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Supplementary Figure 1. Validation of H9 hESCs differentiation into definitive endoderm,
ChAR-seq reads statistics, chromatin enrichment details, and replicability of the
ChAR-seq maps, related to Fig. 1. a, Validation of H9 hESCs differentiation into definitive
endoderm by widefield immunofluorescence. H9 cells are stained against Sox2, Sox17, FoxA2
and Nanog, pre- and post-differentiation. Bar plots show quantification of Sox2 and Sox17
staining. b, Validation of H9 hESCs differentiation by qPCR of key pluripotency state marker
genes (OCT4, SOX2, NANOG) and definitive endoderm marker genes (FOXA1, FOXA2,
SOX17, CXCR4) in ES and DE cells. qPCR results shown as relative expression levels
calculated using the 2ΔΔCT method with the PBGD housekeeping gene for normalization. Data
points represent 3 technical replicates. c, Number of raw reads obtained for each cell type and
replicate (left), number of reads left after quality filter for which both the RNA and DNA mapped
to the genome (including multimappers, no Q score filtering, middle panel), and final number of
chimeric reads with high confidence alignment and annotation (Bowtie2 alignment Q score >=40
on the DNA side, STAR alignment score 255 on the RNA side, single gene annotation, either
from Gencode v29 or from the de-novo transcriptome as described Fig. 2). These high quality
chimeric reads were used for all the analysis in this paper, except where indicated otherwise. d,
Percentage of ncRNA reads originating from specific subtypes of ncRNAs. The ncRNA subtypes
are obtained from Gencode v29 and further simplified as indicated in Supplementary Data 7. e,
Left group: Breakdown of the chromatin-association score versus expression scatter plot shown
in Fig. 1d (ncRNA, right) by subtypes of ncRNAs in ES cells. Right group: same plots as in Fig.
1d but for introns of individual RNAs rather than exons. Data are displayed as in Fig. 1d. f,
Replicability of the ChAR-seq maps. ChAR-seq maps for individual replicates in ES and DE
cells are shown at two different resolutions as indicated. All the maps are shown as introns and
exons of individual genes summed together. Color indicates contact per genomic kb per million
reads (CPKM). g, Cross-correlation of the 100kb resolution maps across cell lines and
replicates, and separately for RNAs originating from exons, introns, and UTL. The
cross-correlation for a pair of maps is computed as the Pearson correlation of the pixel
intensities in the maps (i.e., the contact rates between an RNA and a 100kb genomic interval).
Maps with all chromosomes and all RNAs expressed above 0.1 FPM in the caRNA
transcriptome are used to compute the correlations. h, Distance-dependent interaction curve,
showing the likelihood for an mRNA exon to contact a genomic site as a function of the RNA
travel distance, defined as the distance between the RNA transcription locus (mapping
coordinate of the RNA-derived side of the corresponding ChAR-seq read) and the target DNA
locus (mapping coordinate of the DNA-derived side of the ChAR-seq read)
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Supplementary Figure 2. Diagram of the ChAR-seq preprocessing computational
pipeline, showing the processing steps and associated tools. The pipeline takes the fastq
files from the sequenced ChAR-seq libraries as input, and outputs “pairs” files which essentially
contain the RNA and DNA coordinates of each contact, along with an annotation of the genes
from which the RNA originates.
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Supplementary Figure 3. ChAR-seq libraries QC: reads statistics at various stages of the
preprocessing pipeline. a, Loss of reads not meeting quality filters during the preprocessing
pipeline. Left panel shows the percentage of reads left after each stage of the processing
pipeline, relative to the initial number of raw reads. Right panel shows the fraction of reads lost
at each stage of the pipeline, relative to the number of reads left after the prior stage. b, Details
on the bridge finding and length filtering, showing the breakdown of the reasons why reads were
filtered out at this stage. For the bridge finding step, “None” indicates no bridge sequence was
found in the raw read, and “Multiple” indicates several occurrences of the bridge sequence were
found in the raw read. Only reads with a single occurrence (“Single”) of the bridge sequence
were kept. For the length filtering step, short RNA (resp. short DNA) indicates that the RNA
(resp. DNA) side of the read was shorter than 15bp. c, Details on the alignment step, showing
the percentage of reads that were discarded during the alignment of either the RNA or DNA
side, due to too many mapped locations or no mapping location (as reported by STAR and
Bowtie2, respectively). Percentages shown are relative to the number of reads left after the
rRNA decontamination step. Reads that passed the alignment filtering step on both the RNA
and DNA side were selected for the pairing stage. Reads that passed only the RNA or only the
DNA alignment filter or none of them were discarded at the pairing stage. The RNA annotation
bar plot shows the percentage of reads relative to the number of reads passing the RNA
alignment stage as described above, which overlapped exclusively to exons, or to introns
(including exons-introns junctions) defined in Gencode V29. Intergenic indicates reads that were
not contained within a gene body or were antisense to a gene.
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Supplementary Figure 4. smFISH validation of the localization patterns of select RNAs,
related to Fig. 1. a, Representative localization patterns of GAPDH, XACT, MALAT1, and
RMRP in individual cells, as measured by smiFISH(Tsanov et al. 2016). b, Chromatin
localization profiles determined by ChAR-seq in ES cells of the RNAs shown in a.

