Myelination and excitation-inhibition balance synergistically shape structurefunction coupling across the human cortex

Panagiotis Fotiadis,^{1,2,†} Matthew Cieslak,³ Xiaosong He,⁴ Lorenzo Caciagli,² Mathieu Ouellet,² Theodore D. Satterthwaite,³ Russell T. Shinohara,^{5,6} Dani S. Bassett ^{2,3,7-10,†}

- ¹ Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- ² Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- ³ Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- ⁴ Department of Psychology, University of Science and Technology of China, Hefei, Anhui, 230026, China
- ⁵ Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
- ⁶ Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
- ⁷ Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- ⁸ Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
- ⁹ Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- ¹⁰ Santa Fe Institute, Santa Fe, NM 87501, USA

[†] Corresponding authors:

Panagiotis Fotiadis (panosf@pennmedicine.upenn.edu), Dani S. Bassett (dsb@seas.upenn.edu)

SUPPLEMENTAL MATERIAL

To examine the reproducibility of our findings, we repeated the following three additional analyses.

SUPPLEMENTAL ANALYSIS 1:

In this first supplemental analysis, we repeated our atlas-based methodology reported in the main text and analyzed the Human Connectome Project (HCP) sample (n=100) using an additional commonly-used atlas: the HCP multi-modal cortical parcellation (360 brain regions).

Structure-Function Coupling Variations along the Cortical Hierarchy

In the 7 resting-state systems, structure-function coupling (SFC) was highest in the primary visual and somatomotor cortices, intermediate in the default mode, dorsal attention, fronto-parietal, and ventral attention association systems, and lowest in the limbic system (**Supplemental Figure 1A**; **Supplemental Table 5**). A decrease in SFC along the unimodal-transmodal hierarchy was also evident along the principal functional gradient, in the form of a significant negative correlation between a brain region's SFC and its assigned principal gradient scalar (**Supplemental Figure 1C**; r=-0.41; p_{spin} =5x10⁻⁴); lower assignments within this gradient capture primary sensory and motor regions, whereas higher assignments capture regions within the default mode network. Across the 5 cyto-architectonic classes, SFC gradually decreased from granular (typically capturing sensory regions) to agranular (typically capturing motor and association regions) types and displayed its lowest value in the polar cortical type (**Supplemental Figure 1B**; **Supplemental Table 6**). Similarly, we observed a significant negative correlation between a brain region's SFC and its assigned for microstructure profile covariance (**Supplemental Figure 1D**; r=-0.33; p_{spin} =0.032); primary sensory regions occupy the lower end of this gradient while limbic regions represent its apex.

We next computed each brain region's average temporal SFC variance across subjects and examined its heterogeneous expression along the unimodal (sensory)-transmodal (association) hierarchy. In contrast to SFC, temporal SFC variance was highest in the limbic system, intermediate in the default mode and fronto-parietal systems, and lowest in the primary visual, somatomotor, dorsal attention, and ventral attention systems (**Supplemental Figure 2A**; **Supplemental Table 7**); a pronounced increase in temporal SFC variance was observed along the unimodal-transmodal hierarchy, as captured by the principal gradient (**Supplemental Figure 2C**; r=0.42; $p_{spin}=0.007$). Using cyto-architectonic annotations, temporal SFC variance (unlike SFC itself) was highest in the polar cortical type; the remaining 4 cortical types displayed similar degrees of temporal SFC variance and its assigned location along the gradient (**Supplemental Figure 2D**; r=0.48; $p_{spin}=0.011$). As with the Schaefer atlas, in order to ensure that the correlations observed between a brain region's temporal SFC variance and its assigned location along the gradient (**Supplemental Figure 2D**; r=0.48; $p_{spin}=0.011$). As with the Schaefer atlas, in order to ensure that the correlations observed between a brain region's temporal SFC variance SFC variance and its location in the sensory-association hierarchy (as shown in **Supplementary Figures 2C** and **2D**) were not confounded by

the presence of any outlier regions, we repeated the aforementioned analyses after excluding the outlier brain regions. An outlier brain region was defined as one that exhibited a temporal SFC variance at least three standard deviations away from the mean (n=7). Both correlations remained significant (temporal SFC variance vs. principal functional gradient: r=0.40; $p_{spin}=0.007$, and temporal SFC variance vs. BigBrain gradient: r=0.46; $p_{spin}=0.015$)—same as when including the outliers in the analysis.

