.9 (92.5-99.7)
	Shambuko	97.3 (90.4-99.7)	100 (94.1-100)	95.2 (88.2-98.7)	97.2 (90.3-99.6)	100 (94.1-100)	95.2 (88.2-98.7)
	Tokombia	94.7 (87.1—98.5)	100 (95.8-100)	94.3 (87.1-98.1)	94.4 (86.3-98.4)	100 (95.8-100)	94.3 (87.1-98.1)
	Akordat	100 (93.8-100)	100 (82.3-100)	100 (95.9-100)	100 (93.8-100)	100 (82.3-100)	100 (95.9-100)
	Ghindae	-	100 (78.2-100)	-	-	100 (78.2-100)	-
Kaplan-Meier	Guluj	94.5 (86.5-98.5)	100 (86.3-100)	97.9 (92.7-99.7)	94.5 (86.5-98.4)	100 (86.3-100)	97.9 (92.7-99.7)
	Shambuko	97.3 (90.4-99.7)	100 (94.4-100)	95.4 (88.8-98.7)	97.2 (90.4-99.6)	100 (94.4-100)	95.5 (88.8-98.7)
	Tokombia	94.7 (87.1-98.5)	100 (95.9-100)	94.3 (87.2-98.1)	94.7 (87.1-98.5)	100 (95.9-100)	94.3 (87.2-98.1)

Table S5. Comparison of the classification of treatment outcomes of recurrent infections according by genotyping approach, Eritrea, 2016-2019.

Patient	Site	Year	Treatment	Uncorrected Outcome	Day of recrudescence (DayX)	msp1/msp2/glurp	msp1/msp2/Polyα
2016_01_113	Guluj	2016	AS+AQ	TF	Day28	Reinfection	Reinfection
2016_01_15	Guluj	2016	AS+AQ	TF	Day28	Recrudescence	Recrudescence
2016_01_50	Guluj	2016	AS+AQ	TF	Day28	Recrudescence	Recrudescence
2016_01_54	Guluj	2016	AS+AQ	TF	Day21	Recrudescence	Recrudescence
2016_01_68	Guluj	2016	AS+AQ	TF	Day21	Reinfection	Reinfection
2016_01_79	Guluj	2016	AS+AQ	TF	Day21	Recrudescence	Reinfection
2016_21_175	Shambuko	2016	AS+AQ	TF	Day21	Recrudescence	Recrudescence
2016_32_192	Shambuko	2016	AS+AQ	TF	Day28	Recrudescence	Recrudescence
2016_55_227	Shambuko	2016	AS+AQ	TF	Day21	Reinfection	Reinfection
2016_03_07	Tokombia	2016	AS+AQ	TF	Day26	Recrudescence	Recrudescence
2016_03_108	Tokombia	2016	AS+AQ	TF	Day21	Recrudescence	Recrudescence
2016_03_15	Tokombia	2016	AS+AQ	TF	Day21	Reinfection	Reinfection
2016_03_69	Tokombia	2016	AS+AQ	TF	Day25	Reinfection	Reinfection
2016_03_98	Tokombia	2016	AS+AQ	TF	Day21	Recrudescence	Recrudescence
01_259_19	Guluj	2019	AS+AQ	TF	Day28	Recrudescence	Recrudescence
01_85_19	Guluj	2019	AS+AQ	TF	Day21	Recrudescence	Recrudescence
05_208_19	Shambuko	2019	AS+AQ	TF	Day21	Recrudescence	Recrudescence
05_246_19	Shambuko	2019	AS+AQ	TF	Day28	Reinfection	Reinfection
05_356_19	Shambuko	2019	AS+AQ	TF	Day28	Reinfection	Reinfection
05_371_19	Shambuko	2019	AS+AQ	TF	Day21	Recrudescence	Reinfection
05_512_19	Shambuko	2019	AS+AQ	TF	Day28	Recrudescence	Recrudescence
05_544_19	Shambuko	2019	AS+AQ	TF	Day21	Reinfection	Reinfection
03_01_19	Tokombia	2019	AS+AQ	TF	Day21	Recrudescence	Recrudescence
03_155_19	Tokombia	2019	AS+AQ	TF	Day28	Recrudescence	Recrudescence
03_183_19	Tokombia	2019	AS+AQ	TF	Day21	Reinfection	Recrudescence
03_26_19	Tokombia	2019	AS+AQ	TF	Day28	Recrudescence	Recrudescence
03_84_19	Tokombia	2019	AS+AQ	TF	Day21	Recrudescence	Recrudescence

ASAQ: Artesunate-Amodiaquine; TF: treatment failure. Discordance between the 2 genotyping approaches is shown in red font.

