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The Supplement consists of four sections. In the first section, “1D HET-RFDR Experiments” we show 1 

additional 1D 1H-13C HET-RFDR spectra. The second “HET-RFDR Simulations” section provides 2 

additional HET-RFDR simulations, which were performed under conditions that closely match the 3 

experiments. The third section, “Operator Paths” shows the possible paths of RFDR and HET-RFDR 4 

transfers via heteronuclear and homonuclear operators during the first two rotor periods. The last part, 5 

“RFDR Phase Cyling”, shows the formal proof of zero signal transfer for a homonuclear I2 spin system 6 

with zero offset difference and when all π-pulses have the same phase.    7 

1D HET-RFDR Experiments 8 

Figure S1 shows a 1D HET-RFDR pulse sequence. The sequence consists of two π/2-pulses on 9 

the 1H channel (with two step phase cycling to eliminate the signal from directly excited spins of carbons) 10 

followed by a series of HET-RFDR pulses and finally a π/2-pulse and detection on the 13C channel. The 11 

evolution of the magnetization from proton to carbon spins through the HET-RFDR pulse sequence 12 

(Figure S1) can be described with cartesian operators as follows: 13 

𝐻𝑧

𝑓𝑖𝑟𝑠𝑡 𝑝𝑟𝑜𝑡𝑜𝑛  (
𝜋

2
)
𝑥
  𝑝𝑢𝑙𝑠𝑒

⇒                  −𝐻𝑦

𝑠𝑒𝑐𝑜𝑛𝑑 𝑝𝑟𝑜𝑡𝑜𝑛  (
𝜋

2
)
∓𝑥
  𝑝𝑢𝑙𝑠𝑒

⇒                     ±𝐻𝑧14 

𝐻𝐸𝑇−𝑅𝐹𝐷𝑅 𝑏𝑙𝑜𝑐𝑘
⇒             ±𝑎𝐻𝐶(𝑡𝑚𝑖𝑥)𝐶𝑧

𝑓𝑖𝑟𝑠𝑡 𝑐𝑎𝑟𝑏𝑜𝑛  (
𝜋

2
)
𝑥
  𝑝𝑢𝑙𝑠𝑒

⇒                   ∓𝑎𝐻𝐶(𝑡𝑚𝑖𝑥)𝐶𝑦
𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛±𝑥
⇒        −𝑎𝐻𝐶(𝑡𝑚𝑖𝑥),    Eq. (S1) 15 

where, 𝑎𝐻𝐶(𝑡𝑚𝑖𝑥), is an amplitude of the transferred signal. 16 
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 17 

Figure S1 1D HET-RFDR pulse sequence. The sequence consists of two π/2-pulses on the 1H channel, HET-RFDR blocks ( a 18 

train of π-pulses with a single pulse during each rotor period applied on both channels), π/2-pulse on the 13C channel and 19 

detection with proton decoupling. The phases of the π/2-pulses are 𝜑1 = 𝑥; 𝜑2 = −𝑥, 𝑥; 𝜑3 = −𝑥,−𝑥, 𝑥, 𝑥, 𝑦, 𝑦, −𝑦,−𝑦. 𝜑𝑎𝑐𝑞 =20 

𝑥, −𝑥, −𝑥, 𝑥, −𝑦, 𝑦, 𝑦, −𝑦. π-pulses on the both channels follow the XY8 scheme (Gullion et al., 1990). During acquisition, SWf-21 

TPPM (Thakur et al., 2006) at 55.555 kHz or SPINAL64 (Fung et al., 2000) at 10 kHz decoupling is applied on the proton 22 

channel to narrow the detected resonances. 23 

Figures. S2-S3 demonstrate 1D HC HET-RFDR spectra using [13C, 15N] labeled SH3. On proton 24 

and carbon channels π-pulses with different lengths were applied: 3.4 us (147 kHz) and 5 us (100 kHz), 25 

respectively. Figure S2a shows HC spectra under different mixing times: 0.576 ms, 1.728 ms, 2.888 ms, 26 

4.032 ms, 5.184 ms and 6.336 ms. Figure S2b shows HC spectra, which were obtained with 6.336 ms 27 

HET-RFDR (blue) and RFDR (cyan, π-pulses were applied on carbon channel only) . As expected, HET-28 

RFDR provides 1H to 13C transfer. The efficiency depends on the spectral region. For some aromatic 29 

carbons, the transfer\ achieves ~100% efficiency with respect to CP at 1.5 ms (Figure S2b, red), but for 30 

other regions, like Cα, the polarization transfer is ~50%. 31 
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 32 