https://paperpile.com/c/2Ii55J/0f2O
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Supplementary Figure 5. Detailed composition of the unannotated transcribed loci
(UTLs), related to Fig. 2. a, Percent of UTLs reads originating from each subtype of repeat
(left, relative to reads annotated as repeat-derived), and each subtype of Cis-regulatory
elements (right, relative to reads annotated as CRE-derived). Cis-regulatory elements are
classified using the 7-group classification from the Encode Registry of Regulatory
Elements(ENCODE Project Consortium et al. 2020) (pELS=proximal Enhancer Like Sequence,
dELS=distal Enhancer Like Sequence, PLS = Promoter Like Sequence, see STAR Methods). b,
Diversity of the UTLs. Bar plots show the absolute number of RNAs expressed at FPM above
0.1 for each Gencode type of exons and introns, and for each type of UTL. The FPM value
refers to the maximum of the ES and DE FPM values. “In transcriptome” values refer to the total
number of RNA of each type in either GencodeV29 or in the catalog of UTLs generated in this
study (Supplementary Data3) c, Distribution of the expression level of the UTLs compared to
exons of annotated mRNAs, lncRNAs and ncRNAs. d, Subcellular localization, determined by
single molecule RNA-FISH, in ES and DE cells of two cell-state specific UTLs: UTL 86978 (left
panels) and UTL 61578 (right panels). DNA staining is shown in the first column, RNA-FISH
signal in the second column, and a merge in the third column. ES cells are in the top row and
DE cells in the bottom row. Scale bar = 10μm.

https://paperpile.com/c/2Ii55J/RNkX
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Supplementary Figure 6. RNA-DNA contacts of UTLs are more dynamic during
differentiation than those of annotated RNAs, related to Fig. 3. a, Number of RNA-DNA
interactions tested for differential representation in ES versus DE cells at 1 Mb DNA resolution
(left) and 100 kb DNA resolution (right), by class of RNA. b, Quantification by RNA class of the
percentage of interactions upregulated in DE or ES cells amongst all interactions tested in that
class (interactions with >10 counts in at least one replicate in ES or DE), at 1 Mb DNA
resolution. Same analysis as in Fig. 3b, but at 1 Mb resolution on the DNA side rather than 100
kb resolution. c, Cross-correlation of the RNA-DNA contacts maps of UTLs at 100kb resolution.
Correlations are computed as in Supplementary Fig. 1f. d, Percentage of differential interaction
not explained by differential RNA expression, at 100 kb resolution, relative to the total number of
interactions tested within the RNA class.
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Supplementary Figure 7. Calibration of trans-delocalization scores using a Generalized
Linear Model a, Uncalibrated trans-delocalization score for individual mRNAs exons (top) or
introns (bottom) as a function of their expression and chromosome of origin (chr1, chr10, and
chr11 shown as subpanels), and GLM fit (red line). GLM is defined in equation S3 b, Distribution
of the raw trans-delocalization scores of mRNAs for the two ChARseq replicates in ES cells as
defined in equation S1, and of the calibrated trans-delocalization scores as defined in S5. The
raw trans-delocalization scores show sample biases which are regressed out after calibration.
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Supplementary Figure 8. Additional data on delocalization scores and broadly localized
RNAs, related to Fig. 4. a, Distribution of trans- (left panel) and cis- (right panel) delocalization
scores for introns of mRNAs, lncRNAs, and ncRNAs. Bars below each distribution represent
median and interquartile range. b, Distribution of the difference in trans-delocalization score
between the exons and introns of the same RNA and as function of the type of RNA (mRNA or
lncRNA) and cell type. Percentages indicate the percentage of RNAs for which the exonic
trans-delocalization score is larger than the intronic trans-delocalization score. c, Absolute
number of RNAs in each category classified as delocalized (either cis- or trans-localized at FDR
0.05). d, Heat maps showing the cis and trans delocalization scores and chromatin abundance
in ES and DE cells for the 20 most abundant lncRNAs (excluding those identified as cis- or
trans-delocalized). e, Metagene plots showing the levels of several RNA categories (mRNAs,
snRNAs) and individual RNAs (7SK, MALAT1, VTRNA1-1, RMRP) near genomic loci with PolII
ChIP-seq peaks. PolII peaks were obtained from GSE105028(Lyu et al. 2018). For each panel,
the top plot shows the pileup of the specific RNA or RNA group (blue line), and the pileup for the
background RNAs, defined as the total signal of all mRNAs localized on trans-chromosomes,
which captures DpnII site density bias, accessibility bias, and other forms of non-specific
localization bias (Methods and Supplementary Note 4). Each signal is displayed as a contact
density (CPKM = contacts per 1k genomic bp per 1 million reads), normalized by the median
metagene background contact density in 10kb bins in a 1Mb region around the feature, (so that
the background decays to 1.0 far from the feature center). The bottom plot shows the RNA fold
enrichment over background. f, Scatterplots showing the trans- (left) and cis-delocalization
scores (right) for individual lncRNAs in DE versus ES cells. Black lines show linear regression
output.