Table S6. Distribution of Pfkelch13 mutations in isolates collected prior treatment per site and per year, Eritrea, 2016-2019.

							Pf	kelch1.	3 muta	ations					
Site	Year	XX/T	622	503	515	520	532	533	543	548	556	561	591	658	т. (.1
		WT	(R > I)	(K>W)	R>G	V>A	(C>W)	G>N	I>V	G>C	E>K	R>H	G>N	(K>E)	Total
	2016	52	5												57
Akordat	2017	19													19
	2019	45	16												61
Ghindae	2017	15													15
	2016	67	5											1	73
Guluj	2017	21	4												25
	2019	73	21				1				1				96
	2016	66	6												72
Shambuko	2017	59	5												64
	2019	76	7						1	1		1			86
	2016	66	8			1							1		76
Tokombia	2017	79	7	1	1										88
	2019	60	25					1							86
Total		698	109	1	1	1		1	1	1	1	1	1	1	818

Table S7. Proportion of patients with detectable parasitemia on day3 (D3+) and harboring Pfkelch13 622I mutant parasites in day0 isolates, per age groups, year and site, Eritrea 2016-2019.

Site	Year	% of D3+ patients harboring Pfkelch13 622I mutant parasites at day0							
		All age	<5 years	<10 years	<15 years				
	2016	0%	-	-	-				
Akordat	2017	0%	-	-	-				
	2019	0%	-	-	-				
	2016	0%	-	-	-				
Guluj	2017	0%	-	-	-				
	2019	1.1% (1/95)	0% (0/2)	0% (0/20)	2.4% (1/41)				
	2016	0%	-	-	-				
Tokombia	2017	0%	-	-	-				
	2019	4.5% (4/88)	28.6% (2/7)	13% (3/23)	7.0% (3/43)				
	2016	0%	-	-	-				
Shambuko	2017	3.1% (2/64)	0% (0/4)	0% (0/19)	5.4% (2/37)				
	2019	2.3% (2/88)	0% (0/2)	3.8% (1/26)	2.0% (1/49)				
Ghindae	2017	0%	-	-	-				

Bold font represents location in Eritrea where endemic ART-R was observed according to the WHO definition. ¹³

Table~S8.~Pfkelch13~genotypes~in~isolates~collected~at~day 0~and~day~of~recrudescence~(day X)~in~17~recrudescent~infections,~Eritrea~2016-2019.

TD D ()	G.	T 7		G.	T	Parasitemia (parasite/µL)	PCR	Day of	Pfkelch13 genot (Relative abund 662I genotype)	ype ance of <i>Pfkelch13</i>
ID Patient	Site	Year	Age	Sex	Treatment	Initial parasitemia (Day0)	Day3 parasitemia	- corrected outcome	recrudescence	At Day0	At day of recrudescence (dayX)
2016_03_98	Tokombia	2016	7	M	AS+AQ	81000	0	Recrudescence	Day21	WT (43.8%) 622I (66.2%)	WT (1.6%) 622I (98.4%)
01_85_19	Guluj	2019	15	M	AS+AQ	86957	368	Recrudescence	Day21	WT (14.5%) 622I (85.5%)	WT (0.4%) 622I (99.6%)
01_259_19	Guluj	2019	46	M	AS+AQ	3310	0	Recrudescence	Day28	WT (100%) 622I (0%)	WT (100%) 622I (0%)
2016_01_15	Guluj	2016	13	M	AS+AQ	20270	0	Recrudescence	Day28	WT (97.6%) 622I (2.4%)	WT (62.4%) 622I (37.6%)
2016_01_50	Guluj	2016	4	M	AS+AQ	21429	0	Recrudescence	Day28	WT (97.2%) 622I (2.8%)	WT (55.3%) 622I (44.7%)
2016_01_54	Guluj	2016	12	M	AS+AQ	14340	0	Recrudescence	Day21	WT (96.8%) 622I (3.2%)	WT (38.0%) 622I (62.0%)
2016_01_79	Guluj	2016	5	F	AS+AQ	1080	0	Recrudescence	Day21	WT (98.1%) 622I (1.9%)	WT (46.2%) 622I (54.8%)
05_208_19	Shambuko	2019	11	M	AS+AQ	3000	0	Recrudescence	Day21	WT (100%) 622I (0%)	WT (100%) 622I (0%)
05_371_19	Shambuko	2019	14	M	AS+AQ	11123	0	Recrudescence	Day21	WT (100%) 622I (0%)	WT (100%) 622I (0%)
05_512_19	Shambuko	2019	19	M	AS+AQ	8380	0	Recrudescence	Day28	WT (100%) 622I (0%)	WT (100%) 622I (0%)
2016_21_175	Shambuko	2016	8	M	AS+AQ	1320	0	Recrudescence	Day21	WT (100%) 622I (0%)	WT (100%) 622I (0%)
2016_32_192	Shambuko	2016	8	M	AS+AQ	986	0	Recrudescence	Day28	WT (100%) 622I (0%)	WT (100%) 622I (0%)
03_01_19	Tokombia	2019	10	M	AS+AQ	15127	0	Recrudescence	Day21	WT (100%) 622I (0%)	WT (100%) 622I (0%)
03_155_19	Tokombia	2019	10	M	AS+AQ	17057	0	Recrudescence	Day28	WT (100%) 622I (0%)	WT (100%) 622I (0%)
2016_03_07	Tokombia	2016	6	M	AS+AQ	32042	0	Recrudescence	Day26	WT (96.9%) 622I (3.1%)	WT (43.7%) 622I (56.3%)