Biological Correlates of Structure-Function Coupling: Whole-brain perspective

Across the 360 brain regions defined by the HCP multi-modal cortical parcellation, we observed a significant positive correlation between SFC and intracortical myelin content (**Supplemental Figure 3A**; r=0.53; $p_{spin}<10^{-4}$), and a negative correlation between temporal SFC variance and intracortical myelin content (**Supplemental Figure 3B**; r=-0.31; $p_{spin}=0.034$). Higher SFC values corresponded to larger Hurst exponents and thus a decreased excitation-inhibition (EI) ratio (**Supplemental Figure 3C**; r=0.37; $p_{spin}=0.008$), whereas higher temporal variance in SFC corresponded to lower Hurst exponents and thus a heightened EI-ratio (**Supplemental Figure 3D**; r=-0.56; $p_{spin}<10^{-4}$). There was no significant association, however, between SFC and the Hurst exponent across temporal windows (average Spearman's ρ across brain regions: -0.02; $p_{fisher (FDR$ $corrected)}=1$), indicating that SFC and EI-ratio do not co-fluctuate over short periods of time (i.e., the duration of the fMRI scan), when examined on the macroscale level.

To ensure that the association between a region's SFC and either biological marker was independent of the other marker and also independent from that region's position along the cortical hierarchy, we re-examined the above relationships using multiple linear regression models. We found that SFC (dependent variable) was independently and positively correlated with intracortical myelin content ($\beta_{stand}=0.375$; 95% non-parametric bootstrap confidence interval [BCI]=[0.379, 0.381]; $p < 10^{-4}$; variance inflation factor [VIF]=1.45) and with the Hurst exponent ($\beta_{stand}=0.368$; 95% BCI=[0.368, 0.370]; $p < 10^{-4}$; VIF=1.30), after adjusting for the other biological marker, the interaction effect between intracortical myelination and the Hurst exponent, as well as the principal gradient and BigBrain scalar assignments. Further, the correspondence between temporal SFC variance (dependent variable) and the Hurst exponent (β_{stand} =-0.534; 95% BCI=[-0.536, -0.534]; $p < 10^{-4}$; VIF=1.30), but not intracortical myelin content (β_{stand} =-0.008; 95% BCI = [-0.005, -0.003]; p=0.90; VIF=1.45), remained significant after adjusting for the other marker, the interaction effect between intracortical myelination and the Hurst exponent, and the principal gradient and BigBrain scalar assignments. Similarly to the atlas-based analysis reported in the manuscript, the Hurst exponent was found to significantly mediate the correlation between intracortical myelination and temporal SFC variance (total effect=-0.0045; $p < 10^{-4}$, indirect effect=-0.0014; BCI = [-0.0025, -0.0025]0.0004]). In other words, the Hurst exponent (i.e., EI-ratio) accounted for 31.1% of the correlation between intracortical myelination and temporal SFC variance.

Biological Correlates of Structure-Function Coupling: Regional perspective

As with the atlas-based analysis reported in the manuscript, we begin with the cyto-architectonic class that displayed the overall highest SFC: the granular type. We observed a significant positive association between SFC (dependent variable) and the Hurst exponent but not with intracortical myelin content, after adjusting for the effects of the other biological marker (**Supplemental Table**)

9A). In the parietal and frontal types, we observed a significant positive association between SFC and the Hurst exponent as well as the intracortical myelin content (**Supplemental Table 9A**). Within the agranular cyto-architectonic class, we observed that SFC was positively correlated only with intracortical myelin content but not with the Hurst exponent, within the same regression model (**Supplemental Table 9A**). Taking these results together, we once again notice a distinct pattern as we transition from granular to agranular cortical regions: a gradual shift from the Hurst exponent to intracortical myelin content as being the principal predictor of SFC (as supported by the numerical changes in the standardized β and false discovery rate-adjusted *p*-values: **Supplemental Table 9A**; **Figure 7**). As with the atlas-based analysis using the Schaefer 400 parcellation reported in the manuscript, the polar cortical regions were once again an exception to this rule (**Supplemental Table 9A**).