https://paperpile.com/c/2Ii55J/Sdjq
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Supplementary Figure 9. Expression-distance model predicts >99% of RNA-chromatin
contacts, related to Fig. 5. a, Cross-correlation of the 100 kb resolution RNA-DNA contact
maps obtained from the true ChAR-seq data and predicted by the generative model.
Cross-correlation matrices are shown separately for the RNAs from introns, exons, and for
UTLs. The cross-correlation for a pair of maps is computed as in Supplementary Fig. 7b. b,
Number of interactions tested for enrichment over model (left), number of interactions identified
as over-represented in the observed data compared to the model (significant interactions,
middle), and proportion of significant interactions in relation to the total number of tested
interactions in each RNA category (right). For this analysis, interactions are defined at 100 kb
resolution on the DNA side. Cis (resp. trans) indicate interactions where the RNA and DNA are
on the same (resp. on a different) chromosome. c, Same quantification as in b, but broken up by
RNA type. d, Scatter plot showing for each lncRNA-gene contact its observed log2 fold change
during ES to DE cells differentiation (LFC) by ChAR-seq, and its predicted LFC by the
generative model. Contacts are defined as in Fig. 7a-b. Color indicates the LFC of the lncRNA
level on chromatin (shrunken estimate computed using DESeq2 applied to the RNA-side of the
ChARseq data, Supplementary Data 1). e, Distribution of the RNA-DNA travel distance for
interactions significantly above the model. Related to Fig. 5f but broken up by type of RNA.



Supplementary Note 1 : Computational pipeline for ChAR-seq reads
preprocessing
Demultiplexed fastq files were preprocessed using a custom snakemake(Mölder et al. 2021)
pipeline (https://github.com/straightlab/charseq-pipelines). The main goal of the pipeline is to
produce pairs files containing information about each RNA-DNA contact. Pairs files are tab
separated files with the first 4 columns describing the RNA and DNA coordinates of each
RNA(cDNA)-DNA chimeric read and other relevant annotations for each contact stored in
subsequent columns. These files are in pairix compatible format, so they can be indexed to enable
efficient 2D queries using pairix. The pipeline produces intermediates files such as split fastq files
corresponding to the RNA and DNA side of each read, bam files for the RNA and DNA alignments,
etc. The pipeline steps are described below. A summary of the pipeline workflow is depicted in
Supplementary Fig. 1. Read statistics at various steps of the pipeline for the 4 ChAR-seq samples
are shown in Supplementary Fig. 2.

Deduplication, adapters trimming and debridging
PCR duplicates were removed using clumpify.sh from BBMap v38.84 (parameters dedupe=t subs=0
reorder=f). Reads were quality thresholded and sequencing adapters were trimmed using
Trimmomatic v0.38(Bolger et al. 2014) (parameters: PE ILLUMINACLIP:<trimfasta>:2:30:12
SLIDINGWINDOW:10:10 MINLEN:61, with <trimfasta> pointing to the definition file for the
adapters). To detect chimeric cDNA-DNA reads where the ChAR-seq bridge may span across read
mates 1 and 2 in the paired end data, read pairs were merged using Pear v0.9.6(Zhang et al. 2014)
(parameters: -p 0.01 -v 20 -n 50). Three fastq files were generated: one containing reads whose
mates were successfully merged, and a pair of files containing paired end reads that could not be
merged. Merged (M) and unmerged (U) reads were separately processed as single end and paired
end reads, respectively. M reads were scanned to detect the ChAR-seq bridge sequence, and
reads containing a single occurrence of that sequence were “debridged,” i.e., they were split into a
rna.fastq and dna.fastq file corresponding to the sequences of the RNA (cDNA) and DNA side of
the chimeric molecules, respectively. Bridge sequence detection and debridging were performed
using Chartools v0.1, a custom package to process ChAR-seq data released as part of this study
(https://github.com/straightlab/chartools). Specifically, we used the Julia(Bezanson et al. 2017)
script debridge.jl with the -s option (single end). Reads that did not contain the bridge sequence or
contained multiple occurrences of the bridge were dumped into separate fastq files and discarded
from further analysis. U reads were debridged similarly except using the paired-end mode of the
debridge.jl script (without -s option). In that case, only reads where the bridge sequence was found
a single time across both mates (i.e., in either read 1 or read 2 but not both) were kept for
subsequent analysis. For these read pairs, the mate that did not contain the bridge was discarded,
and the mate containing the bridge was split into a rna.fastq and dna.fastq file. In these split fastq
files from the M and U branches, reads were either left unchanged or reverse complemented
depending on the orientation of the charseq-bridge, in such a way that i) all RNA reads in rna.fastq
are represented in their sense orientation (the right most nucleotide in the sequence corresponds to
where the 3’ end of the RNA where it was ligated to the bridge) and ii) all DNA reads in dna.fastq
are in sense orientation with respect to the bridge (the left most nucleotide in the sequence
corresponds to the 5’ end of the DNA where it ligated to the bridge). This operation is part of the
debridge.jl script and transparent to the user. Finally, rna.fastq files and dna.fastq files from the U
and M processing branches were merged, to obtain final single-ended rna.fastq and dna.fastq files,
with the read IDs matching line by line across these two files.

Length filtering and removal of ribosomal RNA reads
ChAR-seq reads whose RNA- or DNA-derived sequence were shorter than 15bp were filtered out

https://paperpile.com/c/F6ntFw/gXaV
https://github.com/straightlab/charseq-pipelines
https://paperpile.com/c/F6ntFw/CRaU
https://paperpile.com/c/F6ntFw/IsUY
https://github.com/straightlab/chartools-dev
https://paperpile.com/c/F6ntFw/PKfr


using the custom chartools script filter_short_reads_pairs.sh, to produce length filtered rna.fasq and
dna.fastq files with the read IDs matching line by line across these two files). Reads whose
RNA-derived sequence mapped to a ribosomal RNA were removed by aligning the rna.fastq file to a
fasta file of ribosomal sequences downloaded from NCBI using Bowtie2(Langmead and Salzberg
2012) (parameters: -q --very-sensitive --norc). Reads with one or more valid alignments were
filtered out of rna.fastq using picard. The corresponding DNA-derived sequence of these reads were
filtered out of dna.fastq using the chartools script decon_reads_pairs.sh.