2016_03_108	Tokombia	2016 9	M	AS+AQ	28432	0	Recrudescence Day21	WT (98.2%) 622I (1.8%)	WT (63.1%) 622I (36.9%)
03_84_19	Tokombia	2019 6	M	AS+AQ	16541	127	Recrudescence Day21	WT (98.6%) 622I (1.4%)	WT (56.1%) 622I (43.9%)

WT: wild type; Cells color code: green (major proportion of *Pfkelch13* wild type), light red (proportion of *Pfkelch13* 622I<5%) and dark red (proportion of *Pfkelch13* 622I<5%).

Table S9. Accession identifiers (IDs) of the *P. falciparum* sequences from African locations, Bangladesh, Southeast Asia, or South America, sourced from the MalariaGEN Plasmodium falciparum Community Project; https://www.malariagen.net/apps/pf/4.0

Location	Sample Accession ID	Location	Sample Accession ID	Location	Sample Accession ID
Bangladesh	ERR022851	Gambia	ERR1172498	Mali	ERR223046
Bangladesh	ERR216531	Gambia	ERR1081218	Mali	ERR636271
Benin	ERR924970	Gambia	ERR1099203	Mali	ERR216456
Benin	ERR924976	Ghana	ERR636031	Mali	ERR1063590
Benin	ERR924985	Ghana	ERR636040	Mauritania	ERR1081258
Benin	ERR924989	Ghana	ERR343119	Mauritania	ERR1099210
Benin	ERR924990	Ghana	ERR343120	Mauritania	ERR1106563
Burkina_Faso	ERR018921	Ghana	ERR590420	Mauritania	ERR1081275
Burkina_Faso	ERR211456	Guinea	ERR403205	Mauritania	ERR1081276
Burkina_Faso	ERR211515	Guinea	ERR590519	Myanmar	ERR246541
Burkina_Faso	ERR211519	Guinea	ERR059406	Myanmar	ERR126499
Burkina_Faso	ERR216463	Guinea	ERR063558	Myanmar	ERR1274888
Cambodia	ERR175515	Guinea	ERR063604	Myanmar	ERR1274860
Cambodia	ERR123853	Ivory_Coast	ERR636455	Myanmar	ERR1215358
Cambodia	ERR123830	Ivory_Coast	ERR636016	Nigeria	ERR1172593
Cambodia	ERR114345	Ivory_Coast	ERR636456	Nigeria	ERR1172615
Cambodia	ERR022854	Ivory_Coast	ERR636015	Nigeria	ERR1172616
Cameroon	ERR562839	Ivory_Coast	ERR636449	Nigeria	ERR246574
Cameroon	ERR562880	Kenya	ERR126559	Nigeria	ERR246576
Cameroon	ERR568394	Kenya	ERR205951	Papua_New_Guinea	ERR527444
Cameroon	ERR580477	Kenya	ERR205952	Papua_New_Guinea	ERR175537
Cameroon	ERR580480	Kenya	ERR205953	Papua_New_Guinea	ERR175543
Colombia	ERR042227	Kenya	ERR223039	Papua_New_Guinea	ERR376138
Colombia	ERR042679	Kenya	ERR223047	Papua_New_Guinea	ERR376139
Colombia	ERR042231	Kenya	ERR701714	Peru	ERR114340
Colombia	ERR039903	Kenya	ERR701715	Peru	ERR123900
Colombia	ERR042230	Kenya	ERR701736	Peru	ERR123902
Congo_DR	ERR377578	Kenya	ERR701738	Peru	ERR590544

