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Web Appendix A: Plot of The Product Kernel Function

Web figure 1 shows the product kernel function with 2-dimensional feature variables.

Web Figure 1. Tensor Product Kernel in R2

λ1=5, λ2=0 λ1=0, λ2=5 λ1=3, λ2=6

Plots of tensor product kernel in  R2

Note: The bandwidth σn = 2 and each kernel is centered at 0.

Web Appendix B: Theoretical Properties

In this Appendix, we present some theoretical properties of our proposed method. Since our

proposed kernel function is new, we first provide two theorems that describe the properties

for the RKHS generated by this kernel function. In the first theorem, we show that this

space is dense in the L2(P ) subspace consisting of all measurable functions that only depend

on the feature variables for which λm 6= 0 in the kernel function. In the second theorem,

we obtain the entropy number for the unit ball in this space. Both theorems are necessary

to establish the asymptotic properties of the proposed estimator for f(X) as given in the

previous section.
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To state our results, we define f0(X) as the Bayesian prediction function, which is assumed

to be unique. That is, E {l(Y, f)} attains its minimum when f = f0. We assume that

feature variables X1, X2, · · · , Xq are important in terms that f0(X) is only a function of

X1, X2, ..., Xq and for any 1 6 s 6 q,

E

[[
f0(X)− E

{
f0(X)

∣∣∣X1, X2, Xs−1, Xs+1 · · · , Xq

}]2]
> 0.

Finally, we let d2(f0,Hλ,σn) denote the L2(P )-distance between f0 and the RKHS generated

by κλ,σn .

Theorem 1: We assume σn → 0 as n → ∞. For a vector λn = (λn1, ..., λnpn) with

λnm > 0 for m = 1, ..., pn, the following results hold:

(i) If λnm > 0 for m = 1, ..., q, i.e., λn’s that are associated with the important features are

strictly positive, then d2(f0,Hλn,σn)→ 0.

(ii) If for some m 6 q, λnm = 0, then lim inf d2(f0,Hλn,σn) > 0.

Note: The Theorem holds for λ whose value depends on n and denoted as λn.

Proof. To prove (i), we first note that after expansion, κλn,σn(X, X̃) is the summation of

a number of Gaussian kernels. In particular, one term of this summation is{
λn1λn2 · · ·λnqκσn(X1, X̃1)κσn(X2, X̃2) · · ·κσn(Xq, X̃q)

}
,

where κσ(x, y) = exp{−(x − y)2/σ2}. Since λn1, ..., λnq > 0, the kernel function associated

with this term is proportional to the Gaussian kernel in the space of (X1, · · · , Xq) with

bandwidth σn for each domain k. Therefore, the closure of the RKHS generated by κλn,σn

includes the RKHS generated by the Gaussian kernel in the space of (X1, · · · , Xq). The result

in (i) holds since the latter is asymptotically dense in the subspace of L2(P ) consisting of

any functions depending on (x1, ..., xq).

To prove (ii), if λm = 0, then it is clear that any function in Hλn,σn only depends on the
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feature variables except Xm. Therefore,

Hλn,σn ⊂ {g(X−m) : g ∈ L2(P )} ,

whereX−m denotes all the feature variables excluding Xm. On the other hand, the projection

of f0 on the latter space is E(f0|X−m). Therefore,

lim inf d(f0,Hλn,σn) > d {f0, E(f0|X−m)} > 0

since Xm is one important variable for f0. We obtain the result.

Our next theorem studies the bracket covering number for a unit ball inHλn,σn . We consider

Bn as the unit ball in Hλn,σn , i.e., Bn ≡
{
f(x) : ‖f‖Hλn,σn

6 1
}
, Then the ε-bracket covering

number for Bn, denoted as N[](ε,Bn, ‖ · ‖L2(P )), is defined as the minimal number of pairs

[l(x), u(x)] such that any function ‖u(X) − l(X)‖L2(P ) 6 ε and any function f in Bn is

between one pair, i.e., l(x) 6 f(x) 6 u(x).

Theorem 2: For a vector λn = (λn1, ..., λnpn) such that λnm is uniformly bounded by a

constant M for m = 1, ..., q and λn(q+1) = ... = λnpn = 0, it holds

logN[](ε,Bn, ‖ · ‖L2(P )) 6 Cσ−(1−v/4)qn ε−v,

where v is any constant within (0, 2) and C only depends on M and q.

Proof. For any f ∈ Bn with form

f(x) =
∞∑
i=1

αiκλn,σn(x,xi),

where x1,x2, ... are a sequence of given points. Using the expansion of κλn,σn , we have

f(x) =
∑

{k1,...,ks}⊂{1,...,q}∪φ

λnk1 · · ·λnks
∞∑
i=1

αi exp

{
−(xik1 − xk1)2 + · · ·+ (xiks − xks)2

σ2
n

}
=

∑
{k1,...,ks}⊂{1,...,q}∪φ

√
λnk1 · · ·λnksfk1...ks(x),

where xik and xk are respectively the kth component of xi and x, and

fk1...ks(x) =
∞∑
i=1

αi
√
λnk1 · · ·λnks exp

{
−(xik1 − xk1)2 + · · ·+ (xiks − xks)2

σ2
n

}
.
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Here, if the index set if empty, then the exponential part in the summation is replaced by 1.