Alignment and annotation with known genes
DNA reads were aligned against hg38 using Bowtie2 v2.3.4.1 (parameters: --ultra-sensitive),
producing a dna.bam file. RNA reads were aligned against hg38 using STAR(Dobin et al. 2013) and
a gtf annotations file obtained from Gencode V29 (parameters: --outFilterMultimapNmax 10
--outSAMmultNmax 10 --outSAMattributes All --outReadsUnmapped None --outSAMunmapped
Within --outMultimapperOrder Random --quantTranscriptomeBan Singleend). To assign RNA reads
to specific genes, we used tagtools (https://github.com/straightlab/tagtools, a package released as
part of this study which annotates STAR aligned reads with the set of genomic features they overlap
with, amongst a user defined set of reference features. We applied tagtools using the transcript
definition gtf file from GencodeV29, producing a bam file rna.exons.bam with all the reads (referred
to as “exonic” reads in this study) that fully overlapped with known transcripts, and containing a
supplementary field AN:<transcriptID> field indicating the most likely transcript of origin. Reads that
did not fully overlap with known transcripts were selected from the original rna.fastq file based on
their read ID using Picard, and realigned with STAR using the same transcript definition gtf file but
with an index produced with --sjdbGTFtagExonParentTranscript ID --sjdbGTFfeatureExon gene
parameters. This allowed us to obtain reads that aligned to intronic regions of gene bodies. These
reads were annotated using tagtools to produce a bam file (rna.introns.bam) containing a
supplementary AN:<geneID> field indicating the most likely gene of origin. Finally, reads that did not
fully overlap with known gene bodies but were not classified as having “too many” mapped loci or
as unmapped were separated into a third bam file (rna.intergenic.bam), which was used later with
StringTie2(Kovaka et al. 2019) to detect novel transcriptional units and generate the unannotated
transcribed loci (UTL) catalog.

Pairs file generation
The aligned DNA reads in dna.bam and the aligned and annotated RNA reads were combined
read-by-read into a pair file using the pairup function in chartools. Separate pair files were
generated for reads whose RNA was annotated in the STAR/tagtools step as exonic, intronic, and
intergenic reads. Each pair file contains the mapping coordinates of the DNA and of the RNA, the
most likely transcript and gene of origin identified with tagtools, and other information about the
alignments, such as the alignment quality score or the number of gene annotations compatible with
the RNA mapping locus. These pairs files are in a pairix compatible format and were indexed using
pairix(Lee et al. 2022).

Final Filtering
Pairs files were filtered to remove multimapping reads and reads with low mapping scores on either the RNA
(STAR Q<255) or DNA (Bowtie2 Q<40) side. Using tagtools-derived annotation of the RNA reads, we also
removed reads for which the RNA could not be either attributed to an unambiguous gene defined in Gencode
or to a single intergenic or antisense locus. Finally, we discarded reads whose RNA overlapped with a region
on the ENCODE blacklist(Amemiya et al. 2019). The filtered pairs files were used for all the analysis in this
work.

https://paperpile.com/c/F6ntFw/tuC2
https://paperpile.com/c/F6ntFw/tuC2
https://paperpile.com/c/F6ntFw/ZLBn
https://github.com/straightlab/tagtools
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https://paperpile.com/c/F6ntFw/1Stg


Supplementary Note 2: Delocalization scores

Modeling the contact rate on trans chromosomes
We denote by RNA i the ith RNA in an arbitrarily indexed transcriptome. Let Ncis,i be the number of
cis-chromosomal contacts for RNA i (contacts with a locus on the RNA chromosome of origin), and
Ntrans,i be the number trans-chromosomal contacts (contacts with a locus on a chromosome other
than the RNA chromosome of origin). We define the raw fraction of contacts in trans θraw,i =
Ntrans,i/(Ntrans,i + Ncis,i), and the raw trans-delocalization score ∆trans, raw, i as

(S1)∆
𝑡𝑟𝑎𝑛𝑠, 𝑟𝑎𝑤, 𝑖

= 𝑙𝑜𝑔
θ

𝑟𝑎𝑤,𝑖

1−θ
𝑟𝑎𝑤,𝑖( ) *

𝐿
𝑐𝑖𝑠

𝐿
𝑡𝑟𝑎𝑛𝑠

( )
where Lcis and Ltrans are the total length of the cis chromosome and of all the trans chromosomes
combined, respectively. The raw trans-delocalization is effectively, in log scale, the ratio of the
contact density (i.e. number of contacts per unit genomic length in the target chromosomes) in trans
over cis. We noted that, when looking at the distribution of the raw delocalization scores across
mRNAs, these distributions were shifted in location across replicates, indicating the presence of
sample specific biases (Supplementary Fig. 7b). Furthermore, the raw trans-delocalization scores
were also correlated with expression, and surprisingly, we noted that RNAs from exons and introns
behaved differently: the raw delocalization score of an exonic RNA was positively correlated with its
abundance, while the delocalization score of an intronic RNA was negatively correlated with its
abundance (Supplementary Fig. 7a). To regress out these biases and obtain calibrated
delocalization scores that are comparable across samples and RNAs, we modeled the number of
contacts in trans using a Generalized Linear Model (GLM) with a beta-binomial response. In
absence of biological noise, since each contact can be either in trans or in cis, it is reasonable to
assume that, conditional on the total number of reads Ni = Ntrans,i + Ncis,i, the number of trans
contacts follows a binomial distribution with unknown success probability θi. Distributions with
constrained mean-variance relationship such as the binomial or Poisson distribution typically do not
work well with sequencing data due to the presence of unmodelled biological or technical variation.
Thus, we modeled θi as a Beta distribution, such that, conditional on Ni