Interestingly—and in agreement with the atlas-based results reported in the manuscript—dynamic regulation of temporal SFC variance (as opposed to SFC itself) was more persistently dependent upon the Hurst exponent, across all cyto-architectonic classes, after adjusting for the effects of intracortical myelin content (**Supplemental Table 9B**).

SUPPLEMENTAL ANALYSIS 2:

Next, we repeated the same atlas-based methodology to analyze the subjects within the HCP sample (n=100) reported in the main text, with one difference: instead of averaging the demeaned and normalized pre-processed time series corresponding to the four runs into one average run (1200 volumes), we concatenated all four runs across time (1200 volumes x 4 runs) for each subject. The results of this analyses were qualitatively identical to the ones reported in the main text for both cortical parcellations (Schaefer cortical parcellation: 400 brain regions; HCP multi-modal cortical parcellation: 360 brain regions); we separately report the results corresponding to each cortical parcellation below.

Supplemental Analysis 2A: Schaefer cortical parcellation (400 brain regions)

Structure-Function Coupling Variations along the Cortical Hierarchy

In the 7 resting-state systems, SFC was highest in the primary visual and somatomotor cortices, intermediate in the default mode, dorsal attention, fronto-parietal, and ventral attention association systems, and lowest in the limbic system (**Supplemental Figure 4A**; **Supplemental Table 10**). A decrease in SFC along the unimodal-transmodal hierarchy was also evident along the principal functional gradient, in the form of a significant negative correlation between a brain region's SFC and its assigned principal gradient scalar (**Supplemental Figure 4C**; r=-0.34; p_{spin} =0.009); lower assignments within this gradient capture primary sensory and motor regions, whereas higher assignments capture regions within the default mode network. Across the 5 cyto-architectonic classes, SFC gradually decreased from granular (typically capturing sensory regions) to agranular (typically capturing motor and association regions) types and displayed its lowest value in the polar cortical type (**Supplemental Figure 4B**; **Supplemental Table 11**). Similarly, we observed a significant negative correlation between a brain region's SFC and its assigned location along the BigBrain gradient of microstructure profile covariance (**Supplemental Table 11**). *Similarly to the sense* of the sense of

 p_{spin} =0.025); primary sensory regions occupy the lower end of this gradient while limbic regions represent its apex.

Next, in order to examine how much SFC deviated from its mean value over time, we assessed its moment-to-moment variance throughout the duration of the resting-state fMRI scan. Specifically, we computed each brain region's average temporal SFC variance across subjects and examined its heterogeneous expression along the unimodal (sensory)-transmodal (association) hierarchy. In contrast to SFC, temporal SFC variance was highest in the limbic system (Supplemental Figure 5A; Supplemental Table 12); an increase in temporal SFC variance was observed along the unimodal-transmodal hierarchy, as captured by the principal gradient (Supplemental Figure 5C; r=0.20; $p_{spin}=0.096$). Using cyto-architectonic annotations, temporal SFC variance (unlike SFC itself) was highest in the polar cortical type; the remaining 4 cortical types displayed-for the most part—similar degrees of temporal SFC variance (Supplemental Figure 5B; Supplemental Table 13). Under the more continuous BigBrain gradient, we observed a significant positive correlation between a brain region's temporal SFC variance and its assigned location along the gradient (Supplemental Figure 5D; r=0.32; p_{spin}=0.035). To ensure that the correlations observed between a brain region's temporal SFC variance and its location in the sensory-association hierarchy (as shown in **Supplemental Figures 5C** and **5D**) were not confounded by the presence of any outlier regions, we repeated the aforementioned analyses after excluding the outlier brain regions. As before, an outlier brain region was defined as one that exhibited a temporal SFC variance at least three standard deviations away from the mean (n=8). Both correlations remained qualitatively the same: the association between temporal SFC variance and principal functional gradient remained positive, albeit non-significant (r=0.17; p_{spin}=0.108), whereas the association between temporal SFC variance and the BigBrain gradient remained significant (r=0.29; p_{spin}=0.040)—same as when the outliers were included.

