
S1 Gene tree proposal algorithm

Figure S1: The proposal algorithm used when sampling a distribution of gene trees while

estimating rates for a locus.
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S2 Species trees for ratites and mammals
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Figure S2: The full avian phylogeny used in this study, from Sackton et al. (2019) and Hu

et al. (2019).
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Figure S3: The full mammal phylogeny used in this study, from the UCSC 100-way vertebrate

alignment Blanchette et al. (2004) and Hu et al. (2019).

S3 Correctness of the proposed MCMC algorithm for

gene tree inference

Case 1: Inferring branch length on a 2-leaf tree

To check the performance of the proposed MCMC algorithm for estimation of gene tree

branch lengths, we first examine the simplest case: a 2-leaf tree. In this case, the two
3



lineages only coalesce in the root species. There is no node above the root node on the

gene tree to constrain our sampling. We set a hard threshold: 10 × θroot
2

as the maximum

height of the gene tree. Inferring the coalescent time is the same as inferring the position of

the gene tree root. The Metropolis algorithm uses the uniform distribution centered at the

current root node position as the proposal distribution. The step size is set as θ
2
× δ, where

δ ∈ [0.1, 5] is adaptive to ensure a reasonable acceptance rate. When the acceptance rate is

too high, we will scale δ by a factor of 2; if the acceptance rate is too low, we will scale down

δ to δ
2
. The proposal distribution is also constrained by the species tree and the upper limit

of gene tree height that we set.

In this simple case, we can estimate some statistics of the posterior distribution, e.g., the

posterior mean of the branch length, l, using numerical integration.

E[l | Y ] =

∫
lf(l | Y )dl ≈

∑
i

lif(li | Y )∆l =

∑
i lif(Y | li)f(li)∆l∑
i f(Y | li)f(li)∆l

Case 2 - Inferring gene tree topology and branch lengths on a 3-leaf

tree

To estimate the posterior probability of a gene tree topology, using Bayes’ theorem, we can

write the posterior probability as:

P (Gtop | Y ) =
P (Y | Gtop)P (Gtop)

P (Y )
(S1)
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Figure S4: Comparison between our MCMC algorithm and numerical integration on some

summary statistics of posterior distributions of coalescent time in the 2-leaf tree case. We ran

the experiment under different number of base pairs ranging from 50 to 5000. We estimated

posterior mean, standard deviation, tail probabilities: i.e. 5% quantile and 95% quantile

using both MCMC sampling output and numerical integration. The x-axis represents results

using numerical integration and the y-axis corresponds to the MCMC output. The line in

each plot is y = x. For all four statistics, estimation results using the two methods fall

almost perfectly along the y = x line.

We estimate P (Y ) by P (Y ) = EG[P (Y | G)] ≈ 1
N

N∑
i=1

P (Y | Gi), where a large number
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posterior density plot: mcmc vs un−norm density
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Figure S5: Posterior density plots in the 2-leaf tree case. The left plot corresponds to the

posterior distribution of coalescent time with 50 base pairs, and the right plot is for 5000 base

pairs. Histograms are based on MCMC sampling output. Red curves are plotted based on

un-normalized posterior densities on grid points. Blue vertical lines are the true coalescent

time. The red curves and histograms align very well, indicating our MCMC algorithm is

sampling from the targeted posterior distributions. As the number of base pairs increases

from 50 to 5000, the posterior distribution becomes more concentrated around the true

coalescent time.

N of gene trees are simulated from its prior distribution. P (Y | Gtop) =
∫
P (Y | G)P (G |

Gtop)dG ≈ 1
N1

i=N1∑
i=1

P (Y | Gi), where Gi, i = 1, · · · , N1 are N1 prior trees with the sample

topology Gtop. P (Gtop) can be estimated by the sampling proportion of the N prior trees

with the particular topology denoted by Gtop. For a 3-leaf tree, the prior probability of each
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gene tree topology can be analytically calculated by integrating out all branch lengths. Let

G1 denote the gene tree topology that is the same as the species tree (T ) topology, and let

G2 and G3 be the remaining two gene tree topologies.