Clearly, if we denote Hk1...ks as the reproducing kernel Hilbert space generated by the

Gaussian kernel exp [−{(x̃k1 − xk1)2 + · · ·+ (x̃ks − xks)2}/σ2
n] , then fk1...ks(x) ∈ Hk1...ks and

moreover,

‖f‖2Hλn,σn
=
∞∑
i=1

∞∑
j=1

αiαjκλn,σn(xi,xj)

=
∞∑
i=1

∞∑
j=1

αiαj
∑

{k1,...,ks}⊂{1,...,q}∪φ

λnk1 · · ·λnks exp

{
−(xik1 − xjk1)2 + · · ·+ (xiks − xjks)2

σ2
n

}

=
∑

{k1,...,ks}⊂{1,...,q}∪φ

∞∑
i=1

∞∑
j=1

αiαjλnk1 · · ·λnks exp

{
−(xik1 − xjk1)2 + · · ·+ (xiks − xjks)2

σ2
n

}

=
∑

{k1,...,ks}⊂{1,...,q}∪φ

‖fk1...ks‖2Hk1...ks .

Thus, ‖f‖Hλn,σn
6 1 implies ‖fk1...ks‖Hk1...ks 6 1 for any k1, ..., ks.

Consequently, since such f is dense in Bn, we conclude

Bn ⊆

 ∑
{k1,...,ks}⊂{1,...,q}∪φ

fk1...ks(x)
√
λnk1 · · ·λnks : ‖fk1...ks‖2Hk1...ks 6 1

.
Thus, there exists a constant C only depending on M and q such that

logN[](2
qM q/2ε,Bn, ‖ · ‖L2(P ))

6
∑

{k1,...,ks}⊂{1,...,q}∪φ

logN[](ε, {fk1...ks(x), ‖fk1...ks‖2Hk1...ks 6 1}, ‖ · ‖L2(P ))

According to (Steinwart and Scovel (2007)), we know

logN[](ε, {fk1...ks(x), ‖fk1...ks‖2Hk1...ks 6 1}, ‖ · ‖L2(P )) 6 Cσ−(1−v/4)sn ε−v,

for any constant v ∈ (0, 2) and a constant C only depending on s. Therefore,

logN (ε,Bn, ‖ · ‖L2(P )) 6 C(M, q)
∑

{k1,...,ks}⊂{1,...,q}∪φ

σ−(1−v/4)sn ε−v 6 C(M, q)σ−(1−v/4)qn ε−v

for a constant C(M, q). We have proved Theorem 2.

Our next theorem gives the main properties of the estimated prediction function. We show

that the resulting prediction function from our method leads to Bayesian risk asymptotically.

Moreover, with probability tending to one, the variable selection based on non-zero λn’s is
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oracle as if we knew which variables were important. Recall that (λ̂n, f̂) is the optimal

solution of the objective function

Ln(λn, f) = Pnl {Y, f(X)}+ γ1n‖f‖2Hλn,σn
+ γ2nP (λn),

where P (λn) is the truncated Lasso penalty for λn. Equivalently, if we define for any λn,

f̂λn = arg min
f
Ln(λn, f),

which exists due to the convexity of Ln(λn, f) in f , then λ̂ minimizes Ln(λ̂n, f̂λn) and

f̂ = f̂λ̂n .

For the main theorem, we assume (Y,X) to have a bounded support and need the following

conditions.

(C1). The loss function l(y, f) is convex and is Lipschitz continuous with respect to f in any

bounded set.

(C2). There exit δ > 0 and a constant c1 > 0 such that

E [l {Y, f(X)} − l {Y, f0(X)}] > c1‖f(X)− f0(X)‖2L2(P )

whenever E [l {Y, f(X)} − l {Y, f0(X)}] is smaller than δ.

(C3). Assume ‖l2(Y, f(X))− l2(Y, f0(X))‖L2(P ) 6 c2‖f(X)− f0(X)‖L2(P ) for a constant c2,

where l2(y, x) = ∂l(y, x)/∂x.

(C4). For any λ̃n = (λn1, ..., λnpn) such that λnk = 0 for k > q, let Λmax(X−q) and Λmin(X−q)

be the largest and smallest eigenvalues of the matrix
(
E
{
Kλ̃n

(Xj,X)Kλ̃n
(Xl,X)|X−q

})
where X−q denotes all unimportant variables. We assume that with probability one, there ex-

ists one constant c such that Λmax(X−q)/Λmin(X−q) 6 cσ
−1/2
n and E {Λmin(X−q)κn(x,Xm)2} 6

cσ
1/2
n for any m > q.

(C5). Assume log pn = o(n1−(2+q)α1−α2−α3). Moreover, we assume σn = n−α1 , γ1n = n−α2 , γ2n =

n−α3 , where αk > 0 for k = 1, 2, 3 and they satisfy

(i) 1− (2 + q)α1 − α2 > 0

(ii) 0 < α3 < min
{

1
4
(1 + α1q

2
+ α2), 1− (2 + q)α1 − α2,

α1

2
, α2

2

}
.
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Conditions (C1)-(C3) give the assumptions for the loss functions. It can be verified that

they hold for l(y, f) = (y− f)2 for a continuous y and for l(y, f) = exp(−yf) for a binary y.

Condition (C4) implies the equivalence between the Euclidean norm of the coefficients and

the reproducing kernel Hilbert space norm, up to a scale proportional to σ
−1/2
n . The second

half of the condition in (C4) holds automatically if the important variables are independent

of the unimportant variable when Λmin(X−q) does not depend on X−q. We note that such

a condition is analogue to the design matrix condition assumed in high dimensional linear

model literature. Finally, condition (C5) allows the dimensionality of the feature variable to

be ultra-high and imposes additional constraints for the choices of the bandwidth and two

tuning parameters.