Biological Correlates of Structure-Function Coupling: Whole-brain perspective

Across the 400 brain regions defined by the Schaefer parcellation, we observed a significant positive correlation between SFC and intracortical myelin content (**Supplemental Figure 6A**; r=0.49; $p_{spin}=10^{-4}$), and a negative, albeit non-significant, correlation between temporal SFC variance and intracortical myelin content (**Supplemental Figure 6B**; r=-0.08; $p_{spin}=0.311$). Higher SFC values corresponded to larger Hurst exponents and thus a decreased EI-ratio (**Supplemental Figure 6C**; r=0.41; $p_{spin}=9x10^{-4}$), whereas higher temporal variance in SFC corresponded to lower Hurst exponents and thus a heightened EI-ratio (**Supplemental Figure 6D**; r=-0.44; $p_{spin}<10^{-4}$).

To ensure that the association between a region's SFC and either biological marker was independent of the other marker and also independent from that region's position along the cortical hierarchy, we re-examined the above relationships using multiple linear regression models. We found that SFC (dependent variable) was independently and positively correlated with intracortical myelin content ($\beta_{stand}=0.382$; 95% non-parametric bootstrap confidence interval [*BCI*]=[0.381, 0.382]; $p<10^{-4}$; variance inflation factor [*VIF*]=1.85) and with the Hurst exponent ($\beta_{stand}=0.366$; 95% *BCI*=[0.367, 0.369]; $p<10^{-4}$; *VIF*=1.24), after adjusting for the other biological marker, the interaction effect between intracortical myelination and the Hurst exponent, as well as the principal gradient and BigBrain scalar assignments. Further, the correspondence between temporal SFC variance (dependent variable) and both intracortical myelin content ($\beta_{stand}=0.145$; 95%

BCI=[0.143, 0.144]; $p=4x10^{-4}$; *VIF*=1.85) and the Hurst exponent ($\beta_{stand}=-0.406$; 95% *BCI*=[-0.405, -0.403]; $p<10^{-4}$; *VIF*=1.24), remained significant after adjusting for the other marker, the interaction effect between intracortical myelination and the Hurst exponent, and the principal gradient and BigBrain scalar assignments. Notably, the interaction effect between intracortical myelination and the Hurst exponent was significant within this model ($\beta_{stand}=0.345$; 95% *BCI*=[0.342, 0.345]; $p<10^{-4}$; *VIF*=1.08); a potential causal relationship between temporal SFC variance, intracortical myelination, and the Hurst exponent was further explored via a mediation model. Notably, the Hurst exponent was found to significantly mediate the correlation between intracortical myelination and temporal SFC variance (total effect=-0.005; $p<10^{-4}$, indirect effect=-0.002; *BCI*=[-0.0037 -0.0007]). In other words, the Hurst exponent (i.e., EI-ratio) accounted for 40% of the correlation between intracortical myelination and temporal SFC variance.