Figure S2 1D HC [13C,15N] labeled SH3 spectra at 55.555 kHz (a) HET-RFDR spectra with different mixing times: 0.576 ms, 33 

1.728 ms, 2.888 ms, 4.032 ms, 5.184 ms, 6.336 ms. (b) Comparaison of 1D HC CP spectrum (red, 1.5 ms of CP mixing) and 34 

HET-RFDR spectrum (blue, 6.336 ms of HET-RFDR mixing). The cyan spectrum shows a HC RFDR spectrum, for which π-35 

pulses were applied only on the 13C channel. The carbon refference frequency was set up on 40 ppm. The MAS rate was 55.555 36 

kHz. The experimental parameters are shown in Table S1.        37 

The transfer of the magnetization from Hz operators to Cz operators is minimally affected by flip 38 

angle deviations, since XY8 phase cycling is used (Gullion et al., 1990). To show this, we recorded 39 

additional 1D HC HET-RFDR spectra with a series of flip angles on the carbon channel. (Figure S3).   40 
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 41 

Figure S3 1D proton-carbon HET-RFDR spectra of [13C, 15N] labeled SH3 with a 6.336 ms transfer time as a function of the 42 

flip angle of the pulses on the carbon channel between 157.34° and 184.64° (17 spectra). The width of π-pulses on the proton 43 

channel was 3.4 us. The width of the applied pulses on the carbon channel was constant and equal to 5 us. 55.555 kHz MAS was 44 

used. The rf-field values in kHz on the carbon channel from left to right were:87.41, 88.2, 89.01, 89.83, 90.66, 91.51, 92.38, 45 

93.26, 94.16, 95.08, 96.02, 96.97, 97.94, 98.94, 99.95, 100.98, 102.04. 46 

Solid state NMR spectroscopy: The CP and HET-RFDR spectra of 13C,15N SH3 were acquired at 14.1 T 47 

(600 MHz) using a Bruker AVIIIHD spectrometer using a MASDVT600W2 BL1.3 HXY probe. The 48 

experiments were performed at 55.555 kHz MAS with the temperature of the cooling gas set to 235 K.  49 

For 1D 1H13C spectra during the HET-RFDR periods, the widths of pulses on proton and carbon channels 50 

were 3.4 us and 5 us, respectively. 13.89 kHz SWf-TPPM (Thakur et al., 2006) with 36 us pulses was used 51 

during the acquisition. Table S1 summarizes the applied experimental parameters.  52 

Table S1 Summary of the experimental parameters used in the CP (the start and the end values are shown) and HET-RFDR H13C 53 

[13C,15N] SH3 experiments.  54 
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 CP HET-RFDR 
1H (kHz) 92-115 147 
13C (kHz) 43 100, [87.41-102.04] 

transfer time (ms) 1.5  [0.576-6.336] 

NS 48 48 

D1 (s) 1.5 1.5 

AQ (s) 0.01536 0.01536 

SW (kHz) 50 50 
NS – number of scans; D1 – a recycle delay; AQ – the acquisition time; SW – the spectral width.  55 

HET-RFDR Simulations 56 

Figure S4 shows simulated HET-RFDR polarization transfers for four (S2I2, Figure S4a) and three (SI2,  57 

Figure S4b) spin systems with conditions that closely match the experiments: 55.555 kHz MAS and 5.4 58 

us π-pulses. 59 

Figure S4a shows the HET-RFDR polarization trasfers between a directly bonded spin pair (I1-C2, solid 60 

lines) and the remote pair (I1-C3, lines with circles). The lines with diamonds represent signals that are not 61 

transferred, but remain on the spin I1. We consider three cases: rigid C2H2 chain (black lines), dynamic 62 

C2H2 chain (red lines) and rigid N2C2 chain (blue lines). For the rigid (black solid line) and dynamic (red 63 

solid line) C2H2 chains when the heteronuclear dipolar coupling constants are larger than the homonuclear 64 

dipolar constants, the polarization transfer from H1 to C2 oscillates about ~35% efficiency. However, for 65 

the spin system with the weak heteronuclear dipolar coupling constants (blue lines), the HET fp-RFDR 66 

polarization transfer between directly bonded spins is lower (blue solid line) and achieves only ~20% 67 

transfer efficiency. 68 

The signal that remains on the starting spin (lines with diamonds) are ~40% for first two cases (black and 69 

solid lines with diamonds) and ~70% for weak dipolar coupling constants (blue line with diamonds). 70 