𝑁
𝑡𝑟𝑎𝑛𝑠,𝑖

|θ
𝑖
, 𝑁

𝑖
~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑁

𝑖
, θ

𝑖( )

(S2)θ
𝑖
~𝐵𝑒𝑡𝑎 π

𝑖
1−γ

γ , (1 − π
𝑖
) 1−γ

γ( )
The resulting compound distribution for Ntrans,i is a Beta Binomial. The parametrization of the Beta
distribution was chosen such that the πi is the mean trans-contact rate and γ is the overdispersion
parameter such that E(Ntrans,i | Ni) = πiNi and var(Ntrans,i | Ni) = πi(1 − πi)Ni (1 +(Ni − 1)γ). This
approach is motivated by the similarity of the problem with that of estimating methylation rate at
CpGs site from bisulfate sequencing data, where the available data are the number of methylated
and unmethylated reads, and for which a Beta binomial model has been proposed(Dolzhenko and
Smith 2014; Park et al. 2014) 13,14.

We assumed that the overdispersion parameter is constant across RNAs, and that the mean trans
contact rate πi is only function of the chromosome of origin and of the total level of RNA i on
chromatin. Specifically, we used the a logit link function and a regression model of the form:

(S3)𝑙𝑜𝑔𝑖𝑡 π
𝑖( ) = η

𝑐ℎ𝑟,𝑖
+ η

𝑒𝑥𝑝𝑟
𝑙𝑛 𝑁

𝑖( )

https://paperpile.com/c/F6ntFw/Mkdi+sqoj
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where .𝑙𝑜𝑔𝑖𝑡(𝑥) = 1/(1 − 𝑥)

Since mRNAs are not expected to have any defined chromatin targets, we reasoned that the
number of trans contacts for mRNAs should most closely follow the model. Thus we used mRNAs
to fit the regression coefficients ηchr,i and ηexpr, and the overdispersion parameter γ. Fit was
performed using the gamlss package in R with the Beta Binomial family(Stasinopoulos and Rigby
2007).

To estimate the trans-contact probability πi for individual RNA i, we used an empirical Bayes
method. Specifically, we used the observed counts Ncis,i and Ntrans,i to compute the posterior
estimates for the beta distribution parameters πpost,i and γpost . Using the prior estimates given by the
fitted model πmodel,i = invlogit (ηchr,i + ηexpr ln(Ncis,i + Ntrans,i)) and γ = γmodel, the posterior estimates for
the beta distribution parameters are obtained using the following update formula:

α
𝑝𝑜𝑠𝑡,𝑖

= α
𝑚𝑜𝑑𝑒𝑙,𝑖

+ 𝑁
𝑡𝑟𝑎𝑛𝑠,𝑖

(S4)β
𝑝𝑜𝑠𝑡,𝑖

= β
𝑚𝑜𝑑𝑒𝑙,𝑖

+ 𝑁
𝑐𝑖𝑠,𝑖

where invlogit is the inverse logit function and the parameters α and β are the canonical parameters
of the beta distribution related to the desired contact probability and overdispersion parameter by

and . Using the empirical Bayes estimator for the contact probability, we obtainπ = α
α+β γ = 1

α+β+1

a shrinkage estimator for the delocalization score, simply as Finally,𝑙𝑜𝑔𝑖𝑡 π
𝑝𝑜𝑠𝑡,𝑖( ) + 𝑙𝑜𝑔 𝐿

𝑐𝑖𝑠
/𝐿

𝑡𝑟𝑎𝑛𝑠( ).

we define the calibrated trans-delocalization score as the difference between the shrinkage
estimator and the fitted model :

(S5)∆
𝑡𝑟𝑎𝑛𝑠,𝑖

= 𝑙𝑜𝑔𝑖𝑡 π
𝑝𝑜𝑠𝑡,𝑖( ) − 𝑙𝑜𝑔𝑖𝑡 π

𝑚𝑜𝑑𝑒𝑙,𝑖( )
The calibrated trans-delocalization score ∆trans, i is effectively a log fold difference in the trans- vs
cis-contact density ratio for RNA i compared to trans- vs cis-contact density ratio for an "average"
mRNA of the same expression level.

Modeling the contact rate far for the transcription locus and Cis-delocalization
scores
For each RNA-DNA contact (each RNA-DNA read in the raw ChAR-seq data), we denote by δ the
distance between the mapping locus of the RNA and the mapping locus of the DNA. We hereafter
refer to δ as the RNA "travel" distance (see Data S3 [Technical Note] for further details regarding
this distance). We denote by Nfar,i the number of contacts from RNA i for which the absolute travel
distance is larger than w, and by Nclose,i the number of contacts for which the absolute travel
distance is smaller than w. Throughout this study we used w = 10 Mb as the threshold for
considering a contact as close (proximal cis interaction) versus far (distal cis interaction). We
defined the raw cis-delocalization score (at threshold w) for RNA i similarly to its trans-delocalization
score, but replacing Ntrans,i by Nfar,i and Ncis,i by Nclose,i. We also replaced the genomic space
normalization factors Ltrans and Lcis by Lcis − w and w respectively. We used a similar GLM with a beta
binomial response to model the number of counts Nfar,i conditional on the total number of counts in
cis Ncis,i = Nclose,i + Nfar,i, and trained this model on the population of mRNAs. Following the same
approaches as in our trans-score analysis, we finally obtained a calibrated cis-delocalization scores
∆cis,i.