P (G1 | T,Θ) = 1− 2

3
exp(− 2

θ1
l1)

P (G2 | T,Θ) = P (G3 | T,Θ) =
1

3
exp(− 2

θ1
l1)

where l1 is the branch length on the species tree from the root to the first speciation

event, and θ1 is the population size parameter of the species before the first speciation event.

So Equation S1 can be approximated by:

P (Gtop | Y ) ≈

1
N1

i=N1∑
i=1

P (Y | Gi)P (Gtop)

1
N

N∑
i=1

P (Y | Gi)

(S2)

We also checked the correctness of our MCMC algorithm in inferring coalescent time

under the 3-leaf tree case. The results are summarized in Figure S7 and S8.

S4 Correctness of PhyloAcc-GT’s sampling algorithm

for gene tree prior distribution

In PhyloAcc-GT we have implemented an algorithm to sample gene trees from their prior

distribution conditioning on a species tree according to the multispeices coalescent model

(Rannala and Yang, 2003). We use a simulation study to show that our sampling algorithm
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Figure S6: Estimating posterior probabilities of different gene tree topologies in the 3-leaf

tree case. The x-axis corresponds to estimation using Equation S2. The y-axis corresponds to

the estimation using sampling frequencies of our MCMC algorithm. We generated 100 loci:

i.e. 100 gene trees and base pairs based on each gene tree. The dots represent the estimation

results for the 100 loci. The top-left plot compares estimation results for the posterior

probability of the true gene tree topology. The remaining three plots are estimation results

for the posterior probabilities of each of the three possible gene tree topologies. In all cases,

the estimations by MCMC sampling frequency and by Equation S2 are well aligned along

the y = x line, indicating the correctness of our algorithm.
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Figure S7: Correctness of the MCMC algorithm in inferring the posterior mean and variance

of the two coalescent times in the 3-leaf tree case. Left plots correspond to the posterior

mean and variance of the first coalescent time, and the plots on the right correspond to the

second coalescent time. The x-axis corresponds to approximating the estimate by sampling

branch lengths from the conditional prior distributions and approximating expectations by

sample averages, similar to Equation (S2). The two estimation methods are very close to

each other.

is correct. We show that several characteristics of the sampled gene trees match those of

gene trees sampled from Phybase (Liu and Yu, 2010) in R given the sample species tree.

We fix the species tree as:“((A : 0.05#0.01, B : 0.05#0.01) : 0.05#0.08, ((C : 0.06#0.01, D :
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Figure S8: Correctness of the MCMC algorithm in estimating tail probabilities, i.e. 5% and

95% quantiles of the posterior distributions of the two coalescent times in the 3-leaf tree case.

Upper plots are for the first coalescent time, and lower plots are for the second coalescent

time. The two estimation methods gives very similar results, indicating the correctness of

our MCMC algorithm.

0.06#0.01) : 0.02#0.06, E : 0.08#0.01) : 0.02#0.05)#0.02;”, with topology plotted in Figure

S9.

For each leaf node, we plot the histogram of its branch length. See Figure S10.

We also plot the histograms of the branch lengths of internal nodes of the most sampled

gene tree topology in Figure S11.
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Figure S9: The species tree topology for simulation study in Section S4, and gene tree

sampling frequencies using PhyloAcc-GT and Phybase. Total number of samples is 50,000.

The top right figure shows that sampling frequencies at various tree topology using PhyloAcc-

GT (black dots) and Phybase (red plues) are very close to each other. The bottom left

figure focuses on the low frequency end of the top right figure. With five extant species,

the total number of rooted gene tree topologies is 105. The most frequently sampled gene

tree topology matches the species tree topology in both algorithms. The corresponding

frequencies are around 35%.

Lastly we plot the histograms of some most frequently sampled internal nodes in Figure

S12.
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Figure S10: Overlapping histograms of sampled branch lengths of leaf nodes under PhyloAcc-

GT and Phybase. For all 5 extant species, the sampling distributions of their branch lengths

are very similar between PhyloAcc-GT and Phybase. The sampling distributions of the

branch length of species A and the branch length of species B are very similar. The sampling

distributions of the branch length of species C and the branch length of species D are also

very similar. This result arises because in our samples, the genes in species A and B are

most likely to coalesce first before coalescing with other lineages. A similar situation occurs

with species C and D.
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Figure S11: Overlapping histograms of some of the most frequently sampled internal nodes.