The HET-RFDR transfer between remote spins, e.g. H1 and C3 are about ~10% of the initial polarization 71 

for all these three cases (black, red and blue lines with circles). The transfer of magnetization mostly 72 

occurs via relayed transfer (I1-C2-C3) and not directly from I1 to C3, which more clearly can be seen in the 73 

simulations on Figure S4b 74 
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Figure S4b considers the HET-RFDR polarization transfer between directly bonded spins (N1-H2, solid 75 

lines) and remote pair (N1-H3, lines with cirles). The heteronuclear dipolar coupling constant between N1 76 

to H2 spins is kept constant and the homonuclear dipolar constant between H2 and H3 is changed. When 77 

the distance between H2 and H3 spins is 6 Å (green lines), the fp-RFDR polarization transfer between N1 78 

and H2 achieves the maximal transfer of about 50% (solid green line). The direct HET-RFDR polarization 79 

transfer efficiency between N1 and H3 is very low (green line with circles). For the H2 - H3 distances of 4 80 

Å (blue line with circles), 3 Å (red line with circles) and 2 Å (black line with circles), the polarization 81 

transfer between N1 and H3 achieves ~10%. Since the distance between N1 and H3 is not changed, the 82 

transfer between N1 and H3 is achieved via sequential relayed transfer, N1-H2-H3. The homonuclear 83 

distance also has influence on the HET-RFDR polarization tranfer. With decreased H2-H3 distance the 84 

amplitude of the HET-RFDR polarization tranfer between dirctly bonded spins (solid lines) is decreased. 85 

 86 

Figure S4 Simulated HET-RFDR signals. The simulated HET-RFDR polarization transfers for S2I2 (a) and SI2 (b) spin systems 87 

are shown as a function of mixing time. For all simulations MAS was 55.555 kHz and hard π-pulses with 5.4 us width (92.59 88 

kHz rf-field) were applied simuntaneously every rotor period. The offset and CSA values (the offset and CSA values are defined 89 

in the same way as in (Bak et al., 2000)) of spins [I1;C2;C3;I4] are [1;2;5.5;6] (kHz) and [4;1;2;3] (kHz), respectively. The initial 90 

and the final operators were in the direction �̂�. (a) The solid lines represent the HET-RFDR polarization transfers between I1 and 91 

C2 spins; the lines with circles represent the HET-RFDR polarization transfers between I1 and C3 spins and the lines with 92 

diamonds represent the decay of starting signals. The carbon-carbon distance as well as the dipolar coupling constant between C2 93 
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and C3 were kept unchanged at 1.5 Å (2.22 kHz). The black lines represent the rigid H2C2 spin system (with I1, I4 of the inset as 94 

protons). The proton-carbon dipolar coupling constants were: 𝜈12 = 𝜈34 = 22 𝑘𝐻𝑧; 𝜈13 = 𝜈34 = 3.03 𝑘𝐻𝑧 and the proton-proton 95 

coupling constant was: 𝜈14 = 4.9 𝑘𝐻𝑧. The red lines represent the dynamic H2C2 spin system with reduced proton-carbon 96 

couplings of are: 𝜈12 = 𝜈34 = 8 𝑘𝐻𝑧; 𝜈13 = 𝜈34 = 1.01 𝑘𝐻𝑧 and a reduced proton-proton coupling 𝜈14 = 1.8 𝑘𝐻𝑧. The blue 97 

lines represent the rigid N2C2 spin system (with I1, I4 of the inset as nitrogens). The nitrogen-carbon dipolar coupling constants 98 

are: 𝜈12 = 𝜈34 = 1 𝑘𝐻𝑧; 𝜈13 = 𝜈34 = 0.195 𝑘𝐻𝑧 and for the nitrogen-nitrogen coupling, 𝜈14 = 0.01 𝑘𝐻𝑧. (b) The solid lines 99 

represent the HET-RFDR polarization trasnfer between N1 and H2 spins with unchanged dipolar coupling constant of 11 kHz. 100 

The lines with circles represent the transfer between N1 and H3 spins for different distances (dipolar coupling constants) between 101 

H2 and H3 spins: black lines – 2 Å (15 kHz), red lines – 3 Å (4.4 kHz), blue lines – 4 Å (1.9 kHz) and green lines – 6 Å (0.5 kHz). 102 