https://paperpile.com/c/F6ntFw/pfoX
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Supplementary Note 3: Identification of RNAs with extreme delocalization
scores
trans-delocalization

To label RNAs with extreme trans-delocalization scores, we computed the probability that a random
sample drawn from the posterior distribution of πi is larger than a random sample drawn from the
prior distribution obtained by training the GLM on the mRNA population. This probablity was
computed using the analytical formula defined in(Miller 2015).This probability is the right-tail
probability of a compound model where a Beta distribution (with overdispersion γpost,i) is sampled
after sampling its mean according another Beta distribution with mean πprior,i and overdispersion
γprior. Thus this probability can be interpreted as the p-value, which we denote by pdelocalized,i, for the
trans-contact rate being positive and more extreme than that of an mRNA. We obtained one such
p-value per RNA and per condition and replicate. RNAs with fewer than 50 counts (across all its
DNA targets) were excluded from the analysis. To combine the p-values from different replicates,
we used Fisher’s method and obtained a final p-value per RNA in ES cell pdelocalized,i,ES and one final
p-value per RNA in DE cells pdelocalized,i,DE. Finally, we adjusted these p-values for multiple hypothesis
testing using the Benjamini Hochberg procedure(Stasinopoulos and Rigby 2007) (independent
adjustment for the set of ES and DE p-values, number of tests equal to the number of RNA tested in
the corresponding condition). We declared an RNA as trans-delocalized in ES or DE when the its
corresponding adjusted p-value was smaller than 0.05. Similarly, we used pultra-localized,i = 1 −pdelocalized,i
as the p-value for the trans-contact rate being negative and more extreme than that of an mRNA,
used the Fisher Method to combine replicates, and adjusted these p-values with the Benjamini
Hochberg procedure. We declared an RNA as ultra-localized (with respect to its trans contacts)
when its adjusted p-value was smaller than 0.05.

Trans-delocalization scores and associated p-values for each RNA are given in Table S8 before
combining replicates, and Table S4 after combining replicates.

cis-delocalization
Following a similar procedure with the cis-delocalization scores, we obtained for each RNA i, and an
adjusted p-value that allows us to identify RNAs with extreme cis-delocalization scores. As RNA
with an adjusted p-value smaller than 0.05 was labeled as cis-delocalized (when its delocalization
scores were positive), or ultra-localized (with respect to its cis contact patter, when its delocalization
scores were negative). These data are given in Table S9 before combining replicates, and Table S4
after combining replicates.
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Supplementary Note 4: Modeling the ChAR-seq contact maps

Definition of the generative model
We denote by M the RNA-DNA contact matrix, where Mi,j is the raw number of contacts for RNA i at
DNA locus j. More specifically, RNA i refers to the ith RNA in an arbitrarily indexed transcriptome as
above, and DNA locus j refers to the jth interval in an arbitrary set of genomic intervals (typically the
jth tile in a tiling partition of the genome). We also label the chromosome of locus j, chr(j), and its
mean genomic coordinate, dj. Our goal is to predict M using a simple generative model in such a
way that deviations from the prediction carry meaningful biological information. The ChAR-seq
sequencing experiment can be described as a random sampling process, where the probability to
draw a contact between RNA i and locus j is, in absence of any bias, proportional to i) the true level
of RNA i on chromatin and ii) the true probability that RNA i physically interacts with locus j, as
opposed to with any other particular locus. However, both of these assumptions do not hold true
due to the presence of technical and biological biases. A standard approach used to analyze Hi-C
data is to correct for these biases by applying a matrix balancing operation, such as the Vanilla
Coverage (VC), Knight-Ruiz (KR) or Iterative Correction (ICE) normalization(Imakaev et al. 2012;
Knight and Ruiz 2012). Here, we do not use these approach for two reasons. First, rather than
balancing the raw data, we seek to derive a generative model that reflects the probability to observe
the contact matrix M , including the effects due to the biases. Second, in contrast to Hi-C data, the
matrix M is not symmetric and different biases, hereafter referred to as RNA-side and DNA-side
biases, affect the rows and columns of M , such that the standard Hi-C balancing algorithms are not
directly applicable. RNA-side biases may originate from differences in RNA-bridge ligation efficiency
across RNA species, protection by RNA-binding proteins or RNA structure, and RNA mappability.
DNA-side biases may stem from accessibility and mappability differences across genomic loci and
from sites with non-specific affinity for RNAs.