Biological Correlates of Structure-Function Coupling: Regional perspective

We begin with the cyto-architectonic class that displayed the highest SFC: the granular type. We observed a significant positive association between SFC (dependent variable) and the Hurst exponent but not with intracortical myelin content, after adjusting for the effects of the other biological marker (Supplemental Table 14A). In the parietal and frontal types, we observed a significant positive association between SFC and the Hurst exponent as well as the intracortical myelin content (Supplemental Table 14A). Within the agranular cyto-architectonic class, we observed that SFC was positively correlated only with intracortical myelin content but not with the Hurst exponent, within the same regression model (Supplemental Table 14A). Taking these results together, we notice once again a distinct pattern as we transition from granular to agranular cortical regions: a gradual shift from the Hurst exponent to intracortical myelin content as being the principal predictor of SFC (as supported by the numerical changes in the standardized β and false discovery rate-adjusted *p*-values: Supplemental Table 14A; Figure 7). Importantly, this pattern was also reproduced with the HCP multi-modal (360 regions) cortical parcellation (Supplemental Analysis 2B below; Supplemental Table 19). Notably, the cortical type with the lowest SFC and relatively high levels of granularization-the polar type-was an exception to this rule, with SFC not being significantly correlated with either intracortical myelin content or the Hurst exponent (Supplemental Table 14A; Supplemental Material: Methodological **Considerations and Study Limitations**).

Interestingly, dynamic regulation of temporal SFC variance (as opposed to SFC itself) was more persistently dependent upon the Hurst exponent, across the cyto-architectonic classes. Specifically, temporal SFC variance independently and significantly correlated only with the Hurst exponent across all cortical types, after adjusting for the effects of intracortical myelin content (**Supplemental Table 14B**).

Supplemental Analysis 2B: HCP multi-modal cortical parcellation (360 brain regions)

Structure-Function Coupling Variations along the Cortical Hierarchy

In the 7 resting-state systems, SFC was highest in the primary visual and somatomotor cortices, intermediate in the default mode, dorsal attention, fronto-parietal, and ventral attention association

systems, and lowest in the limbic system (**Supplemental Figure 7A**; **Supplemental Table 15**). A decrease in SFC along the unimodal-transmodal hierarchy was also evident along the principal functional gradient, in the form of a significant negative correlation between a brain region's SFC and its assigned principal gradient scalar (**Supplemental Figure 7C**; r=-0.40; p_{spin} =4.5x10⁻⁴); lower assignments within this gradient capture primary sensory and motor regions, whereas higher assignments capture regions within the default mode network. Across the 5 cyto-architectonic classes, SFC gradually decreased from granular (typically capturing sensory regions) to agranular (typically capturing motor and association regions) types and displayed its lowest value in the polar cortical type (**Supplemental Figure 7B; Supplemental Table 16**). Similarly, we observed a significant negative correlation between a brain region's SFC and its assigned location along the BigBrain gradient of microstructure profile covariance (**Supplemental Figure 7D**; r=-0.31; p_{spin} =0.039); primary sensory regions occupy the lower end of this gradient while limbic regions represent its apex.

We next computed each brain region's average temporal SFC variance across subjects and examined its heterogeneous expression along the unimodal (sensory)-transmodal (association) hierarchy. In contrast to SFC, temporal SFC variance was highest in the limbic system (Supplemental Figure 8A; Supplemental Table 17); a pronounced increase in temporal SFC variance was observed along the unimodal-transmodal hierarchy, as captured by the principal gradient (Supplemental Figure 8C; r=0.31; p_{spin}=0.047). Using cyto-architectonic annotations, temporal SFC variance (unlike SFC itself) was highest in the polar cortical type; the remaining 4 cortical types displayed similar degrees of temporal SFC variance (Supplemental Figure 8B; Supplemental Table 18). Under the more continuous BigBrain gradient, we observed a significant positive correlation between a brain region's temporal SFC variance and its assigned location along the gradient (Supplemental Figure 8D; r=0.46; p_{spin}=0.024). As with the Schaefer atlas, in order to ensure that the correlations observed between a brain region's temporal SFC variance and its location in the sensory-association hierarchy (as shown in Supplementary Figures 8C and 8D) were not confounded by the presence of any outlier regions, we repeated the aforementioned analyses. After identifying the outlier regions (n=9), we excluded them and repeated the analyses reported in these figures. Both correlations remained significant (temporal SFC variance vs. principal functional gradient: r=0.29; pspin=0.049, and temporal SFC variance vs. BigBrain gradient: r=0.44; $p_{spin}=0.027$)—same as when including the outliers in the analysis.