The distance as well as the dipolar coupling constant between N1 and H3 were kept unchanged at 3 Å and 0.45 kHz. XY8 phase 103 

cycling was used. 104 

Figure S5 demonstrates the simulated HET-RFDR transferred signals for three different spin 105 

systems (two, three and four spin systems) with similar offset values as in the experiment (Ω𝐻 ≈ 0 𝑘𝐻𝑧 106 

and Ω𝐶 ≈ 5 𝑘𝐻𝑧, Figure 3f in the main text). In all cases the initial operator was Iz and the measured 107 

operator was Sz1. For the two spin system (SI, black line), the HET-RFDR polarization transfer is 108 

negligible. However, for three spins (IS2, red line) and four spins (IS3, blue line) the transferred 109 

polarization reaches a negative value of -0.05. This suggests the involvement of three or more spins in the 110 

transfer, but without a more detailed investigation, it is not immediately obvious via which operators the 111 

signal is transferred.  112 
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 113 

Fig. S5 The simulated HET-RFDR signals. The simulated HET-RFDR polarization transfers for IS (black) IS2 (red) and IS3 114 

(blue) spin systems as a function of the mixing time. For all simulations, MAS was 10 kHz and hard π-pulses with 5.8 us and 6.6  115 

us widths were applied simuntaneously on I and Sn spins every rotor period. The offset and dipolar coupling constants in kHz: IS 116 

- [Ω𝐼; Ω𝑆1] = [0.5; 5.5], [ν𝐷,𝐼𝑆1] = [23]; IS2 - [Ω𝐼; Ω𝑆1; Ω𝑆2] = [0.5; 5.5; 7], [𝜈𝐷,𝐼𝑆1; 𝜈𝐷,𝐼𝑆2; 𝜈𝐷,𝑆1𝑆2] = [23; 3.4; 2.5]; IS3 – 117 

[Ω𝐼; Ω𝑆1; Ω𝑆2; Ω𝑆3] = [0.5; 5.5; 7; −13], [𝜈𝐷,𝐼𝑆1; 𝜈𝐷,𝐼𝑆2; 𝜈𝐷,𝐼𝑆3; 𝜈𝐷,𝑆1𝑆2; 𝜈𝐷,𝑆1𝑆3] = [23; 3.4; 3.2; 2.5; 2.5].In all simulations the 118 

initial and the measured operators were Iz and Sz1, respectively. XY8 phase cycling was used. 119 

Operator Paths 120 

In this section we indentify the paths via which the signals are transferred from Iz to Sz operators 121 

and from  Iz1 to Iz2 operators during the first two rotor periods of HET-RFDR and RFDR blocks, 122 

respectively. The simulated parameters were used as in Figure 5a and b. Therefore, these Figures are 123 

shown also here as Figure S6.  124 
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 125 

Figure S6 The operator evolution through HET-RFDR and RFDR over two rotor periods. The simulated amplitudes of the 126 

operators of a single crystal (Euler angles: 184°; 141°; 349°) for HET-RFDR (a) and RFDR (b). For the heteronuclear IS spin 127 

system, (𝜈𝐷,𝐼𝑆 = 15 kHz, the initial operator is Iz) and for the homonuclear I2 spin system, (𝜈𝐷,𝐼𝐼 = 10 kHz, the initial operator is 128 

Iz1). The MAS frequency was 10 kHz and the rf-field was 83 kHz. Black lines – Iz and Iz1; Green lines – Sz and Iz2; Blue lines – 129 

2IxSy and 2Ix1Iy2; Red lines – 2IySx and 2Iy1Ix2. 130 

We consider the amplitudes of the operators that are generated as a result of the evolution of the 131 

other operators through pulses or dealys: 𝑡(𝜋𝑥)  →   𝑑𝑒𝑙1  →  𝑡(𝜋𝑦)  →  𝑑𝑒𝑙2. We first consider the 132 

heteronuclear case of an IS spin system during HET-RFDR. Table S2 consists of four subsections. The 133 

first, second , third and fourth subsections represent the amplitudes of four operators, Iz, Sz, 2IxSy, 2IySx, 134 

measured at four points.  135 

Table S2 Transfer paths during HET-RFDR. The single crystal amplitudes (Euler angles: 184°; 141°; 349°) of the operators  at 136 

four time points: 𝜋𝑥 – the end of the first pulse; 𝑑𝑒𝑙1 – the end of the first delay; 𝜋𝑦 – the end of the second pulse; 𝑑𝑒𝑙2 – in the 137 

end of the second delay. The first column shows the initial operators. The first, second, third and fourth subsections represent the 138 

amplitudes with the initial operators Iz, Sz, 2IxSy, 2IySx, respectively. The used simulated parameters were as in Figure S6a and in 139 