In the scope of this paper, we are interested in examining the binding patterns of individual RNAs
across the genome, not in quantifying the relative abundance of RNA species at individual loci.
Thus, we do not need to model the full process giving rise to M . Rather, we assign ourselves a
simpler objective, which is to model the process giving rise to M conditional on observing the
RNA-side of the data. This greatly simplifies the problem as we can discard the RNA biases. More
rigorously, denoting Ni, the total number of observed ChAR-seq reads from RNA i, we condition our
model on fixing the mapping coordinates (3’ end coordinates) {ri,k}k=1...Niof the RNA-side of these
reads to those observed in the data. In this conditional setting, the probability to observe a read
mapping on the RNA-side to ri,k and on theDNA-side to locus j is proportional to i) the true
probability Πri,k,j that a physical fragment of RNA i with a 3’ end coordinate ri,k interacts with
genomic locus j and ii) a locus specific DNA-bias coefficient bj capturing all of the various DNA-side
biases described above. Note that because a gene may span over several hundreds of kbp, the loci
ri,k can be far from each other. Thus, it is not accurate to approximate ri,k by a single coordinate such
as the TSS or TES of the gene. To further refine the probability model, we need at this point to
separately examine the case of cis-chromosomal and trans-chromosomal contacts. For
cis-chromosomal contacts, we reasoned that in the absence of directed interactions,
RNA-chromatin contacts arise as a result of the diffusion of the RNA. Diffusion starts from the RNA
transcription locus. A contact may occur with locus j only if the RNA is within some capture radius of
the locus for the ligation reactions during the library preparation. Thus, the true contact probability
Πri,k,j should be, at minimum, function of i) an unknown probability Λi→chr(i) that the RNA remains on
its chromosome of origin (denoted by chr(i)), rather than diffuses to a different chromosome, and ii)
the genomic distance between the RNA and DNA loci. Thus we can write, for all loci j on
cis-chromosome:

https://paperpile.com/c/F6ntFw/oAb2+sAJy
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where ρchr(i)(δ) is an unknown distance-dependent RNA-DNA interaction frequency which we allow
to be distinct on distinct chromosomes, and ϵi indicates the orientation of the gene (+1 if the RNA is
on the + strand and −1 otherwise). δ denotes the distance between the mapping locus of the
RNA-side and DNA-side of a contact read, defined earlier as the RNA "travel" distance. The sign of
δ indicates whether the DNA target is located downstream (δ > 0), or upstream (δ < 0) of the RNA
locus, in reference to the transcription direction. Thus ϵi corrects for the orientation of the gene.

For trans-chromosomal contacts, we propose the simple model where the true contact probability
for a locus on a trans-chromosome C is uniform across this chromosome and is proportional only to
the probability that RNA i diffuses to C rather than to any other chromosome. Thus, for all loci j on
trans-chromosome C:
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The coefficient Λi→C, which we refer to as the inter-chromosomal transfer coefficient, models the
overall contact rate for RNA i to chromosome C. Consequently, this coefficient does not affect the
shape of the contact profile, only the relative global levels of the RNA on different chromosomes.
For the purpose of detecting local anomalies in the observed contact patterns, such as peaks at
discrete loci, we can essentially leave the inter-chromosomal transfer coefficient out of the model
parameters. Specifically, we simplified our model by fixing the marginals corresponding to the total
number of contacts for RNA i on each chromosome C, and setting them to the observed number of
contact. Let us denote ni,C the number of contacts in the observed data made by RNA i on
chromosome C. Combining all of the reads from the same RNA i together, we obtain a generative
model giving the distribution of RNA i on each chromosome as a multinomial distribution:
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where chr(j) indicates the chromosome on which the target locus j is located, and Ci is the set of
indices amongst the reads from RNA i, for which the DNA-side maps to a locus in cis (simply
speaking, we use the ri,k only for the reads that map to a cis RNA-DNA contact). In this expression
the first argument of the multinomial is the number of draws, and the second argument is the events
probability vector. αi is a normalization coefficient such that the sum of the entries in the events
probability vector equals to 1. Note that bj is already normalized on each trans-chromosome, as
discussed below.

Alternatively, if one wishes to capture broad chromosome scale features, such as excess of an RNA
across a specific chromosome, we can combine the generative model with the GLM model used to
calculate the trans-delocalization scores. Specifically, we can fix the marginals so that the total
number of contacts on each chromosome C is equal to that predicted by the GLM. This simply
amounts to replacing, in the equation above, ni,C, with its GLM prediction, nˆi,C. This approach, which
we term “generative model with trans-contact rate prediction” was used to generate the model tacks
in Figure 4f.

Interpretation of the generative model

It is clear that the simple generative model described above cannot, in principle, capture all of the



complexities of the data for 3 main reasons. First, diffusion of an RNA occurs in 3D, so the genomic
distance δ used in the distance-dependent RNA-DNA interaction curve does not accurately
represent the physical proximity between the two cognate loci, especially in the context of the
complex 3D conformation of the genome. Even for trans-chromosomal interactions, specific
arrangements of the chromosomes in 3D may bring diverse trans-chromosomal loci in close
proximity to the RNA transcription locus, invalidating the assumption that the true contact probability
is uniform across a trans chromosome. Second, the diffusivity of an RNA is likely dependent on its
genomic context (e.g., whether it is within a heterochromatin 290 or euchromatin region), its
secondary structure (e.g., smaller RNAs may be able to diffuse further awayfrom their locus), and
its affinity for specific nuclear factors. Third, by design of the model, it does not encode any potential
"affinity driven" interaction between a specific RNA and a specific target locus(Engreitz et al. 2016).
However, this is not a limitation but a feature, as deviations from the model indicate biologically
interesting interactions, namely those that cannot be explained by 1D proximity and expression.