Theorem 3: Under Conditions (C1)-(C5), there exists a local minimizer λ̂n for Ln(λn, f̂λn)

such that with probability tending to one,

(a) E
{
l
(
Y, f̂λ̂n

)}
converges to E

{
l
(
Y, f0

)}
.

(b) For m = 1, ..., q, λ̂nm > 0.

(c) For m = q + 1, q + 2, · · · , pn, λ̂nm = 0.

The first part of Theorem 3 implies that the loss of the estimated prediction function

converges to the Bayes risk. The last two conclusions in Theorem 3 show that the proposed

estimator has an oracle property, that the λ̂nm’s associated with important feature variables

should be non-zero, i.e., the estimated function does depend on important variables. More

importantly, the proposed method can estimate the predicted function as if we knew which

variables are important in the truth. The proof of Theorem 3(a) entails careful examination

of the stochastic variability of Ln(λn, f̂λn), for which we first establish a preliminary bound

for f̂λn and then appeal to some concentration inequalities for empirical processes with

metric entropy as derived from Theorem 2. To prove Theorem 3(b) and (c) in the theorem,

we examine the KKT conditions to show that the oracle estimators, i.e., λnm is known to
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be zero for m > q, satisfies the KKT conditions with probability tending to one. Again,

concentration inequalities for empirical processes are needed in technical arguments in the

proof.

Proof. In the following proof, we use C to denote a constant that does not depend on n

but may depend on q. We prove the main theorem based on Theorems 1 and 2 as given in

Appendix. To prove Theorem 3, we consider a restricted space for λn:

S = {λn = (λn1, ..., λnq,0) : M > λnj > 0 for 1 6 j 6 q}.

That is, S is an oracle space for which we know which features are important. For any

λn ∈ S, we define

f̂λn = arg min
f
Ln(λn, f),

where we recall

Ln(λn, f) = Pn [l {Y, fλn(X)}] + γ1n‖f‖2Hλn,σn
+ γ2nP (λn).

Clearly, under the strictly convexity condition C1, f̂λn exists and is unique. Finally, we define

λ̃n = arg min
λn∈S

Ln(λn, f̂λn).

In many literature, λ̃n is called the oracle estimator for λn since we know which features are

important.

The whole proof can be divided into three steps. First, we show that the oracle estimator

λ̃n leads to the prediction function that attains the Bayesian risk asymptotically. Second, we

use the first step result to prove that λ̃nm is strictly positive for m = 1, ..., q with probability

tending one. In the last step, we show that λ̃n is a local minimizer for Ln(λn, f̂λn) by

verifying the KKT conditions. With all these results, Theorem 3 holds if we choose λ̂n = λ̃n.

For convenience of notation, we use C to denote any constant depending on q.

Step 1. We first show that with probability tending to 1, the prediction loss for f̂λ̃n converges

to the Bayesian risk, i.e., E
{
l(Y, f̂λ̃n)

}
converges to E {l(Y, f0)}. To this end, for a fixed
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λ∗n = (λ∗1, λ
∗
2, · · · , λ∗q,0), where λ∗j > 0, for 1 6 j 6 q, and set to be greater than M/2,

which results in 0 penalty for important variables, from the proof of (i) in Theorem 1, there

exits f ∗n ∈ Hλ∗n,σn which only depends on X1, ..., Xq such that d2(f0, f
∗
n) → 0. In fact, the

proof of Theorem 1 shows that this function can be obtained from the reproducing kernel

Hilbert space generated by the Gaussian kernel in the space of (X1, ..., Xq). Therefore, we can

choose f ∗n such that d2(f0, f
∗
n) 6 Cσn

q
2 using the construction in Theorem 4.26 of Steinwart

and Christmann (2008). Consequently, condition C2 implies Pl(Y, f ∗n) − Pl(Y, f0) 6 Cσqn.

Moreover, according to Lemma 5.15 of Steinwart and Christmann (2008),

inf
f∈Hλ∗n,σn

{
Pl(Y, f) + γ1n‖f‖2Hλ∗n,σn

}
−Pl(Y, f ∗n)

6 inf
f∈Hλ∗n,σn

{
Pl(Y, f) + γ1n‖f‖2Hλ∗n,σn

}
− inf

f∈Hλ∗n,σn

Pl(Y, f)

6 Cγ1n.

So we obtain

inf
f∈Hλ∗n,σn

{
Pl(Y, f) + γ1n‖f‖2Hλ∗n,σn

}
−Pl(Y, f0) 6 C(γ1n + σqn). (A.1)

On the other hand, by the definition of (λ̃n, f̂λ̃n), we have

Pnl(Y, f̂λ̃n) + γ1n‖f̂λ̃n‖
2
H

λ̃n,σn
+ γ2nP (λ̃n)

6 Pnl(Y, f̃
∗
n) + γ1n‖f̃ ∗n‖2Hλ∗n,σn

+ γ2nP (λ∗n),

where f̃ ∗n is the function in Hλ∗n,σn that attains the minimum
{
Pl(Y, f) + γ1n‖f‖2Hλ∗n,σn

}
.

