Supplementary Information Iron oxide nanozymes stabilize stannous fluoride for targeted biofilm killing and synergistic oral disease prevention

Yue Huang^{1,2,3§}, Yuan Liu^{2,4§}, Nil Kanatha Pandey^{1,2,3§}, Shrey Shah^{1,5}, Aurea Simon-Soro^{2,3,6}, Jessica C. Hsu^{1,5}, Zhi Ren^{2,3,7}, Zhenting Xiang^{2,3}, Dongyeop Kim^{2,3,8}, Tatsuro Ito^{2,3,9}, Min Jun Oh^{2,3,10}, Christine Buckley¹¹, Faizan Alawi¹², Yong Li^{2,3}, Paul J. M. Smeets^{13,14}, Sarah Boyer¹⁴, Xingchen Zhao¹⁴, Derk Joester¹⁴, Domenick T. Zero¹¹, David P. Cormode^{1,5*}, Hyun Koo^{2,3,7*}

¹Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

²Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA

³Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA

⁴Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA

⁵Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA

⁶Department of Stomatology, Dental School, University of Seville, Spain

⁷Center for Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA

⁸Department of Preventive Dentistry, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea

⁹Department of Pediatric Dentistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan

¹⁰Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA

¹¹Department of Cariology, Operative Dentistry and Dental Public Health and Oral Health Research Institute, Indiana University School of Dentistry, Indianapolis, IN, USA

¹²Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA

¹³Northwestern University Atomic and Nanoscale Characterization Experimental Center, Northwestern University, Evanston, IL, USA

¹⁴Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA

*Corresponding Authors: Hyun Koo; Email: <u>koohy@upenn.edu</u> David P. Cormode; Email: <u>david.cormode@pennmedicine.upenn.edu</u>

[§]These authors contributed equally to this work.

Supplementary Fig. 1. Antibiofilm studies of NaF and SnF₂ with or without Fer. The bacterial viability (a) and the mass of biofilm (b) after treatment with NaF or SnF₂ at 1000 ppm of F. The bacterial viability (c) and the mass of biofilm (d) after treatment with Fer+NaF or Fer+SnF₂ at 1 mg of Fe/ml, 1000 ppm of F, and 1% (v/v) of H₂O₂. The data are presented as mean \pm standard deviation (n=6; 3 independent experiments with two replicates). **p* < 0.05, ****p* < 0.001; ns, nonsignificant; one-way ANOVA followed by Tukey test. Source data are available as a Source Data file.

Supplementary Fig. 2. TEM of Fer and Fer+SnF₂. Representative TEM of Fer and Fer+SnF₂ after 1 h incubation in 0.1 M sodium acetate buffer (pH 4.5).

Supplementary Fig. 3. Stability study of SnF_2 when mixed with different chemicals. a Photographs of SnF_2 in different conditions at pH 4.5 (0.1 M sodium acetate buffer). The samples are: 1. SnF_2 alone, 2. citric acid (CA)+ SnF_2 , 3. L-ascorbic acid (AA)+ SnF_2 , and 4. poly(acrylic acid) (PAA)+ SnF_2 . Top: 0 h; bottom: after 24 h. b-d UV-visible absorption spectra of SnF_2 (250 ppm of F) at pH 4.5 (0.1 M sodium acetate buffer) with or without CA (1 mg/ml) (b), AA (1 mg/ml) (c), and PAA (1 mg/ml) (d) at the time points indicated. Insets show the absorbance of SnF_2 with or without CA (b), AA (c), and PAA (d) at 550 nm after 24 h incubation as a measure of turbidity. Source data are available as a Source Data file.

Supplementary Fig. 4. Stability study of SnF_2 in the presence of various amounts of mannitol. a Photographs of SnF_2 with various amounts of mannitol (Man) at pH 4.5 (0.1 M sodium acetate buffer) after 0 or 24 h incubation. The samples are: 1. SnF_2 alone, 2. 1 mg/ml of Man+ SnF_2 , 3. 2 mg/ml of Man+ SnF_2 , and 4. 10 mg/ml of Man+ SnF_2 . The concentration of SnF_2 was 250 ppm of F. Top: 0 h; bottom: after 24 h. b-d UV-visible absorption spectra of SnF_2 at pH 4.5 (0.1 M sodium acetate buffer) with or without 1 mg/ml (b), 2 mg/ml (c), and 10 mg/ml (d) of Man at the time points indicated. Insets show the absorbance of SnF_2 with or without 1 mg/ml (b), 2 mg/ml (c), and 10 mg/ml (d) of Man at 550 nm after 24 h incubation as a measure of turbidity. Source data are available as a Source Data file.

Supplementary Fig. 5. Comparison of catalytic activities of Fer+SnF₂ prepared at different pH values. Briefly, Fer was incubated with SnF₂ for 1 h at three different pH (4.5, 5.5, and 6.5; 0.1 M sodium acetate buffer) and washed three times with respective buffers using ultrafiltration tubes (3 kDa MWCO). Subsequently, the pellets were resuspended in a volume equal to the volume of the filtrate. All the catalytic activities were then determined (5 min incubation in the presence of 1% of H₂O₂) using TMB assay in 0.1 M sodium acetate buffer at pH 4.5. For the purpose of comparison, Fer alone (incubated at pH 4.5) was treated in a similar way. The data are presented as mean \pm standard deviation (n=3 independent experiments). **p < 0.01, ***p < 0.001; ns, nonsignificant; one-way ANOVA followed by Tukey test. Source data are available as a Source Data file.