Estimation of the DNA-bias

We reasoned that because most mRNAs are unlikely to have any site-specific chromatin activity,
their contact patterns on chromatin should be non-specific and most closely follow the generative
model. Furthermore, although some of the model assumptions may be invalid for some individual
RNAs as discussed above, we reasoned that deviations from the model are likely to average out
when the contact patterns of all mRNAs are aggregated. Thus, we empirically estimated the
DNA-bias vector bj by counting, for each locus j, the total number of contacts at this locus from all
mRNAs originating from trans-chromosomes (hereafter referred to as trans-mRNAs). Let Uj be the
set of indexes i such that RNA i is a trans-mRNA at locus j, we computed the DNA-bias vector as:
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We then normalized this vector such that the partial sum of its entries across each individual
chromosome is equal to 1:
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bj can be interpreted as a distant-independent and RNA-independent DNA-bias. Estimation of the
distance-dependent RNA-DNA interaction frequency for cis-chromosomal interactions Based on the
argument previously mentioned that most mRNAs are unlikely have any site-specific interactions,
we also used mRNAs to estimate the distance-dependent RNA-DNA interaction frequency ρC(δ) for
each chromosome C. We estimated the interaction frequency at logarithmically spaced positive
distances {δj}j=0...n , and negative distances {δj = −δ−j}j=−n ...−1, where δ0 = 0 and δj = 1 . . . nδδ δ
spanned 10 bp to 100 Mbp (an arbitrarily large value larger than the size of the largest
chromosome). To do so, we tallied across all mRNAs transcribed on chromosome C, the number of
cis contacts OC,δj with a travel distance within [δj, δj+1)j=(−n )...(n −1). To account for the edge effects (the
fact that RNAsδ δ cannot make contacts at distances beyond their distance to the chromosome
edge), we divided OC,δjby the maximum number of contacts that could be observed at a given
distances AC,δj if all RNAs were forced to localize at this distance δj when possible. We finally
normalized the resulting vector by the sum of its entries to obtain an estimate of the
distance-dependent RNA-DNA interaction frequency:
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Generation of predicted contact map.
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where |S| denotes the cardinality of the set S. Note that this probability is zero at all the loci that
were not sampled during the first step, making this simulation very efficient (typically the number of
reads from an RNA is much smaller than the number of target loci j, especially when the target loci
are high resolution (⪅ 1Mb) tiling partitions of the genome).We simulated the trans-localization
patterns in a manner similar to the cis-localization patterns, but skipped the travel distance
sampling. Recall that ni,C is the number of observed contacts from RNA i on chromosome C. For
each trans-chromosome C, we simply sampled ni,C loci from chromosome C from a multinomial
distribution with event probability vector {bj}chr(j)=C.



Supplementary Data
Supplementary Data 1. Differential Expression by total RNA-seq and in the caRNA
transcriptome by ChAR-seq, related to Figure 1. Log2 Fold Change, p-values, and False
Discovery Rate adjusted p-values for differential expression in DE vs ES cells of Gencode
genes (separating reads from exons and introns), and either including (first tab) or excluding
UTLs (second tab) computed using DESeq2. DESeq2 was run independently on RNA-seq
count matrices (4 ES and 4 DE biological replicates) for total RNA-seq, and on ChAR-seq count
matrices (2 ES and 2 DE biological replicates) for the caRNA transcriptome. Genes with fewer
than 10 counts across samples were removed from analysis. All DESeq2 parameters were set
to their default value, except for the sample depth normalization step which was done using only
counts from exonic reads as standard in RNA-seq analysis.

Supplementary Data 2. Chromatin Association scores, related to Figure 1. Chromatin
association scores for exons and introns of Gencode genes and UTLs. All scores, log 2 fold
change and p-values were computed as described in Methods.

Supplementary Data 3. Catalog of UTLs and their classification, related to Figure 2. List of
Unannotated Transcribed Loci and their classifications.

Supplementary Data 4. Final trans- and cis-delocalization scores averaged over
replicates, related to Figure 4. Scores were first calculated independently in 2 biological
replicates of ES cells and 2 biological replicates DE cells, then averaged per cell type.
Pre-averaged scores are given in Supplementary Data 8-9. All details on the scores and
p-values computations are given in Methods and Supplementary Note 2.

Supplementary Data 5. Catalog of RNAs with extreme delocalization scores, related to
Figure 4. RNAs with a positive cis- or trans-delocalization score and adjusted p-value
(p.high.corr) <0.05 for having a more extreme delocalization score than an mRNA are shown in
the “delocalized_cis” and “delocalized_trans” tab, respectively. RNAs with a negative cis- or
trans-delocalization score and adjusted p-value (p.low.corr) <0.05 for having a more extreme
delocalization score than an mRNA are shown in the “ultralocalized-cis” and
“ultralocalized_trans” tab, respectively. All details on the scores and p-values computations are
given in Methods and Supplementary Note 2.

Supplementary Data 6. List of RNA-DNA contacts not predicted by the generative model,
related to Figure 5. Contacts are defined using 100 kb bins on the DNA side, and individual
RNAs (annotated exon, intron, or UTL) on the RNA side. Contacts not predicted by the model
were those with a Log2 Fold Change observed over model greater than 1.3 and an adjusted
p-value less than 0.05, as in Figure 5c,e.

Supplementary Data 7. Coarse graining of Gencode V29 annotations. Coarse grained
annotations for Gencode V29 data types.

Supplementary Data 8. trans-delocalization scores by sample. Scores for individual



replicates used for averaging in Supplementary Table4.

Supplementary Data 9. cis-delocalization scores by sample. Scores for individual replicates
used for averaging in Supplementary Table4.

Supplementary Data 10. Oligonucleotide sequences. List of oligonucleotide primers used in
this study.
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