Equivalently,

(Pn −P)l(Y, f̂λ̃n) + γ1n‖f̂‖2H
λ̃n,σn

+ Pl(Y, f̂λ̃n) + γ2nP (λ̃n)

6(Pn −P)l(Y, f̃ ∗n) + γ1n‖f̃ ∗n‖2Hλ∗n,σn
+ Pl(Y, f̃ ∗n) + γ2nP (λ∗n).

Using (A.1), this gives

(Pn −P)l(Y, f̂λ̃n) + γ1n‖f̂‖2H
λ̃n,σn

+ Pl(Y, f̂λ̃n) + γ2nP (λ̃n)

6 (Pn −P)l(Y, f̃ ∗n) + Pl(Y, f0) + γ2nP (λ∗n) + C(γ1n + σqn). (A.2)
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since P (λ∗n) = 0, we have

Pl(Y, f̂λ̃n)−Pl(Y, f0) 6 (Pn −P)
{
l(Y, f̃ ∗n)− l(Y, f̂λ̃n)

}
+ C(γ1n + σqn).

Clearly, ‖f̂λ̃n‖Hλ̃n,σn
6 Cγ

−1/2
1n , ‖f̃ ∗n‖Hλ∗n,σn

6 Cγ
−1/2
1n and by Vert and Vert (2006), we have

‖f̂λ̃n‖∞ 6 Cσ
−q/2
n γ

−1/2
1n , ‖f̃ ∗n‖∞ 6 Cσ

−q/2
n γ

−1/2
1n . We finally conclude

Pl(Y, f̂λ̃n)−Pl(Y, f0) 6 sup
f∈Fn,g∈Gn

(Pn −P) {l(Y, g)− l(Y, f)}+ C(γ1n + σqn), (A.3)

where

Fn ≡

{
f(x) =

n∑
i=1

αiκλ̃n,σn(xi,x) : ‖f‖H
λ̃n,σn

6 Cγ
−1/2
1n , ‖f‖∞ 6 Cσ−q/2n γ

−1/2
1n

}
and Gn is defined the same way except that λ̃n is λ∗n and Hλ̃n,σn

is Hλ∗n,σn .

From Theorem 2, we have

logN[]

(
ε,Fn, ‖ · ‖L2(P )

)
6 Cσ−(1−v/4)qn ε−vγ

−v/2
1n

for any constant v ∈ (0, 2). By Condition C1, it holds that for any f1, f2 ∈ Fn,

‖l(Y, f1)− l(Y, f2)‖L2(P ) 6 C‖f1 − f2‖L2(P )

We obtain

logN[]

(
ε, {l(Y, f) : f ∈ Fn} , ‖ · ‖L2(P )

)
6 Cσ−(1−v/4)qn ε−vγ

−v/2
1n .

On the other hand, from condition C1, ‖l(Y, f̂λ̃n)‖L2(P ) 6 Cσ
−q/2
n γ

−1/2
1n so using Theorem

2.14.2 in van der Vaart and Wellne (1996), it gives

E
{

sup
f∈Fn
|(Pn −P)l(Y, f)|

}
6 Cn−1/2

∫ Cσ
−q/2
n γ

−1/2
1n

0

√
1 + logN[](ε, {l(Y, f) : f ∈ Fn, ‖ · ‖L2(P ))}dε

6 Cn−1/2σ−(1−3v/8)qn γ
−1/2
1n . (A.4)

From the Talagrand inequality (Wainwright (2006)) and Lipschitz continuity of l(y, f) in f ,

we have

Pr

[
sup
f∈Fn
{|(Pn −P)l(Y, f)|} − E

{
sup
f∈Fn
|(Pn −P)l(Y, f)|

}
>
tσ
−q/2
n γ

−1/2
1n√
n

]
6 2e

− 1
2

t2

wn+1
3 t/
√
n

(A.5)
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where

wn = sup
f∈Fn

var {l(Y, f)}σqnγ1n + 2|E sup
f∈Fn

(Pn −P)l(Y, f)|σq/2n γ
1/2
1n .

We particularly choose t =
√
Ca−1n and an = σ

(1−3v/8)q
n γ

1/2
1n . Note supf∈Fn var {l(Y, f)} 6

Cσ−qn γ−11n , then (A.4) and (A.5) yield

Pr

[{
sup
f∈Fn
|(Pn −P)l(Y, f)|

}
>
√
Cn−1/2a−1n

]
62 exp(− C

a2n + n−1/2an
).

The same inequality holds for Pr
[{

supf∈Gn |(Pn −P)l(Y, f)|
}
>
√
Cn−1/2a−1n

]
.

Hence, from equation (A.3), we conclude that with probability at least 1−4 exp(− C
a2n+n

−1/2an
),

it holds

Pl(Y, f̂)−Pl(Y, f0) 6 C
(
n−

1
2a−1n + σqn + γ1n

)
.

n−1/2an = n−1/2+α1(1−3v/8)q+α2/2 → 0, so with probability at least 1−4 exp(−Cn1/2−α1(1−3v/8)q−α2/2),

Pl(Y, f̂)−Pl(Y, f0) 6 Cn−ξ1 ,

where ξ1 = min(1/2 + α1(1 − 3v/8)q + α2/2, α1q, α2). This implies that with probability

tending to 1, lim supnE
{
l(Y, f̂λ̃n)

}
6 E {l(Y, f0)} . Since El(Y, f0) is the minimal risk, it

yields

lim
n→∞

E
{
l(Y, f̂λ̃n)

}
= E {l(Y, f0)}

with probability 1. Further from Condition C5, we obtain that with probability at least

1− 4 exp{−Cn1/2−α1(1−3v/8)q−α2/2},

d2(f̂λ̃n , f0) 6 Cn−ξ1/2. (A.6)

As a note, the main advantage of using truncated penalty in this Step 1 (Equation A.1,

comparing to the objective function under the oracle, i.e., we know which features are truly

important) is that there would be no penalty for λ’s for the oracle estimators. As a result,

the derived convergence rate at this step does not depend on the regularization parameter

for the feature selection, i.e., γ2n. This is necessary for proving the oracle property for the
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proposed method, since γ2n has to vanish slower than other tuning parameters, in order to

make the penalty for the non-oracle estimator relative large.