Congo_DR	ERR377580	Kenya	ERR701750	Peru	ERR590545
Congo_DR	ERR377582	Kenya	ERR701758	Senegal	ERR1081168
Congo_DR	ERR404145	Kenya	ERR701775	Senegal	ERR1081170
Congo_DR	ERR404159	Kenya	ERR701716	Senegal	ERR1081177
Ethiopia	ERR1106575	Kenya	ERR701726	Senegal	ERR1081181
Ethiopia	ERR1106576	Kenya	ERR701727	Senegal	ERR1081187
Ethiopia	ERR1106577	Kenya	ERR701731	Tanzania	ERR676475
Ethiopia	ERR1106579	Kenya	ERR701739	Tanzania	ERR171646
Ethiopia	ERR1106582	Kenya	ERR701763	Tanzania	ERR449897
Ethiopia	ERR1106586	Kenya	ERR701764	Tanzania	ERR676481
Ethiopia	ERR1106587	Laos	ERR223059	Tanzania	ERR676488
Ethiopia	ERR1106590	Laos	ERR126405	Thailand	ERR164705
Ethiopia	ERR1106606	Madagascar	ERR590536	Thailand	ERR337564
Ethiopia	ERR1035493	Madagascar	ERR590541	Thailand	ERR164704
Ethiopia	ERR1035536	Madagascar	ERR590538	Uganda	ERR063571
Ethiopia	ERR1045266	Madagascar	ERR490354	Uganda	ERR063572
Ethiopia	ERR1045267	Madagascar	ERR490355	Uganda	ERR063573
Ethiopia	ERR1045271	Madagascar	ERR490357	Uganda	ERR063574
Ethiopia	ERR1045280	Madagascar	ERR516397	Uganda	ERR063576
Ethiopia	ERR1045283	Malawi	ERR069575	Uganda	ERR063577
Ethiopia	ERR1045286	Malawi	ERR216655	Uganda	ERR063579
Ethiopia	ERR1045287	Malawi	ERR226429	Uganda	ERR063580
Ethiopia	ERR1045288	Malawi	ERR234536	Uganda	ERR063581
Ethiopia	ERR1045295	Malawi	ERR248963	Uganda	ERR216467
Gambia	ERR1081227	Malawi	ERR263677	Vietnam	ERR337569
Gambia	ERR1081231	Mali	ERR666918	Vietnam	ERR126377

Table S10. Pairwise genetic differentiation (ϕ ST) among *P. falciparum* isolates depending on their origin.

Genetic differentiation was estimated with an Analysis of Molecular Variance (AMOVA) based on Euclidean genetic distances.

	Eritrea_WT	Eritrea_NA	Eritrea_622I	Congo_DR	Ethiopia	Kenya	Malawi	Tanzania	Uganda
Eritrea_WT	0	0.008	0.120	0.085	0.038	0.115	0.083	0.076	0.111
Eritrea_NA	0.008	0	0.075	0.115	0.038	0.152	0.113	0.103	0.144
Eritrea_622I	0.120	0.075	0	0.290	0.133	0.331	0.295	0.288	0.322
Congo_DR	0.085	0.115	0.290	0	0.145	0.001	0.005	0.017	0.004
Ethiopia	0.038	0.038	0.133	0.145	0	0.194	0.141	0.136	0.180
Kenya	0.115	0.152	0.331	0.001	0.194	0	0.020	0.001	0.015
Malawi	0.083	0.113	0.295	0.005	0.141	0.020	0	0.002	0.014
Tanzania	0.076	0.103	0.288	0.017	0.136	0.001	0.002	0	0.019
Uganda	0.111	0.144	0.322	0.004	0.180	0.015	0.014	0.019	0

Values in bold correspond to ϕ_{ST} values that were significantly non-null (p < 0.05). *P*-values were calculated based on 999 permutations. Different types of Eritrean isolates are indicated: WT, *Pfkelch13* wild type; 622I, *Pfkelch13* 622I or NA, when information was not available.

Table S11. Genetic backgrounds associated with antimalarial drug resistance and polymorphisms of *hrp2* and *hrp3* genes of Eritrean *Pfkelch13* wild-type and 622I variants isolates collected prior treatment, Eritrea, 2016-2019.