Figure 5a in the main text. 140 

Op  Iz   Sz   2IxSy  2IySx  

 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 

Iz -

0.97 

1 -

0.97 

1 0 0 0 0 0.25 0 0 0 0 0 -

0.25 

0 

Sz 0 0 0 0 -

0.97 

1 -

0.97 

1 0 0 -

0.25 

0 0.25 0 0 0 
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2IxSy -

0.25 

0 0 0 0 0 0.25 0 -

0.97 

1 -

0.97 

1 0 0 0 0 

2IySx 0 0 0.25 0 -

0.25 

0 0 0 0 0 0 0 -

0.97 

1 -

0.97 

1 

 141 

For example, the path 𝐼𝑧
𝜋𝑥
→ 𝐼𝑧

𝑑𝑒𝑙1
→  𝐼𝑧

𝜋𝑦
→ 𝐼𝑧

𝑑𝑒𝑙2
→  𝐼𝑧 gives the amplitude of  −0.97 ∙ 1 ∙ (−0.97) ∙ 1 =142 

0.94 (the bold font in the Table S2), which equals the amplitude of the Iz operator at the end of 2TR in 143 

Figure S5a in the main text (black line). The path 𝐼𝑧
𝜋𝑥
→ 𝐼𝑧

𝑑𝑒𝑙1
→  𝐼𝑧

𝜋𝑦
→ 𝐼𝑧

𝑑𝑒𝑙2
→  𝑆𝑧 gives the amplitude of  144 

−0.97 ∙ 1 ∙ (−0.97) ∙ 0 = 0. If we analyze all 64 possibilities, we find only one heteronuclear path, 145 

conecting Iz and Sz operators through the first two rotor periods of HET-RFDR: 𝐼𝑧146 

𝜋𝑥
→ 2𝐼𝑥𝑆𝑦

𝑑𝑒𝑙1
→  2𝐼𝑥𝑆𝑦

𝜋𝑦
→ 𝑆𝑧

𝑑𝑒𝑙2
→  𝑆𝑧 with nonzero amplitude of −0.2472 ∙ 1 ∙ (−0.2472) ∙ 1 = 0.061.  147 

In the same way we tabulate the homonuclear I2 spin system during the first two rotor periods of 148 

RFDR block in Table S3.  149 

Table S3 Transfer paths during RFDR. The single crystal amplitudes (Euler angles: 184°; 141°; 349°) of the operators atfour 150 

time points: 𝜋𝑥 – the end of the first pulse; 𝑑𝑒𝑙1 – the end of the first delay; 𝜋𝑦 – the end of the second pulse; 𝑑𝑒𝑙2 – the end of 151 

the second delay. The first column shows the initial operators. The first, second, third and fourth subsections represent the 152 

amplitudes with the initial operators Iz1, Iz2, 2Ix1Iy2, 2Iy1Ix2, respectively. The simulated parameters were as in in Figure S6b and 153 

Figure 5b in the main text.   154 

Op Iz1 Iz2 2Ix1Iy2 2Iy1Ix2 

 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 

Iz1 -

0.98 
0.97 

-

0.98 0.97 0.01 0.03 0.01 0.03 0.08 

-

0.16 

-

0.16 -0.16 0.16 0.16 

-

0.08 0.16 

Iz2 
0.01 

0.03 
0.01 0.03 

-
0.98 0.97 

-
0.98 0.97 0.16 0.16 

-
0.08 0.16 0.08 

-
0.16 

-
0.16 -0.16 

2Ix1Iy2 -

0.08 0.16 0.16 0.16 

-

0.16 

-

0.16 0.08 -0.16 

-

0.98 0.97 

-

0.98 0.97 0.01 0.03 0.01 0.03 

2Iy1Ix2 -
0.16 

-
0.16 0.08 -0.16 

-
0.08 0.16 0.16 0.16 0.01 0.03 0.01 0.03 

-
0.98 0.97 

-
0.98 0.97 

  155 

Unlike the IS spin system, all 64 paths have nonzero amplitudes via which the signal is 156 

transferred from homonuclear operator Iz1 to operator Iz2 during the first two rotor periods of RFDR. 157 

These 64 paths can be divided into four groups.  158 
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The first group contains eight paths with combinations of Iz1, Iz2 operators only. For example, the 159 

path 𝐼𝑧1
𝜋𝑥
→ 𝐼𝑧1

𝑑𝑒𝑙1
→  𝐼𝑧1

𝜋𝑦
→ 𝐼𝑧1

𝑑𝑒𝑙2
→  𝐼𝑧2 has 0.02564 amplitude, whereas the path 𝐼𝑧1160 

𝜋𝑥
→ 𝐼𝑧2

𝑑𝑒𝑙1
→  𝐼𝑧2

𝜋𝑦
→ 𝐼𝑧2

𝑑𝑒𝑙2
→  𝐼𝑧2 has -0.01283092 amplitude. The total amplitude of this group is 0.02561578.  161 