The sampling distributions are similar between PhyloAcc-GT and Phybase.

S5 Analyzing estimated rates

For PhyloAcc-GT and PhyloAcc, we also compare their estimated conserved rate and non-

conserved rate under different patterns of acceleration. The result is shown in Figure S13. For

all cases, rates estimated by PhyloAcc-GT have higher correlations with the underlying true

rates than rates estimated by PhyloAcc. PhyloAcc tends to overestimate rates, especially

for the non-conserved rates, as can be seen in Figure S14, S15 and S16. The overestimation
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Figure S12: Overlapping histograms of some of the most frequently sampled internal nodes.

The sampling distributions are similar between PhyloAcc-GT and Phybase.

is caused by ignoring gene tree heterogeneity due to incomplete lineage sorting, as well as

the stationary distributions of nucleotide frequencies.

Our algorithm also gives good estimates of the frequencies of different nucleotides in

the stationary distribution. We use the posterior mode as its point estimate. Plots of the

estimated versus the true frequency of adenine in the stationary distribution are shown in

Figure S17 for two independent accelerations (Figure 2C). Relationships are very similar for

the cases of a single acceleration (Figure 2B) and three independent accelerations (Figure

14
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Figure S13: Comparing correlations between true rates and estimated ones by PhyloAcc-GT

and PhyloAcc.

2D), hence they are omitted. The correlations between the two are 0.927, 0.9 and 0.935 in

the three simulation cases Figure 2. Regressing the estimated πA against the true πA without

an intercept term, the regression coefficient for two independent accelerations (Figure 2C)

is 1.001, and 0.989 and 0.986 for a single acceleration (Figure 2B) and three independent

accelerations (Figure 2D) respectively.
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Figure S14: Comparing estimation of conserved and non-conserved rates by PhyloAcc-GT

and PhyloAcc with sequences simulated with a single acceleration (Figure 2B). The line is

Y=X.

S6 Details on analyzing *BEAST2 results and more

investigations

S6.1 Identifying accelerated branches

As *BEAST2 does not explicitly calculate the probability of acceleration for each lineage,

we use the following method to estimate P (Z = 2 | Y ) from *BEAST2 in order to compare
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Figure S15: Comparing estimation of conserved and non-conserved rates by PhyloAcc-GT

and PhyloAcc with sequences simulated with two independent accelerations Figure 2C). The

line is Y=X.

with PhyloAcc-GT and PhyloAcc.

For a locus, we output posterior samples of substitution rates on all species tree branches

from MCMC (after thinning at 1000, and discarding the first 25% MCMC steps as burn-in).

In each MCMC step (m), we compare the substitution rate on a branch (s), denoted as rms

to the substitution rate on its parent branch (rmpa(s)). If rms > rmpa(s) or if rms = rmpa(s) and

branch pa(s) is accelerated, we treat branch s as accelerated. We estimate P (Zs = 2 | Y )

as the proportion of times branch s is treated as accelerated out of all the MCMC runs.
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Figure S16: Comparing estimation of conserved and non-conserved rates by PhyloAcc-GT

and PhyloAcc with sequences simulated with three independent accelerations (Figure 2D).

The line is Y=X.
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Figure S17: Estimated stationary probability of adenine v.s., the true probability with se-

quences simulated with a single acceleration (Figure 2B).
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S6.2 Identifying accelerated branches based on other criteria

In this section, we explore the performance of *BEAST2 in identifying accelerated branches

using different criteria.

For each branch s, we record all of its posterior samples of substitution rates. As a

point estimate r̂s, we use both 1) posterior mean, and 2) posterior median. We also set

different thresholds when determining whether a branch is accelerated: a) r̂s > r̂pa(s), b)

r̂s > r̂pa(s) + σ̂pa(s), and c) r̂s > r̂pa(s) + 2σ̂pa(s). σ̂s is the sample standard deviation of the

substitution rate on branch s.