Supplementary Fig. 6. Study of various concentrations of SnF₂ on the catalytic activity of Fer. Effect of 0.039-0.625 µg/ml (a) and 1.25-80 µg/ml (b) of SnF₂ on the catalytic activity of Fer (20 µg of Fe/ml) in 0.1 M sodium acetate buffer (pH 4.5), as assessed by TMB colorimetric assay. 0 µg/ml indicates Fer alone. The data are presented as mean ± standard deviation (n=3 independent experiments). *p < 0.05, **p < 0.01, ***p < 0.001; ns, nonsignificant; one-way ANOVA followed by Tukey test. Source data are available as a Source Data file.

Supplementary Fig. 7. Evaluation of incubation time on the catalytic activity of Fer when mixed with SnF₂. a, b Effect of incubation time on the catalytic activity of Fer (20 µg of Fe/ml) with or without SnF₂ (20 µg/ml) in 0.1 M sodium acetate buffer (pH 4.5), as assessed by TMB colorimetric assay. The increase in absorption at 652 nm shows ROS production. The data are presented as mean \pm standard deviation (n=3 independent experiments). **p* < 0.05, ****p* < 0.001; ns, nonsignificant; one-way ANOVA followed by Tukey test. Source data are available as a Source Data file.

Supplementary Fig. 8. Evaluation of hydroxyl radical (•OH) production by SnF₂. Change in PL intensity of 7-hydroxycoumarin at 452 nm as a function of time with or without SnF₂ (20 μ g/ml). The data are presented as mean \pm standard deviation (n=5 independent experiments). Source data are available as a Source Data file.

Supplementary Fig. 9. Iron release study. **a** Concentration of iron released from Fer (0.5 mg of Fe/ml) at pH 4.5 after 1 h incubation in the absence of SnF_2 , presence of SnF_2 (0.5 mg/ml), and after the dissolution of the pellet in a volume equal to the volume of the filtrate, as determined by ICP-OES. **b** Concentration of iron released from Fer (0.5 mg of Fe/ml) in the presence of SnF_2 (0.5 mg/ml) during incubation at the indicated pH for 1 h. The data are presented as mean \pm standard deviation (n=3 independent experiments). Source data are available as a Source Data file.

Supplementary Fig. 10. Stability study of SnF_2 with or without Fer after H₂O₂ treatment. a Representative UV-visible absorption spectra of SnF_2 with or without H₂O₂ (10 min incubation) in 0.1 M sodium acetate buffer (pH 4.5). The addition of H₂O₂ resulted in a noticeable increase in the absorption spectrum of SnF_2 , indicating the oxidation of SnF_2 by H₂O₂. **b** Representative UVvisible absorption spectra of Fer in combination with SnF_2 in the presence of H₂O₂ at different time points, as indicated, in 0.1 M sodium acetate buffer (pH 4.5). The absorption spectra of Fer+SnF₂, upon incubation with H₂O₂ at various time points, do not change appreciably when compared to Fer alone, even after 60 min of catalysis, suggesting Fer may prevent oxidation of SnF₂. Source data are available as a Source Data file.

Supplementary Fig. 11. Stability study of SnF₂ with or without Fer after H₂O₂ treatment. Comparison of the absorbance of SnF₂ (0.1 mg/ml) at 550 nm in the presence of H₂O₂ (0.1%, v/v) with or without Fer (0.1 mg of Fe/ml) in 0.1 M sodium acetate buffer (pH 4.5). The absorbance of Fer was used as the background for the Fer+SnF₂+H₂O₂ group. The absorbance measurements were taken after 1 h incubation in the presence of H₂O₂. The data are presented as mean \pm standard deviation (n=3 independent experiments). ***p < 0.001; one-way ANOVA followed by Tukey test. Source data are available as a Source Data file.

Supplementary Fig. 12. Assessment of free tin ions before and after H₂O₂ treatment. Comparison of the concentration of free tin ions in the filtrate when SnF₂ (1 mg/ml) was mixed with Fer (1 mg of Fe/ml) in 0.1 M sodium acetate buffer (pH 4.5) after 10 min incubation in the absence and presence of H₂O₂ (1%, v/v), as determined by ICP-OES. The data are presented as mean \pm standard deviation (n=3 independent experiments). **p* < 0.05; one-way ANOVA followed by Tukey test. Source data are available as a Source Data file.

Supplementary Fig. 13. *In vitro* biocompatibility study via MTS assay. Effect of the combined treatment of Fer (1 mg of Fe/ml) and SnF_2 (250 ppm of F) on the cell viability of HGK cells. The data are presented as mean \pm standard deviation (n=4 independent experiments). ns, nonsignificant; one-way ANOVA followed by Tukey test. Source data are available as a Source Data file.