Step 2. We show that with probability tending to one, λ̃nm > 0 for m = 1, .., q. First, from

Theorem 2, there exits some positive number ε such that

d2(f0,Hλn,σn) > ε

whenever λnm = 0 for some m 6 q. By Condition C1, it gives inff∈Hλn,σn
E {l(Y, f)} −

E {l(Y, f0)} > ε̃ for some ε̃ > 0. Therefore,

1− Pr(λ̃nm > 0,m = 1, ..., q) 6
q∑

m=1

Pr(λ̃nm = 0)

6
q∑

m=1

Pr

[
inf

f∈H
λ̃n,σn

E {l(Y, f)} − E {l(Y, f0)} > ε̃

]

6
q∑

m=1

Pr
[
E
{
l(Y, f̂λ̃n)

}
− E {l(Y, f0)} > ε̃

]
6 4q exp

{
−Cn1/2−α1(1−3v/8)q−α2/2

}
,

where the last step is from the result in Step 1. Therefore, we conclude that with probability

at least

θ1n = 1− 4q exp{−Cn1/2−α1(1−3v/8)q−α2/2},

λ̃nm > 0 for all m = 1, ..., q.

Step 3. We show that λ̃n is a local minimizer. We prove it by verifying the following KKT

conditions:

∂

∂λnm

∣∣∣∣∣
λ̃nm

[
Pn

{
l(Y, f̂λn)

}
+ γ1n‖f̂λn‖2Hλn,σn

+ γ2nP (λn)
]

= 0

for m = 1, ..., q, and

∂

∂λnm

∣∣∣∣∣
λ̃nm=0+

[
Pn

{
l(Y, f̂λn)

}
+ γ1n‖f̂λn‖2Hλn,σn

+ γ2nP (λn)
]
> 0

for m = q + 1, ..., pn. First, from Step 2, we know that the first q equations hold with

probability at least θ1n. It remains to verify the last (pn − q) KKT conditions. To this end,
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we define

g(λn) = Pn

{
l(Y, f̂λn)

}
+ γ1n‖f̂λn‖2Hλn,σn

,

where f̂λn is the optimal solution of Ln(λn, f) so takes form

f̂λn(X) =
n∑
j=1

α̂j(λn)κλn,σn(Xj,X) = α̂(λn)ᵀKλn(X,X).

Here, Kλn is the kernel matrix (κλn,σn(Xi,Xj)) and α̂(λn) is the vector of (α̂i(λn)). Fur-

thermore, by performing a functional differentiation for the objective function with respect

to f , f̂λn satisfies the functional equation

Pnl2(Y, f̂λn)h(X) + 2γ1n〈h(X), f̂λn(X)〉 = 0 (A.7)

for any h(X) =
∑n

j=1 ξjκλn,σn(Xj,X).

After differentiating g(λn) with respect to λnm and evaluating at λnm = 0, we have

∂g

∂λnm
= Pnl2(Y, f̂λn)

∂f̂λn
∂λnm

(X) + γ1n
∂

∂λnm
(α̂(λn)ᵀKλnα̂(λn))

where

∂f̂λn
∂λnm

(X) =
n∑
j=1

∂α̂j(λn)

∂λnm
κλn,σn(Xj,X) +

n∑
j=1

α̂j(λn)
∂κλn,σn(Xj,X)

∂λnm

=
n∑
j=1

∂α̂j(λn)

∂λnm
κλn,σn(Xj,X) +

n∑
j=1

α̂j(λn)κλn,σn(Xj,X)κ(Xjm, Xm).

As a result of (A.7),

∂g

∂λnm
= Pnl2(Y, f̂λn)

{
n∑
j=1

α̂j(λn)κλn,σn(Xj,X)κn(Xjm, Xm)

}
+γ1nα̂(λn)ᵀ

∂

∂λnm
Kλnα̂(λn).

Therefore, we obtain

∂Ln(λn, f̂λn)

∂λnm
|λ̃nm=0+

=(Pn −P)l2(Y, f̂λ̃n)

{
n∑
j=1

α̂j(λ̃n)Kλ̃n
(Xj,X)κn(Xjm, Xm)

}
+ γ1nα̂(λ̃n)ᵀ

∂

∂λnm
Kλ̃n

α̂(λ̃n)

+ Pl2(Y, f̂λ̃n)

{
n∑
j=1

α̂j(λ̃n)Kλ̃n
(Xj,X)κn(Xjm, Xm)

}
+ γ2n

∂Pm(λ̃nm)

∂λnm
.