Biological Correlates of Structure-Function Coupling: Whole-brain perspective

Across the 360 brain regions defined by the HCP multi-modal cortical parcellation, we observed a significant positive correlation between SFC and intracortical myelin content (**Supplemental Figure 9A**; r=0.53; $p_{spin}<10^{-4}$), and a negative, albeit non-significant, correlation between temporal SFC variance and intracortical myelin content (**Supplemental Figure 9B**; r=-0.19; $p_{spin}=0.169$). Higher SFC values corresponded to larger Hurst exponents and thus a decreased excitationinhibition (EI) ratio (**Supplemental Figure 9C**; r=0.33; $p_{spin}=0.018$), whereas higher temporal variance in SFC corresponded to lower Hurst exponents and thus a heightened EI-ratio (**Supplemental Figure 9D**; r=-0.63; $p_{spin}<10^{-4}$).

To ensure that the association between a region's SFC and either biological marker was independent of the other marker and also independent from that region's position along the cortical

hierarchy, we re-examined the above relationships using multiple linear regression models. We found that SFC (dependent variable) was independently and positively correlated with intracortical myelin content (β_{stand} =0.402; 95% non-parametric bootstrap confidence interval [BCI]=[0.404, 0.406]; $p < 10^{-4}$; variance inflation factor [VIF]=1.46) and with the Hurst exponent ($\beta_{stand}=0.323$; 95% BCI=[0.323, 0.325]; $p < 10^{-4}$; VIF=1.30), after adjusting for the other biological marker, the interaction effect between intracortical myelination and the Hurst exponent, as well as the principal gradient and BigBrain scalar assignments. Further, the correspondence between temporal SFC variance (dependent variable) and both intracortical myelin content ($\beta_{stand}=0.110$; 95%) BCI=[0.111, 0.113]; p=0.002; VIF=1.46) and the Hurst exponent ($\beta_{stand}=-0.610; 95\% BCI=[-0.611, 0.113]; p=0.002; VIF=1.46)$ -0.609]; $p < 10^{-4}$; VIF=1.30) remained significant after adjusting for the other marker, the interaction effect between intracortical myelination and the Hurst exponent, and the principal gradient and BigBrain scalar assignments. Notably, the interaction effect between intracortical myelination and the Hurst exponent was significant within this model ($\beta_{stand}=0.171$; 95%) $BCI=[0.169, 0.170]; p=2x10^{-4}; VIF=1.09);$ a potential causal relationship between temporal SFC variance, intracortical myelination, and the Hurst exponent was further explored via a mediation model. Similarly to the atlas-based analysis reported in the manuscript, the Hurst exponent was found to significantly mediate the correlation between intracortical myelination and temporal SFC variance (total effect=-0.003; $p=10^{-4}$, indirect effect=-0.0015; BCI=[-0.0027, -0.0004]). In other words, the Hurst exponent (i.e., EI-ratio) accounted for 50% of the correlation between intracortical myelination and temporal SFC variance.

Biological Correlates of Structure-Function Coupling: Regional perspective

As with the atlas-based analysis reported in the manuscript, we begin with the cyto-architectonic class that displayed the overall highest SFC: the granular type. We observed a significant positive association between SFC (dependent variable) and the Hurst exponent but not with intracortical myelin content, after adjusting for the effects of the other biological marker (**Supplemental Table 19A**). In the parietal and frontal types, we observed a significant positive association between SFC and the Hurst exponent as well as the intracortical myelin content (**Supplemental Table 19A**). Within the agranular cyto-architectonic class, we observed that SFC was positively correlated only with intracortical myelin content but not with the Hurst exponent, within the same regression model (**Supplemental Table 19A**). Taking these results together, we once again notice a distinct pattern as we transition from granular to agranular cortical regions: a gradual shift from the Hurst exponent to intracortical myelin content as being the principal predictor of SFC (as supported by the numerical changes in the standardized β and false discovery rate-adjusted *p*-values: **Supplemental Table 19A**; **Figure 7**). As with the atlas-based analysis using the Schaefer 400 parcellation reported in the manuscript and in Supplemental Table 19A).