Results on average probability of acceleration in each branch of the tree under different

acceleration patterns and θ specifications are plotted below. Each bar represent a probability

of acceleration for a branch averaged over results from 100 loci calculated under an alternative

criterion:

1. “mean, 0 threshold”: Acceleration is determined by comparing the posterior mean of

a branch’s substitution rate to its parent’s mean rate.

2. “median, 0 threshold”: Acceleration is determined by comparing the posterior median

of a branch’s substitution rate to its parent’s median rate.

3. “median, median as threshold”: We first estimate each branch’s substitution rate by

its posterior median. We take the median of all branches’ estimated substitution rates,

denoted as ¯̂r, as a threshold for acceleration. If a branch’s estimated rate is greater

than ¯̂r, we treat this branch as accelerated, otherwise, the branch is not accelerated.
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4. “median, std as threshold”: We use the same approach as the previous one (point 3),

i.e., using posterior median as the point estimate of substitution rate r̂s. However, we

have more strict rule in selecting a branch as accelerated. For each branch, we also

calculate the sample standard deviation of the posterior distribution of its substitution

rate σ̂s. A branch is considered accelerated if r̂s > r̂pa(s) + σ̂pa(s).

5. “median, 2std as threshold”: similar to the previous one (point 4), but we require a

branch’s rate to satisfy r̂s > r̂pa(s)+2σ̂pa(s) in order to treat it as an accelerated branch.

We observe that the first two criteria produces similar results. They tend to give smaller

probabilities of acceleration than the later three criteria. Using the first two criteria, most

branches in all acceleration cases tend to have low probabilities of acceleration (below 0.5).

They fail to identify accelerated branches in most scenarios. The remaining three criteria

tend to give much higher probabilities of accelerations across branches. As a result, they have

higher false positive rates (non-accelerated branches are falsely identified as accelerated).

S7 Additional simulations with different priors for sub-

stitution rates

S7.1 Simulation result: decreasing r2/r1 ratio

The ability of PhyloAcc-GT to choose the correct model, and to correctly identify accel-

erated branches, depends on the relative magnitude of the accelerated rate compared to
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the conserved rate. In the manuscript, we fixed the ratio of the mean of r2 to the mean

of r1 to be 2/0.2 = 10. In this section, we gradually decrease the ratio of the means,

and analyze PhyloAcc-GT’s performance. In all simulations, we fix the prior for r2 to

be r2 ∼ Gamma(40, 0.5), with a mean rate of 2, while changing the priors of r1 from

Gamma(300, 0.001), Gamma(400, 0.001), · · · , Gamma(600, 0.001). These Gamma distribu-

tions correspond to rates with means equal to 0.3, 0.4, 0.5, and 0.6. We generate 100 loci

for each combination of r1 and acceleration pattern.

Fig. S24 to Fig. S26 show boxplots of log Bayes Factors as r1 gets closer to r2 under

different acceleration patterns. For both logBF1 ad logBF2, we observe decreasing trends

as r1 increases towards r2. At larger r1s, there are a few loci having negative logBF1, i.e.,

favoring the null model over the restricted model when there are one or two independent

accelerations on the tree. As r1 gets larger, it becomes harder to distinguish the conserved

and the non-conserved rate. In the two scenarios where there are one or two independent

accelerations, the total number of branches in the accelerated state are much fewer than the

total number of branches in the non-accelerated state, hence making it harder to accurately

infer the non-conserved rates, and distinguish them from the conserved rates. There are

also a few loci favoring the full model over the restricted model, as r1 increases. However,

for most loci, both logBF1 and logBF2 are significantly greater than 0. Even when r1s are

around 0.6, medians of logBF1 are all above 5 in all three acceleration patterns, and medians

of logBF2 are above 4.

We also plot P (Z = 2 | Y ) for all branches on the tree for each r1 and acceleration
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pattern combination. Identifying accelerated branches is relatively robust to increases in r1.