As a note, since λ̃n takes value zero at its jth component when j > q, any term in the above

expression depends on X only through Xq, the first q components of X.
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On the other hand, we have

Pl2(Y, f̂λ̃n)

{
n∑
j=1

α̂j(λ̃n)Kλ̃n
(Xj,X)κn(Xjm, Xm)

}

= P
{
l2(Y, f̂λ̃n)− l2(Y, f0)

}{ n∑
j=1

α̂j(λ̃n)Kλ̃n
(Xjq,Xq)κn(Xjm, Xm)

}
,

since any direction derivative of the expected loss function at f0 is zero. By Condition C3,

since l2(Y, f) is locally Lipschitz continuous with respect to f at f0 in L2(P ), it holds

|Pl2(Y, f̂λ̃n)

{
n∑
j=1

α̂j(λ̃n)Kλ̃n
(Xj,X)κn(Xjm, Xm)

}
|

6 C‖f̂λ̃n − f0‖L2(P )‖

{
n∑
j=1

α̂j(λ̃n)Kλ̃n
(Xjq,Xq)κn(Xjm, Xm)

}
‖L2(P )

= C‖f̂λ̃n − f0‖L2(P )

×E
[ n∑
i,j=1

α̂j(λ̃n)α̂l(λ̃n)κn(Xjm, Xm)κn(Xlm, Xm)E
{
Kλ̃n

(Xjq,Xq)Kλ̃n
(Xlq,Xq)|Xm

} ]1/2
.

According to Condition (C.4),

n∑
i,j=1

α̂j(λ̃n)α̂l(λ̃n)κn(Xjm, Xm)κn(Xlm, Xm)E
{
Kλ̃n

(Xjq,Xq)Kλ̃n
(Xlq,Xq)|Xm

}

6 Λmax(X−q)
n∑
j=1

{
α̂j(λ̃n)κn(Xjm, Xm)

}2

6 cσ−1/2n Λmin(X−q)
n∑
j=1

{
α̂j(λ̃n)κn(Xjm, Xm)

}2

,

so from the second half of condition (C.4),

E

[
n∑

i,j=1

α̂j(λ̃n)α̂l(λ̃n)κn(Xjm, Xm)κn(Xlm, Xm)E
{
Kλ̃n

(Xjq,Xq)Kλ̃n
(Xlq,Xq)|Xm

}]

6 cσ−1/2n E

[
Λmin(X−q)

n∑
j=1

{
α̂j(λ̃n)κn(Xjm, Xm)

}2
]

6 cE

[
E {Λmin(X−q)|Xq}

n∑
j=1

α̂j(λ̃n)2

]

6 cE

[
n∑

i,j=1

α̂j(λ̃n)α̂l(λ̃n)E
{
Kλ̃n

(Xjq,Xq)Kλ̃n
(Xlq,Xq)

}]
= c‖f̂λ̃n(X)‖2L2(P ).
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Thus, we conclude

|Pl2(Y, f̂λ̃n)

{
n∑
j=1

α̂j(λ̃n)Kλ̃n
(Xj,X)κn(Xjm, Xm)

}
|

6 C‖f̂λ̃n − f0‖L2(P )‖f̂λ̃n‖L2(P )

6 C‖f̂λ̃n − f0‖L2(P )

(
‖f̂λ̃n − f0‖L2(P ) + ‖f0‖L2(P )

)
6 Cn−ξ1/2.

where the last step uses the result from (A.6) and the boundedness of ‖f0‖L2(P ).

Hence, for m > q, since
∑n

i,j=1 α̂i(λ̃n)Kλ̃n
(Xi,Xj)κn(Xim, Xjm)α̂j(λ̃n) > 0, we have

P(
∂

∂λnm

∣∣∣∣∣
λ̃nm=0+

[
Pn {l(Y, fλn)}+ γ1n‖f‖2Hλn,σn

+ γ2nP (λn)
]
6 0)

=P(
∂

∂λnm

∣∣∣∣∣
λ̃m=0+

{g(λn) + γ2nP (λn)} 6 0)

=P

[
(Pn −P)l2(Y, f̂λ̃n)

{
n∑
j=1

α̂j(λ̃n)Kλ̃n
(Xj,X)κn(Xjm, Xm)

}

6 −γ1n
n∑

i,j=1

α̂i(λ̃n)Kλ̃n
(Xi,Xj)κn(Xim, Xjm)α̂j(λ̃n)

−Pl2(Y, f̂λ̃n)

{
n∑
j=1

α̂j(λ̃n)Kλ̃n
(Xj,X)κn(Xjm, Xm)

}
− γ2n

∂P (λn)

∂λnm

∣∣∣∣
λ̃nm=0+

]

6 P

[
(Pn −P)l2(Y, f̂λ̃n)

{
n∑
j=1

α̂j(λ̃n)Kλ̃n
(Xj,X)κn(Xjm, Xm)

}

6 n−ξ1/2 − γ2n
∂Pm(λnm)

∂λnm

∣∣∣∣
λ̃nm=0+

]
.

This gives

P

[
∂

∂λnm

∣∣∣∣∣
λ̃nm=0+

(Pn {l(Y, fλn)}+ γ1n‖f‖2Hλn,σn
+ γ2nP (λn)) 6 0

]

6 P

[
|(Pn −P)l2(Y, f̂λ̃n)

{
n∑
j=1

α̂j(λ̃n)Kλ̃n
(Xj,X)κnk(Xjm, Xm)

}
| > −n−ξ1/2 + c0γ2n

]

6 P

[
|(Pn −P)l2(Y, f̂λ̃n)

{
n∑
j=1

α̂j(λ̃n)Kλ̃n
(Xj,X)κnk(Xjm, Xm)

}
| > c0γ2n/2

]
. (A.8)

The last two steps use the condition that ∂/∂P (λn)
∣∣∣
λnm=0+

> c0 > 0 and that from Condition
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C5, α3 < ξ1/2. To obtain an upper bound for (A.8), we need to estimate

(Pn −P)l2(Y, f̂λ̃n)

{
n∑
j=1

α̂j(λ̃n)Kλ̃n
(Xj,X)κn(Xjm, Xm)

}
.