The second group contains 24 paths where each of the paths contains one of the operators 2𝐼𝑥1𝐼𝑦2 162 

or 2𝐼𝑦1𝐼𝑥2. For example, the path 𝐼𝑧1
𝜋𝑥
→ 𝐼𝑧1

𝑑𝑒𝑙1
→  𝐼𝑧1

𝜋𝑦
→ 2𝐼𝑥1𝐼𝑦2

𝑑𝑒𝑙2
→  𝐼𝑧2 has -0.02566144 amplitude, 163 

whereas the path 𝐼𝑧1
𝜋𝑥
→ 𝐼𝑧1

𝑑𝑒𝑙1
→  2𝐼𝑥1𝐼𝑦2

𝜋𝑦
→ 𝐼𝑧2

𝑑𝑒𝑙2
→  𝐼𝑧2 has 0.01285409 amplitude. The total amplitude of 164 

this group is -0.03786813. 165 

The third group contains 24 paths where each of the paths contains two of the operators 2𝐼𝑥1𝐼𝑦2 166 

or 2𝐼𝑦1𝐼𝑥2. For example, the path 𝐼𝑧1
𝜋𝑥
→ 2𝐼𝑦1𝐼𝑥2

𝑑𝑒𝑙1
→  2𝐼𝑦1𝐼𝑥2

𝜋𝑦
→ 𝐼𝑧2

𝑑𝑒𝑙2
→  𝐼𝑧2 has 0.025925 amplitude, 167 

whereas the path 𝐼𝑧1
𝜋𝑥
→ 2𝐼𝑦1𝐼𝑥2

𝑑𝑒𝑙1
→  𝐼𝑧2

𝜋𝑦
→ 2𝐼𝑦1𝐼𝑥2

𝑑𝑒𝑙2
→  𝐼𝑧2 has -0.00073 amplitude. The total amplitude of 168 

this group is 0.086262. 169 

The fourth group contains eight paths where each of the paths contains three instances of the 170 

operators 2𝐼𝑥1𝐼𝑦2, 2𝐼𝑦1𝐼𝑥2. For example, the path 𝐼𝑧1
𝜋𝑥
→ 2𝐼𝑦1𝐼𝑥2

𝑑𝑒𝑙1
→  2𝐼𝑦1𝐼𝑥2

𝜋𝑦
→ 2𝐼𝑦1𝐼𝑥2

𝑑𝑒𝑙2
→  𝐼𝑧2 has -171 

0.02566 amplitude, whereas the path 𝐼𝑧1
𝜋𝑥
→ 2𝐼𝑥1𝐼𝑦2

𝑑𝑒𝑙1
→  2𝐼𝑥1𝐼𝑦2

𝜋𝑦
→ 2𝐼𝑥1𝐼𝑦2

𝑑𝑒𝑙2
→  𝐼𝑧2 has 0.012854 172 

amplitude. The total amplitude of this group is -0.01262.  173 

The total amplitude of all four groups at the time point 2TR is 0.061, which is the same as for the 174 

heteronuclear IS spin system.  175 

RFDR Phase Cycling  176 

In this section we show that under the specific conditions of two spins and no chemical shift 177 

offsets, there is zero RFDR transfer between operators Iz1 and Iz2  at tmix=nTR (n=1,2,3,…) when XX phase 178 

cycling is used. The measured operator at this time is described with the Eq.: 179 
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〈𝐼𝑧2〉(𝑇𝑅) = 𝑇𝑟{𝐼𝑧2𝑈(𝑇𝑅)𝐼𝑧1𝑈
−1(𝑇𝑅)}. Eq. (S2) 

We take into account the dipolar interaction as well as the rf-field during the π-pulse. Then the unitary 180 

operator, 𝑈(𝑇𝑅) is written as follow: 181 

𝑈(𝑇𝑅) = 𝑈2𝑈1         Eq. (S3) 182 

𝑈1 = �̂�𝑒𝑥𝑝 {∫ 𝑑𝑡[𝜔𝐷,12(𝑡)(3𝐼𝑧1𝐼𝑧2 − 𝐼1̅𝐼2̅) + 𝜔𝑟𝑓(𝐼𝑥1 + 𝐼𝑥2)]
𝑡𝑝
0

},  Eq. (S3a) 183 

𝑈2 = �̂�𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)(3𝐼𝑧1𝐼𝑧2 − 𝐼1̅𝐼2̅)
𝑇𝑅
𝑡𝑝