Supplementary Fig. 14. Antibiofilm study of the combined treatment of Fer and SnF₂ at different concentrations. The bacterial viability (a) and biofilm mass (b) with the varied concentration of Fer (0-1 mg of Fe/ml) and SnF₂ (0-250 ppm of F). 1/4Fer, 1/2Fer, and Fer indicate 0.25 mg of Fe/ml, 0.5 mg of Fe/ml, and 1 mg of Fe/ml, respectively. Similarly,1/4SnF₂, 1/2SnF₂, and SnF₂ indicate 62.5 ppm of F, 125 ppm of F, and 250 ppm of F, respectively. The data are presented as mean \pm standard deviation (n=6; 3 independent experiments with two replicates). ***p < 0.001; one-way ANOVA followed by Tukey test. Source data are available as a Source Data file.

Supplementary Fig. 15. Workflow for lift-out and thinning of lamellae from M1 rat molars for analysis by STEM-EDS and STEM-EELS. a Buccal aspect of whole M1 molar. b SEM image of the middle cusp of molar in (a). c SEM image of enamel surface after deposition of a protective strap of FIB-Pt. d, e SEM images of enamel surface with lamella attached to micromanipulator after lift-out. f SEM image of lamella after thinning.

Supplementary Fig. 16. Elemental composition of the surface of a rat M1 molar treated with Fer+SnF₂ as assessed by STEM-EELS. a-f Plot of the mean mole fraction of Ca (blue line), and of the sum of the mean mole fractions of Fe, Sn, and F (red line, a), and plot of mean mole fractions of Ca (b), O (c), F (d), Fe (e), and Sn (f) vs. distance in the direction normal to the EES. The distance axis is referenced to the approximate position of the interface between the Fe/Sn/F-rich layer and the underlying enamel. For b-f, solid circles indicate the mean mole fraction at a given distance, and lines indicate the moving average of the mole fraction with span 3 (denoted as "smoothed" in legend). Note that the data shown here was generated from a separately prepared sample extracted from the same tooth shown in Fig. 5f. Source data are available as a Source Data file.

Supplementary Fig. 17. Example XPS spectra of mature rat molar enamel. a Survey spectra of teeth from Fer+SnF₂-treated (blue, after a sputtering time of $t_s = 1000$ s) and untreated (orange, $t_s = 0$ s) animals. Colored bands indicate binding energy ranges for selected elements. **b**-**g** Detailed, background-corrected spectra for the P 2p (**b**), Ca 2p (**c**), Sn 3d (**d**), O 1s (**e**), F 1s (**f**), and Fe 2p (**g**) spectral lines recorded on opposite sides of a maxillary molar of a Fer+SnF₂-treated animal (Pos 1, dark blue; Pos 2, light blue; $t_s = 1000$ s), and at the surface of a tooth from an untreated animal (untreated, orange). Note that the feature at ~496 keV in the untreated sample in (**d**) likely corresponds to the NaKL1 line (asterisk) and that the Sn 3p and Fe 2p lines overlap (**g**). For quantification, the contribution of the Fe 2p line was isolated by fitting both lines. Source data are available as a Source Data file.

Supplementary Fig. 18. HRTEM analysis of coating on treated rat molars. a HRTEM image. Note that likely some beam damage is apparent in the Fe/Sn/F-rich layer (asterisks). b-d Magnitude of 2D Fast Fourier Transforms (FFTs) of areas indicated in (a). e-g Plots of radial integrals of FFTs (e) in (b), (f) in (c), and (g) in (d). Spatial frequencies consistent with d-spacing for the {002}, { $3\overline{2}1$ }, and { $3\overline{3}0$ } sets of planes of hydroxylapatite are indicated in (e), and those consistent with d-spacing for the {001} and {111} sets of planes in Pt are indicated in (g). Source data are available as a Source Data file.

Supplementary Table 1. Hydrodynamic diameter (in nm) of Fer with or without SnF_2 in DI water at various incubation times. The data are presented as mean \pm standard deviation. The mean and standard deviation were calculated from the three means.

Incubation Time (h)	Fer	Fer+SnF ₂
0	35.0 ± 0.16	26.0 ± 5.3
1	34.4 ± 1.3	28.7 ± 1.4
2	32.9 ± 0.42	41.0 ± 2.7
4	35.0 ± 3.3	33.9 ± 2.0
6	34.1 ± 1.7	38.3 ± 1.3
24	31.9 ± 0.43	34.1 ± 0.11

Supplementary Table 2. Zeta potential (in mV) of Fer with or without SnF_2 in DI water at various incubation times. The data are presented as mean \pm standard deviation. The mean and standard deviation were calculated from three means.

Incubation Time (h)	Fer	Fer+SnF2
0	-48.5 ± 1.4	-10.5 ± 0.84
1	-42.0 ± 4.1	-11.0 ± 1.1
2	-42.8 ± 7.3	-10.6 ± 0.92
4	-45.7 ± 2.1	-10.6 ± 0.73
6	-41.1 ± 5.0	-10.1 ± 0.61
24	-39.4 ± 2.5	-11.8 ± 1.2