Note l2(Y, f̂λ̃n)
{∑n

j=1 α̂j(λ̃n)Kλ̃n
(Xj,X)κn(Xjm, Xm)

}
belongs to class

Ln =
{
l2 {Y, f1(X)} f2(X) : ‖f1‖H

λ̃n,σn
6 Cγ

−1/2
1n , ‖f2‖H

λ̃n,σn
6 Cγ

−1/2
1n ,

f1 is in a neighborhood of f0 in L2(P )} .

Following the same argument as in Step 1 and using the Lipschitz continuity of l2(y, f) in

f , we have for v ∈ (0, 2),

logN[]

(
ε,Ln, ‖ · ‖L2(P )

)
6 Cσ−(2−v/2)qn γ−v1n ε

−v.

In addition,

‖l2(Y, f)

{
n∑
j=1

αjλnκλn,σn(Xj,X)κn(Xjm, Xm)

}
‖L2(P ) 6 Cn−ξ1/2.

We obtain (Theorem 2.14.2 in van der Vaart and Wellner (1998))

E

{
sup
g∈Ln
|(Pn −P)g|

}
6 Cn−1/2σ

−(2− 3v
4
)q

n γ
− v

2
1n n

ξ1(
v
4
− 1

2
) ≡ n−ξ2 ,

where ξ2 = 1
2

+ α1(2− 3v
4

)q + α2
v
2
− ξ1(v4 −

1
2
).

On other hand, since abs
[
l2(Y, f̂λ̃n)

{∑n
j=1 α̂jλ̃nKλ̃n

(Xj,X)κn(Xjm, Xm)
}]

6 Cσ
−q/2−1
n γ

−1/2
1n .

By the Talagrand inequality, we have

P
[

sup
g∈Ln
|(Pn −P)g − E

{
sup
g∈Ln
|(Pn −P)g|

}
)| > t

σ
q/2+1
n γ

1
2
1n

√
n

]
6 2e

− 1
2

t2

wn+1
3 t/
√
n ,

where wn = σq+2
n γ1n supg∈Gn var

(
g
)

+ 2E
{
| supg∈Gn(Pn −P)g|

}
σ
q/2+1
n γ

1
2
1n. Combining the

above results, we obtain

P
[
|(Pn −P)l2(Y, f̂λn)

( n∑
j=1

α̂j(λn)κλn,σn(Xj,X)κn(Xjm, Xm)
)
| > t
√
nσ

q/2+1
n γ

1
2
1n

+ n−ξ2
]

6 2 exp(−1

2

Ct2

1 + n−ξ2σ
q/2+1
n γ

1
2
1n + n−1/2t

). (A.9)

We choose t = C
√
nσ

q/2+1
n γ

1
2
1n(c0γ2n/2 − n−ξ2) in (A.9), which is positive according to
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Condition C5. Constraint α3 < ξ2 Then (A.8) gives

P

[
∂

∂λnm

∣∣∣∣∣
λ̃nm=0+

[
Pn {l(Y, fλn)}+ γ1n‖f‖2Hλn,σn

+ γ2nP (λn)
]
6 0

]

62 exp(−Cnσ2+q
n γ1nγ2n) ≡ 2 exp(−Cnξ3),

where ξ3 = (1−(2+q)α1−α2−α3) > 0. Finally, we conclude that the last (pn−q) inequalities

in the KKT conditions hold with probability at least

1− 2(pn − q) exp(−Cnξ3).

From Condition C5, this probability goes to 1. Hence, λ̃n is a local minimizer with probability

tending to 1 which is exactly the local minimizer, λ̂n, needed for the main theorem. We have

completed the proof.

Remark 1 Recall that Step 1 in the proof to Theorem 3 has established the convergence rate

for the predicted function assuming that we know which feature variables are important, and

in addition, this convergence rate is O(n−ξ1). Thus, after establishing the oracle property of

our proposed approach, we conclude that the same convergence rate applies to the estimated

prediction function f̂λ̂. That is, the prediction error of the estimated prediction function

converges to the minimal error in a polynomial rate of the sample size, regardless of the

number of the unimportant feature variables.

Web Appendix C: Additional Results for Analysis of Gene Expression Data

For the analysis of the gene expression data, the following plot reveals some nonlinear

relationship between Sirt 3 and Fbxo7 using 5-Nearest-Neighbors model.
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Web Figure 2. 5-Nearest-Neighbor Plot of Sirt3 versus Fbxo7 in Real Data Study

5−nearest neighbour

Fbxo7

S
ir

t3

We also redo the analysis using all 31,000 probes without feature screening. The results

of prediction performance and feature selection are in the following table. We notice that

our proposed method gave the comparable small classification error and the most sparse

selection results regarding to the number of selected features (9.1 variables selected on the

average from 500 random splittings). This shows that even without prescreening the probes,

the proposed method still performs better than the other methods.