}.           Eq. (S3b) 184 

where �̂� is a Dyson operator and 𝜔𝐷,12(𝑡) is a periodic dipolar time dependent function(Olejniczak et al., 185 

1984) between spins I1 and I2. Firstly, we can simplify Eq. S3 omitting the scalar product, 𝐼1̅𝐼2̅, since it 186 

commutes with other parts of the Hamiltonian:  187 

[𝐼1̅𝐼2̅, 𝐼𝑧1𝐼𝑧2] = [𝐼1̅𝐼2̅, 𝐼𝑥1 + 𝐼𝑥2] = 0, Eq. (S4) 

and the dipolar function is periodic –  ∫ 𝑑𝑡𝜔𝐷,12(𝑡)𝐼1̅𝐼2̅
𝑇𝑅
0

= 0. Eq. S3a-b can be written as follow: 188 

𝑈1 = �̂�𝑒𝑥𝑝 {∫ 𝑑𝑡[𝜔𝐷,12(𝑡)3𝐼𝑧1𝐼𝑧2 +𝜔𝑟𝑓(𝐼𝑥1 + 𝐼𝑥2)]
𝑡𝑝
0

},           Eq. (S5a) 189 

𝑈2 = �̂�𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)3𝐼𝑧1𝐼𝑧2
𝑇𝑅
𝑡𝑝

}.             Eq. (S5b) 190 

The next step is the rotation of all the operators by 90° around axis -y: 191 

𝐼𝑧1, 𝐼𝑧2, 𝐼𝑧1𝐼𝑧2, (𝐼𝑥1 + 𝐼𝑥2)  
90−𝑦
→    −𝐼𝑥1, −𝐼𝑥2, 𝐼𝑥1𝐼𝑥2, (𝐼𝑧1 + 𝐼𝑧2). 

Eq. (S6) 

Substituting Eq. (S6) into Eqs. S2 and Eq. (S5a-b), the modified Eq. (S2) is: 192 

〈𝐼𝑧2〉(𝑇𝑅) = 𝑇𝑟{𝐼𝑥2𝑈2𝑈1𝐼𝑥1𝑈1
−1𝑈2

−1}, Eq. (S7) 

whereas the modified Eq. (S5a-b) is: 193 

𝑈1 = �̂�𝑒𝑥𝑝 {∫ 𝑑𝑡[𝜔𝐷,12(𝑡)3𝐼𝑥1𝐼𝑥2 +𝜔𝑟𝑓(𝐼𝑧1 + 𝐼𝑧2)]
𝑡𝑝
0

}     Eq. (S8a) 194 
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𝑈2 = �̂�𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)3𝐼𝑥1𝐼𝑥2
𝑇𝑅
𝑡𝑝

},          Eq. (S8b) 195 

The operators in Eq. (S8a-b) can be rewritten with fictitious spin ½ operator formalism(Vega, 1978): 196 

2𝐼𝑥1𝐼𝑥2 = 𝐼𝑥
(2,3)

+ 𝐼𝑥
(1,4)

, 

(𝐼𝑧1 + 𝐼𝑧2) = 2𝐼𝑧
(1,4)   . 

Eq. (S9) 

 

Therefore, Eqs. (S8a-b) can be written as follow: 197 

𝑈1 = �̂�𝑒𝑥𝑝 {∫ 𝑑𝑡 [𝜔𝐷,12(𝑡)3 (𝐼𝑥
(1,4) + 𝐼𝑥

(2,3)) + 𝜔𝑟𝑓2𝐼𝑧
(1,4)

]
𝑡𝑝
0

}       Eq. (S10a) 198 

𝑈2 = �̂�𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)3 (𝐼𝑥
(1,4)

+ 𝐼𝑥
(2,3)

)
𝑇𝑅
𝑡𝑝

}.           Eq. (S10b) 199 

Since the operator 𝐼𝑥
(2,3)

 commutes with other operators and the dipolar function is periodic –  200 

∫ 𝑑𝑡𝜔𝐷,12(𝑡)𝐼𝑥
(2,3)𝑇𝑅

0
= 0 – the Eqs. (S7) and (S10a-b) can be rewritten as: 201 

〈𝐼𝑧2〉(𝑇𝑅) = 𝑇𝑟 {𝐼𝑥2𝑈2
(1,4)

𝑈1
(1,4)