We observe a slight increase in the variance of the P (Z = 2 | Y ) on internal branches in

the accelerated state (e.g., (A1,B1) in the case one independent acceleration, and (C1,C2)

in the case two independent accelerations). However, for most loci, P (Z = 2 | Y )s for

accelerated branches are above 0.5, and for the majority of loci, the posterior probability

of acceleration is above 0.75. Variation of P (Z = 2 | Y ) increases for tip lineages D1 and

F1 under the three independent acceleation case. For each lineage, D1 or F1 is the only

branch that is accelerated, limiting the amount of information used to infer its substitution

rate, and distinguish the accelerated rate from the conserved rate. As for non-accelerated

branches, more than 95% of the time, their posterior probabilities of acceleration are at or

nearly 0 even when r1 has a mean of 0.6.

Lastly, comparing AUPRC curves between results by PhyloAcc-GT and by PhyloAcc

supports that PhyloAcc-GT’s model performance is increasingly better than PhyloAcc as

the ratio of mean conserve rate to mean non-conserved rate decreases.

S7.2 Simulation result: two accelerated rates

We assume in PhyloAcc and PhyloAcc-GT that there are only three rate categories. All

branches in the accelerated state share the same non-conserved rate r2. In reality, this

assumption may not hold. Without changing our model specifications, we analyze how

PhyloAcc-GT performs when sequences are simulated from four rate categories. Specifically,

we change our prior on r2 from Gamma(10,0.2) to 0.5*Gamma(10,0.2)+0.5*Gamma(15,0.2).
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When simulating sequences, we first sample two non-conserved rates r12 ∼ Gamma(10, 0.2)

and r22 ∼ Gamma(15, 0.2) For each accelerated branch, we randomly choose its substitution

rate from r12 and r22. Other parts of the sequence generating process are not changed. For

each acceleration pattern (1, 2 or 3 independent accelerations on the tree), we simulate 100

loci, and run PhyloAcc-GT.

Under the case one independent acceleration, PhyloAcc-GT prefers the correct model

(the restricted model) in 98% of the loci. While the model selection accuracy is 100% under

the other two acceleration patterns. Fig. S34 show boxplots of P (Z = 2 | Y ) for all branches

on the tree under each acceleration pattern. The result is similar to that obtained when we

simulate with only three rate categories. In all acceleration patterns, P (Z = 2 | Y )s are

close to 1 for accelerated branches. P (Z = 2 | Y )s are at 0 for all non-accelerated branches

except for 2 loci under case one independent acceleration, but all posterior probabilities of

accelerations are below 0.5.

S7.3 Simulation result: every accelerated branch has an unique

accelerated rate

In this subsection, we go one step further from the previous scenario. When generat-

ing sequences, for each accelerated branch, we generate an accelerated rate unique to this

branch from a two-gamma mixture: 0.5*Gamma(10,0.2)+0.5*Gamma(15,0.2). This greatly

increases the variation in accelerated rates, and becomes harder to identify accelerated

branches. As PhyloAcc-GT only assumes one accelerated rate, we think of PhyloAcc-GT as
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trying to estimate an average accelerated rate.

PhyloAcc-GT still correctly identify the restricted model as the best model in most cases.

Under the case one, two, or three independent accelerations, PhyloAcc-GT selects the correct

model (restricted model) 100%, 98%, and 99% of times. When estimating P (Z = 2 | Y ),

PhyloAcc-GT performs similarly as in the previous subsection when there are two accelerated

rates. For a majority of the loci and accelerated branches, P (Z = 2 | Y ) > 0.75. However,

when estimating P (Z = 2 | Y ) for non-accelerated branches, there are three loci (1% of all

loci) that are falsely identified as accelerated in some non-accelerated branches.
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(a) Case A, θ

(b) Case A, 3θ

(c) Case A, 6θ

(d) Case A, 10θ

Figure S18: Average probability of acceleration for accelerated branches under Case A, and

different θ magnitudes.
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(a) Case A, θ

(b) Case A, 3θ

(c) Case A, 6θ

(d) Case A, 10θ

Figure S19: Average probability of acceleration for non-accelerated branches under Case A,

and different θ magnitudes. 26



(a) Case B, θ

(b) Case B, 3θ

(c) Case B, 6θ

(d) Case B, 10θ

Figure S20: Average probability of acceleration for accelerated branches under Case B, and

different θ magnitudes.
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(a) Case B, θ