Web Table 1. Summary of Analysis Results Using 31,000 Probes

Feature selection result classification error

min max avg

Proposed 0 24 9. 1 0.324 (0.057)

HSICLasso 1 31098 2129 0.318 (0.049)

SpAM 3 68 46.2 0.325 (0.058)

l1-SVM 10 27679 8063.7 0.371 (0.057)
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Note: The numbers are the mean of misclassification rates from 500 replicates. The numbers

within parentheses are the median absolute deviations from 500 replicates. “min#” is the

minimum number of the selected features, “max#” is the max number of the selected

features, and “avg.#” is the average number of the selected features in 500 random splittings.

Web Appendix D: Additional Simulation Study

We conducted one additional simulation study with the same setting as the first simu-

lation study in the main paper, but we allowed the dependence among the important

variables X1, X2, · · · , X5 and the unimportant variables X6, · · · , X8 and also between them.

Specifically, corr(X1, X2) = 0.4, corr(X1, X3) = −0.3, corr(X2, X3) = 0.5, corr(X3, X4) =

0.2, corr(X1, X7) = −0.2, corr(X6, X7) = 0.3, corr(X7, X8) = 0.2, while the others were all

independent. We continued to consider sample size n = 100, 200 and 400 and varied the

feature dimension from p = 200, 400 to 1000. Each simulation setting was repeated 500

times. For comparison, we continue to compared our proposed method with HSICLasso and

SpAM and LASSO. The feature selection and prediction results based on 500 replicates are

summarized in the following table. Most of the findings are similar to the first simulation

study in the main paper. Thee true positive rates for all the methods become smaller because

the correlations among important and unimportant variables give more chances for important

variables to be selected as unimportant ones.

[Table 1 about here.]
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Table 1
Results from The Additional Simulation Study with Continuous Outcome

(a) Summary of Feature Selection Performance
Proposed Method HSICLasso SPAM LASSO

p n TPR TNR Avg# TPR TNR Avg# TPR TNR Avg# TPR TNR Avg#
100 100 59.6% 97.0% 5.8 71.7% 77.7% 24.8 93.9% 33.5% 67.8 99.0 % 1.3% 98.7

200 63.4% 99.0% 4.1 88.1% 59.9 % 42.5 99.6% 3.8% 95.8 100.0% 0.1% 99.9
400 70.0% 99.2% 4.3 92.0 % 74.4 % 28.9 100.0% 0.2% 99.8 100.0% 0.1% 99.9

200 100 54.6% 98.5% 5.7 64.5% 86.9% 49.1 88.2% 62.3% 77.9 85.8% 52.2% 97.5
200 61.1% 99.5% 4.0 80.3% 76.2% 44.0 96.6% 33.0% 135.5 99.5% 0.8% 198.5
400 66.1% 99.8% 3.8 91.5 % 82.8% 39.0 99.5% 4.6% 190.9 100.0% 0.1% 199.7

400 100 51.2% 99.1% 6.2 58.7% 89.7% 43.5 81.3% 80.2% 82.3 77.7% 76.4% 97.1
200 60.6% 99.7% 4.1 67.8% 90.7% 40.0 92.3% 61.6% 156.2 88.2 % 51.3% 196.6
400 63.5% 99.9% 3.7 89.8% 86.2% 58.9 97.0% 33.3% 268.5 99.5% 0.7% 397.3

1000 100 45.8% 99.6% 5.9 49.3% 91.1% 91.3 73.4% 91.8% 84.3 72.1% 90.6% 97.1
200 57.2% 99.9% 4.1 58.0% 98.3% 19.5 86.8% 83.9% 164.8 80.8% 80.7% 195.8
400 63.7% 99.9% 3.6 87.6% 90.2% 101.8 92.8% 68.3% 319.2 88.8% 60.8% 394.5

(b) Summary of Prediction Errors
p n Proposed Method HSICLasso SPAM LASSO

100 100 6.733 (0.441) 7.085 (0.258) 7.047 (0.310) 36.815 (10.144)
200 5.906 (0.401) 6.754 (0.094) 7.660 (0.430) 8.546 (0.429)
400 5.216 (0.339) 6.532 (0.058) 7.335 (0.332) 7.107 (0.147)

200 100 6.693 (0.471) 6.986 (0.328) 6.536 (0.311) 9.066 (0.687)
200 5.927 (0.251) 6.631 (0.143) 6.461 (0.295) 38.112 (8.374)
400 5.485(0.150) 6.244 (0.058) 7.064 (0.316) 8.307 (0.351)

400 100 6.876 (0.561) 7.310 (0.432) 6.521 (0.368) 8.100 (0.471)
200 6.042 (0.276) 6.731 (0.428) 6.161 (0.240) 8.998 (0.555)
400 5.674 ( 0.098) 6.310 (0.056) 6.206 (0.182) 34.457 (5.114)

1000 100 7.203 (0.658) 8.021 (0.315) 6.775 (0.346) 7.954 (0.343)
200 6.325 (0.333) 6.880 (0.218) 6.177 (0.223) 7.906 (0.306)
400 5.864 (0.128) 6.742 (0.075) 5.972 (0.146) 8.581 (0.342)

Note. In (a), “TPR” is the true positive rate, “TNR” is the true negative rate, and “Avg#”
is the average number of the selected variables from 500 replicates. In (b), the numbers are
the mean squared errors from prediction, and the numbers within parentheses are the median
absolute deviations from 500 replicates.