Genomic change	Gene	Gene ID	Polymorphism	% of day0 isolate per <i>I</i> (PF3D7_13		
change				Wild-type	622I	
CNV	Pfmdr-1	PF3D7_0523000	≥2	0% (0/139)	0% (0/29)	
CIVV	plasmepsin2	PF3D7_1408000	≥2	32.4% (45/139)	31.0% (9/29)	
			CVMNKTHFIMCGI	32.5% (101/311)	7.5% (5/67)	
	Pfcrt	PF3D7_0709000	CVIETTHFIMCGI	66.9% (208/311)	92.5% (62/67)	
			CVIETTHFIMCGT	0.6% (2/311)	0% (0/67)	
	Pfmdr-1		NYSND	10.0% (31/311)	4.5% (3/67)	
		PF3D7_0523000	NFSND	85.9% (267/311)	95.5% (64/67)	
			YFSND	4.2% (13/311)	0% (0/67)	
			ACNCSI	24.8% (77/311)	1.5% (1/67)	
	П.С	E2D7 0417200	ACNCNI	1.3% (4/311)	0% (0/67)	
SNP	dhfr	F3D7_0417200	AC <mark>ICN</mark> I	49.5% (154/311)	74.6% (50/67)	
			AC <mark>IRN</mark> I	24.4% (76/311)	23.9% (16/67)	
			SGKAA	58.5% (182/311)	52.2% (35/67)	
			AGKAA	0.3% (1/311)	0% (0/67)	
			SAKAA	10.0% (31/311)	4.5% (3/67)	
	dhps	PF3D7_0810800	SGEAA	30.2% (94/311)	40.3% (27/67)	
	-		SGKA <mark>S</mark>	0% (0/311)	1.5% (1/67)	
			AAKAA	0.6% (2/311)	0% (0/67)	
			SAEAA	0.3% (1/311)	1.5% (1/67)	
	No deletion		Wild-type	50.0% (140/280)	13.8% (9/65)	
Deletion	hrp2	PF3D7_0831800	hrp2 deletion	5.7% (16/280)	0% (0/65)	
	hrp3	PF3D7_1372200	hrp3 deletion	22.5% (63/280)	69.2% (45/65)	
	hrp2 & hrp3		hrp2 & hrp3 deletions	21.8% (61/280)	16.9% (11/65)	

Position of amino acid corresponds to codons 72, 73, 74, 76, 93, 97, 145, 218, 343, 350, 353 and 356 for *pfcrt*, to codons 86, 184, 1034, 1042 and 1246 for *Pfmdr-1*, to codons 16, 50, 51, 59, 108, 164 for *dhfr* and to codons 431, 436, 437, 540, 581, 613 for *dhps*. * Significance level (Chi-squared test).

5. References

- 1. World Health Organization. Eritrea. 2021. https://www.who.int/malaria/publications/country-profiles/profile_eri_en.pdf (accessed October 16, 2022).
- 2. World Health Organization. Methods for surveillance of antimalarial drug efficacy. 2009. https://www.who.int/docs/default-source/documents/publications/gmp/methods-for-surveillance-of-antimalarial-drug-efficacy.pdf?sfvrsn=29076702_2 (accessed October 16, 2022).
- 3. World Health Organization. Report on antimalarial drug efficacy, resistance and response: 10 years of surveillance (2010–2019). 2020. https://www.who.int/publications/i/item/9789240012813 (accessed October 16, 2022).
- 4. Stepniewska K, White NJ. Some considerations in the design and interpretation of antimalarial drug trials in uncomplicated falciparum malaria. Malar J. 2006;5:127.
- 5. World Health Organization. Informal consultation on methodology to distinguish reinfection from recrudescence in high malaria transmission areas: report of a virtual meeting, 17–18 May 2021. https://apps.who.int/iris/handle/10665/348385 (accessed October 16, 2022).
- 6. World Health Organization. False-negative RDT results and implications of new reports of *P. falciparum* histidine-rich protein 2/3 gene deletions. 2017. https://www.who.int/publications/i/item/WHO-HTM-GMP-2017.18 (accessed October 16, 2022).
- 7. Oyola SO, Ariani CV, Hamilton WL, et al. Whole genome sequencing of *Plasmodium falciparum* from dried blood spots using selective whole genome amplification. Malar J 2016;15:597.
- 8. Uwimana A, Legrand E, Stokes BH, et al. Emergence and clonal expansion of *in vitro* artemisinin-resistant *Plasmodium falciparum kelch13* R561H mutant parasites in Rwanda. Nat Med 2020;26:1602-8.
- 9. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010;59:307-21.
- 10. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015;32:268-74.
- 11. Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 2013;43:11 0 1- 0 33.
- 12. Ng CL, Fidock DA. *Plasmodium falciparum in vitro* drug resistance selections and gene editing. Methods Mol Biol 2019;2013:123-40.
- 13. Witkowski B, Amaratunga C, Khim N, et al. Novel phenotypic assays for the detection of artemisinin-resistant *Plasmodium falciparum* malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis 2013;13:1043-9.