Interestingly—and in agreement with the atlas-based results reported in the manuscript as well as Supplemental Analyses 1 and 2A—dynamic regulation of temporal SFC variance (as opposed to SFC itself) was more persistently dependent upon the Hurst exponent, across the cyto-architectonic classes. Specifically, temporal SFC variance independently correlated only with the Hurst exponent across all cortical types, after adjusting for the effects of intracortical myelin content (**Supplemental Table 19B**).

SUPPLEMENTAL ANALYSIS 3:

Lastly, in addition to processing the subjects from our Penn sample (n=14) using our voxel-based methodology reported in the manuscript, we also analyzed them using the coarser atlas-based Schaefer cortical parcellation (400 brain regions). We report the results below.

Structure-Function Coupling Variations along the Cortical Hierarchy

In the 7 resting-state systems, SFC was highest in the primary visual and somatomotor cortices, intermediate in the ventral attention and limbic systems, and lowest in the dorsal attention, frontoparietal, and default mode systems (**Supplemental Figure 10A**; **Supplemental Table 20**). A decrease in SFC along the unimodal-transmodal hierarchy was also evident along the principal functional gradient, in the form of a significant negative correlation between a brain region's SFC and its assigned principal gradient scalar (**Supplemental Figure 10C**; r=-0.19; $p_{spin}=0.014$); lower assignments within this gradient capture primary sensory and motor regions, whereas higher assignments capture regions within the default mode network. Across the 5 cyto-architectonic classes, SFC gradually decreased from granular (typically capturing sensory regions) to agranular (typically capturing motor and association regions) types (**Supplemental Figure 10B**; **Supplemental Table 21**). Similarly, we observed a negative, albeit non-significant, correlation between a brain region's SFC and its assigned location along the BigBrain gradient of microstructure profile covariance (**Supplemental Figure 10D**; r=-0.04; $p_{spin}=0.362$); primary sensory regions occupy the lower end of this gradient while limbic regions represent its apex.

We next computed each brain region's average temporal SFC variance across subjects and examined its heterogeneous expression along the unimodal (sensory)-transmodal (association) hierarchy. In contrast to SFC, temporal SFC variance was highest in the fronto-parietal and limbic systems, and lowest in the primary visual cortex (Supplemental Figure 11A; Supplemental Table 22); a pronounced increase in temporal SFC variance was observed along the unimodaltransmodal hierarchy, as captured by the principal gradient (Supplemental Figure 11C; r=0.22; p_{spin} =0.030). Using cyto-architectonic annotations, temporal SFC variance was highest in the agranular cortex and lowest in the parietal and granular cortices (Supplemental Figure 11B; Supplemental Table 23). Under the more continuous BigBrain gradient, we observed a positive correlation between a brain region's temporal SFC variance and its assigned location along the gradient (Supplemental Figure 11D; r=0.21; p_{spin}=0.082). Similar to Supplemental Analyses 1 and 2, we wanted to ensure that the correlations observed between a brain region's temporal SFC variance and its location in the sensory-association hierarchy (as shown in Supplemental Figures 11C and 11D) were not confounded by the presence of any outlier regions. After identifying the outlier regions (n=10), we excluded them and repeated the analyses reported in these figures. Both correlations remained qualitatively the same as when the outliers were included: the association between temporal SFC variance and principal functional gradient remained significant (r=0.22; p_{spin} =0.047), whereas the association between temporal SFC variance and the BigBrain gradient remained insignificant (r=0.21; $p_{spin}=0.084$).