(b) Case B, 3θ

(c) Case B, 6θ

(d) Case B, 10θ

Figure S21: Average probability of acceleration for non-accelerated branches under Case B,

and different θ magnitudes.
28



(a) Case C, θ

(b) Case C, 3θ

(c) Case C, 6θ

(d) Case C, 10θ

Figure S22: Average probability of acceleration for accelerated branches under Case C, and

different θ magnitudes.
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(a) Case C, θ

(b) Case C, 3θ

(c) Case C, 6θ

(d) Case C, 10θ

Figure S23: Average probability of acceleration for non-accelerated branches under Case C,

and different θ magnitudes.
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Figure S24: Boxplots of log Bayes Factors as the mean conserved rate increases. Case: one

independent acceleration.
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Figure S25: Boxplots of log Bayes Factors as the mean conserved rate increases. Case: two

independent accelerations.
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Figure S26: Boxplots of log Bayes Factors as the mean conserved rate increases. Case: three

independent accelerations.
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Figure S27: Boxplots of P (Z = 2 | Y ) for all branches on the tree as the mean conserved

rate increases. Case: one independent acceleration.
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Figure S28: Boxplots of P (Z = 2 | Y ) for all branches on the tree as the mean conserved

rate increases. Case: two independent accelerations.
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Figure S29: Boxplots of P (Z = 2 | Y ) for all branches on the tree as the mean conserved

rate increases. Case: three independent accelerations.
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Figure S30: AUPRC curves by PhyloAcc-GT and PhyloAcc when r1 is centered at 0.3.
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Figure S31: AUPRC curves by PhyloAcc-GT and PhyloAcc when r1 is centered at 0.4.
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Figure S32: AUPRC curves by PhyloAcc-GT and PhyloAcc when r1 is centered at 0.5.
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Figure S33: AUPRC curves by PhyloAcc-GT and PhyloAcc when r1 is centered at 0.6.
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Figure S34: Boxplots of P (Z = 2 | Y ) for all branches on the tree when there are 4 rate

categories
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Boxplots of P(Z=2|Y) when each accelerated branch has unique rate generated from a 2−gamma mixture

Figure S35: Boxplots of P (Z = 2 | Y ) for all branches on the tree when a locus in each

accelerated branch has an unique accelerated rate.
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S8 Modeling the substitution stationary distribution

improves the estimation of substitution rates

The DNA nucleotide stationary distribution π directly affects the transition rate matrix Q.

If Q is not correctly specified, it affects the estimation of substitution rates and potentially

conservation states. In this section, we investigate the effect of π on model performance.

We use the same phylogeny as in Figure 2A, and simulate DNA sequence from the

null model, i.e., no branch is accelerated. We simulate 100 loci, having 200 base pairs

each. Each locus has its own π. For 50 elememnts, we simulated 2πA ∼ Beta(5, 5), and

for the rest 50 loci, we simulated 2πA ∼ Beta(10, 10). We have π = (πA, πC , πG, πT ) =

(πA,
1
2
− πA,

1
2
− πA, πA). Conserved rates are simulated from gamma(5, 0.04). We run our

algorithm for each locus at 3 treatments of π:

1. Treatment 1: fixing π at truth;

2. Treatment 2: fixing π at the value estimated from neutral sites, denoted by πn =

(πn
A, π

n
C , π

n
G, π

n
T );

3. Treatment 3: modeling the variation in π according to the Bayesian model in Section

Methods in the main text.

When we designate the target group, for half of the loci we use sequences simulated with

two independent accelerations (Figure 2C) and for the other half, we use sequences simulated

with a single acceleration (Figure 2B).
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Model selection accuracy is recorded in Table S1. All three treatments are highly accu-

rate in detecting no acceleration patterns along the phylogeny. Next, we check the posterior

distributions of the conserved rate. We use the posterior distribution of r1 estimated esti-

mated under Treatment 1 as a reference distribution. Figures S36 and S37 show that the

posterior distributions are very close to the reference distribution whether we model π or

not. Modeling π introduces slightly more variations in the upper tail probability of r1 as

shown in the bottom left plot in Figure S37.