𝐼𝑥1 (𝑈2
(1,4)

𝑈1
(1,4)

)
−1
},       Eq. (S11) 202 

𝑈1
(1,4)

= �̂�𝑒𝑥𝑝 {∫ 𝑑𝑡 [𝜔𝐷,12(𝑡)3𝐼𝑥
(1,4)

+𝜔𝑟𝑓2𝐼𝑧
(1,4)

]
𝑡𝑝
0

},      Eq. (S12a) 203 

𝑈2
(1,4)

= �̂�𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)3𝐼𝑥
(1,4)𝑇𝑅

𝑡𝑝
}.             Eq. (S12b) 204 

On the basis of the fictitious spin ½ operator formalism(Vega, 1978), the next properties always hold: 205 

2𝐼𝑥𝑗𝐼𝑥
(1,4)2𝐼𝑥𝑗 = 𝐼𝑥

(2,3)
, 

2𝐼𝑥𝑗𝐼𝑧
(1,4)2𝐼𝑥𝑗 = −𝐼𝑧

(2,3),            j = 1,2. 

Eq. (S13) 

 

On the basis of these properties Eqs. (S11) and (S12) are:  206 

〈𝐼𝑧2〉(𝑇𝑅) = 𝑇𝑟 {𝐼𝑥2𝐼𝑥1�̌�2
(2,3)�̌�1

(2,3) (𝑈2
(1,4)𝑈1

(1,4))
−1
},        Eq. (S14) 207 

�̌�1
(2,3) = �̂�𝑒𝑥𝑝 {∫ 𝑑𝑡 [𝜔𝐷,12(𝑡)3𝐼𝑥

(2,3) − 𝜔𝑟𝑓2𝐼𝑧
(2,3)

]
𝑡𝑝
0

},           Eq. (S15a) 208 

�̌�2
(2,3) = �̂�𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)3𝐼𝑥

(2,3)𝑇𝑅
𝑡𝑝

}.     Eq. (S15b) 209 
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On the basis of Eq. (S9) the product of 𝐼𝑥2𝐼𝑥1 can be rewritten and therefore Eq. (S14) is:  210 

〈𝐼𝑧2〉(𝑇𝑅) = 0.5𝑇𝑟 {(𝐼𝑥
(2,3)

+ 𝐼𝑥
(1,4)

) (�̌�2
(2,3)

�̌�1
(2,3)

) (𝑈2
(1,4)

𝑈1
(1,4)

)
−1
} = 211 

=0.5𝑇𝑟 {𝐼𝑥
(2,3)

�̌�2
(2,3)

�̌�1
(2,3)

} + 0.5𝑇𝑟 {𝐼𝑥
(1,4)

(𝑈2
(1,4)

𝑈1
(1,4)

)
−1
}.       Eq. (S16) 212 

The next step is to use the properties of fictitious spin ½ operator formalism (Eq. S13) to arrive at: 213 

〈𝐼𝑧2〉(𝑇𝑅) = 0.5𝑇𝑟 {𝐼𝑥
(2,3)�̌�2

(2,3)�̌�1
(2,3)

} + 0.5𝑇𝑟 {𝐼𝑥
(2,3) (�̌�2

(2,3)�̌�1
(2,3))

−1
}.       Eq. (S17)      214 

The last step is to use the property: 215 

−2𝐼𝑦
(2,3)𝐼𝑥

(2,3)2𝐼𝑦
(2,3) = 𝐼𝑥

(2,3)
, 

−2𝐼𝑦
(2,3)𝐼𝑧

(2,3)2𝐼𝑦
(2,3) = 𝐼𝑧

(2,3)
. 

Eq. (S18) 

 

Substituting Eq. (S18) into Eq. (S115a-b), then the modified Eq. (S15a-b) into Eq. (S17) and considering 216 

that 2𝐼𝑦
(2,3)

2𝐼𝑦
(2,3)

= 1(2,3) and [𝐼𝑥
(2,3)

, �̌�2
(2,3)

] = 0, the transferred signal is: 217 

〈𝐼𝑧2〉(𝑇𝑅) = −0.5𝑇𝑟 {𝐼𝑥
(2,3)

(�̌�2
(2,3)

�̌�1
(2,3)

)
−1
} + 0.5𝑇𝑟 {𝐼𝑥

(2,3)
(�̌�2

(2,3)
�̌�1
(2,3)

)
−1
} = 0.     Eq. (S19) 218 

Since the transferred signal is zero at the mixing time of one rotor period, it is always zero at integer 219 

multiples of rotor periods. 220 
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