Distribution to Model Model Selection

Simulate π Accuracy

Beta(10, 10)

1. Fix π at truth 100%

2. Use πn 100%

3. Estimate π from data 100%

Beta(5, 5)

1. Fix π at truth 96%

2. Use πn 98%

3. Estimate π from data 98%

Table S1: Accuracy in model selection and rc estimation under the three models. Model

selection accuracy is the percentage of cases the null model M0 is selected based on Bayes

Factor cutoff at 1.

The two Beta distributions we use to simulate πA+πT are centered at 0.5. Hence, the π’s

generated are likely to have balanced weights on all four nucleotides, and do not differ too

42



0.1 0.2 0.3 0.4

0.
10

0.
20

0.
30

0.
40

rate_c posterior @ median

pi@truth

P
hy

lo
A

cc
−

G
T

0.1 0.2 0.3 0.4

0.
05

0.
15

0.
25

0.
35

rate_c posterior @ median

pi@truth

P
hy

lo
A

cc

0.1 0.2 0.3 0.4

0.
05

0.
15

0.
25

0.
35

rate_c posterior @ mean

pi@truth

P
hy

lo
A

cc
−

G
T

0.1 0.2 0.3 0.4

0.
05

0.
15

0.
25

0.
35

rate_c posterior @ mean

pi@truth

P
hy

lo
A

cc

Figure S36: scatter plots comparing point estimates of rc using the three models.

much from πn. The mean absolute difference between the simulated πA’s and πn
A is 0.066.

Since the differences are small, the rate matrix Q computed from πn also does not differ

much from the true Q’s used to simulate the data. Results from the above study suggest that

if π is misspecified by a small amount, it will not have an impact on inferring the posterior

distributions of substitution rate and conservation state.

Next, we investigate whether modeling π will improve model performance from PhyloAcc

when the input π value is far from the truth. We simulate 100 2πAs from two distributions:

Beta(3, 1) and Beta(1, 4). Beta(3, 1) tends to produce πs that put high weights on adenine

and thymine, while Beta(1, 4) the opposite. We filter out values of πA that are either greater

than 0.4 or less than 0.1, which gives us 56 cases. Using these unbalanced π’s we generate
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Figure S37: Scatter plots comparing tail behavior of the posterior distribution of rc using

the three models.

data and test our models. When applying PhyloAcc, we input a π that put most weight on

cytosine and guanine if the true π is highly concentrated on adenine and thymine, or the

other way around.

In this extreme case, PhyloAcc still achieves 100% model selection accuracy, and the

accuracy is 94.4% for PhyloAcc-GT. Both are accurate in identifying M0 as the correct

model. However, PhyloAcc underestimates the substitution rate as shown in Figure S38,

while PhyloAcc-GT can still accurately inference the substitution rate. If the data set is

generated with a large πA value, most of the base-pair positions will show A or T across extant

species. However, since the input πA is very small when running PhyloAcc, the sequences
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are more likely to transit from A and T to C and G. To observe the high frequency of A and

T and high similarities among sequences, PhyloAcc has to infer that DNA substitution will

be highly conserved.
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Figure S38: Comparing posterior mediums of the substitution rate from the three models
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S9 Some Analyses of Posterior Gene trees and Pat-

terns of Acceleration for loci of Interest in the Avian

Dataset

In this section, we analyze posterior gene trees for locus mCE1358939 and mCE1419808 that

favor modelM0 under PhyloAcc-GT. For mCE1358939, with PhyloAcc, Southern cassowary,

Little spotted kiwi and Great spotted kiwi are estimated to be in the accelerated state with

posterior probability of acceleration being 0.75, 0.85 and 0.56 respectively. It is likely that

the acceleration in the two kiwis occurred in their parent species (P (Z = 2 | Y ) = 0.52).

Under PhyloAcc-GT, the four species are still the top four species that are likely to have

experienced rate accelerations under M1, but only Southern cassowary and Little spotted

kiwi have posterior probabilities of acceleration exceeding 0.5. Under M1, the gene tree at

the posterior mode places the Rhea clade directly under Ostrich, and (Southern Cassowary,

Emu) becomes the sibling branch of (Moa, Tinamous). The same tree topology is also the

most likely topology under model M0. However, there are increases in the estimated gene

tree branch lengths for the four branches under M0, and most non-accelerated branches are

shorter under M0 than under M1.

Using PhyloAcc, mCE1419808 is estimated to have experienced strong rate accelerations

in Ostrich (P (Z = 2 | Y ) = 1), followed by Great spotted kiwi and Little spotted kiwi

(P (Z = 2 | Y ) = 0.56 for both). Using PhyloAcc-GT, the gene tree topology among

ratites at posterior mode under M0 and M1 are both the same as the species tree topology.
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Gene Tree at Posterior Mode under model M0

Ostrich

Kiwi3

Kiwi1

Kiwi2

Cassowary

Emu

Moa

Tinamou3

Tinamou4

Tinamou1

Tinamou2

Rhea1

Rhea2

Figure S39: The gene tree topology at posterior mode under model M0 for locus

mCE1358939.

However, the gene tree branch lengths differ from those of the species tree, resulting in

different patterns of acceleration. In the posterior mode of the gene tree under modelM1, the

estimated branch length for Ostrich is 8% longer than the corresponding length on the species

tree. As a result, the estimated posterior probability of acceleration in Ostrich reduces to 0.5

under PhyloAcc-GT. On the other hand, posterior probabilities of acceleration are greater in

(Great spotted kiwi, Little spotted kiwi), (Greater rhea, Lesser rhea), and (Cassowary, Emu)

under PhyloAcc-GT compared to the estimated probabilities using PhyloAcc, because gene

tree branch lengths are estimated to be shorter than species tree branch lengths. Although
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some branches are estimated to have rate accelerated under M1, and the ratite tree topology

at the posterior mode are the same under M0 and M1, after marginalizing over the gene

tree, the data supports model M0 the most.
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S10 Additional Figures from Simulation Studies

0.00

0.25

0.50

0.75

1.00

A1 A2 A3 C1 C2
(A1,A2)

(A1,A3)

(C1,C2)

P
(a

cc
el

er
at

io
n)

accelerated branches, Theta=3x

0.00

0.25

0.50

0.75

1.00

B1 B2 E1 E2 E3 E4 D1 F1
(B1,B2)

(A1,B1)

(A1,C1)

(E1,E2)

(E3,E4)

(E1,E3)

(E1,D1)

(A1,E1)

(A1,F1)

non−accelerated branches, Theta=3x

0.00

0.25

0.50

0.75

1.00

A1 A2 A3 C1 C2
(A1,A2)

(A1,A3)

(C1,C2)

P
(a

cc
el

er
at

io
n)

accelerated branches, Theta=6x

0.00

0.25

0.50

0.75

1.00

B1 B2 E1 E2 E3 E4 D1 F1
(B1,B2)

(A1,B1)

(A1,C1)

(E1,E2)

(E3,E4)

(E1,E3)

(E1,D1)

(A1,E1)

(A1,F1)

non−accelerated branches, Theta=6x

0.00

0.25

0.50

0.75

1.00

A1 A2 A3 C1 C2
(A1,A2)

(A1,A3)

(C1,C2)

P
(a

cc
el

er
at

io
n)

accelerated branches, Theta=10x

0.00

0.25

0.50

0.75

1.00

B1 B2 E1 E2 E3 E4 D1 F1
(B1,B2)

(A1,B1)

(A1,C1)

(E1,E2)

(E3,E4)

(E1,E3)

(E1,D1)

(A1,E1)

(A1,F1)

non−accelerated branches, Theta=10x

Method PhyloAcc−GT PhyloAcc *BEAST2

Figure S40: comparing P (Z = 2 | Y ) using PhyloAcc-GT, PhyloAcc and *BEAST2 under

the two independent accelerations case (Figure 2C) as Θ increases. Left plots correspond

to truly accelerated branches, whereas plots on the right correspond to non-accelerated

branches. We multiply all θ values by 3, 6 or 10, shown in top, middle and bottom rows

respectively.
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Figure S41: comparing P (Z = 2 | Y ) using PhyloAcc-GT, PhyloAcc and *BEAST2 under

the three independent accelerations case (Figure 2D) as Θ increases. Left plots correspond

to truly accelerated branches, whereas plots on the right correspond to non-accelerated

branches. We multiply all θ values by 3, 6 or 10, shown in top, middle and bottom rows

respectively.
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