Biological Correlates of Structure-Function Coupling: Whole-brain perspective

Across the 400 brain regions defined by the Schaefer cortical parcellation, we observed a significant positive correlation between SFC and intracortical myelin content (**Supplemental Figure 12A**; r=0.21; $p_{spin}=0.003$), and a significant negative correlation between temporal SFC variance and intracortical myelin content (**Supplemental Figure 12B**; r=-0.44; $p_{spin}<10^{-4}$). Higher SFC values corresponded to larger Hurst exponents and thus a decreased excitation-inhibition (EI) ratio (**Supplemental Figure 12C**; r=0.11; $p_{spin}=0.090$), whereas higher temporal variance in SFC corresponded to lower Hurst exponents and thus a heightened EI-ratio (**Supplemental Figure 12D**; r=-0.22; $p_{spin}=0.037$).

To ensure that the association between a region's SFC and either biological marker was independent of the other marker and also independent from that region's position along the cortical hierarchy, we re-examined the above relationships using multiple linear regression models. We found that SFC (dependent variable) was independently and positively correlated with intracortical myelin content ($\beta_{stand}=0.230$; 95% non-parametric bootstrap confidence interval [BCI]=[0.230, 0.233]; $p < 10^{-4}$; variance inflation factor [VIF]=1.35) and the Hurst exponent ($\beta_{stand}=0.110$; 95%) BCI=[0.110, 0.111]; p=0.018; VIF=1.29), after adjusting for the other biological marker, the interaction effect between intracortical myelination and the Hurst exponent, as well as the principal gradient and BigBrain scalar assignments. Further, the correspondence between temporal SFC variance (dependent variable) and both the intracortical myelin content (β_{stand} =-0.341; 95% BCI=[-0.343, -0.341]; $p < 10^{-4}$; VIF=1.35) and the Hurst exponent (β_{stand} =-0.175; 95% BCI=[-0.176, -0.174]; $p=2x10^{-4}$; VIF=1.29) remained significant after adjusting for the other marker, the interaction effect between intracortical myelination and the Hurst exponent, and the principal gradient and BigBrain scalar assignments. In contrast to the atlas-based analysis reported in the manuscript, the interaction effect between intracortical myelin content and the Hurst exponent was not significant in this model (p=0.49), and the Hurst exponent was not found to mediate the correlation between intracortical myelination and temporal SFC variance (total effect=-0.161; indirect effect=0.0015; BCI=[-0.006, 0.011]); these findings could be attributed to the Penn sample's significantly smaller sample size.

Biological Correlates of Structure-Function Coupling: Regional perspective

We begin with the cyto-architectonic class that displayed the highest SFC: the granular type. We observed a trend towards a positive association between SFC (dependent variable) and the Hurst exponent but not with intracortical myelin content, after adjusting for the effects of the other biological marker (**Supplemental Table 24A**). In the parietal type, we observed a significant positive association between SFC and the Hurst exponent as well as the intracortical myelin content (**Supplemental Table 24A**). Within the agranular cyto-architectonic class, we observed that SFC was positively correlated only with intracortical myelin content but not with the Hurst exponent, within the same regression model (**Supplemental Table 24A**). Generally, we notice once again this trend where intracortical myelin content—rather than the Hurst exponent—correlates with SFC in the less granular layers; as we traverse from agranular to granular cortical layers, however, the effect size of the Hurst exponent in predicting SFC increases (**Supplemental Table 24A**).

Lastly, the dynamic regulation of temporal SFC variance appeared to be dependent upon both intracortical myelin content and the Hurst exponent, across most cyto-architectonic classes

(Supplemental Table 24B); this finding could point towards the concerted interaction between the two variables in determining the extent of SFC fluctuations across time.

METHODOLOGICAL CONSIDERATIONS AND STUDY LIMITATIONS

Several methodological considerations and limitations are pertinent to our work. First, in order to quantify the overall degree to which SFC fluctuates over time (i.e., throughout the duration of the functional scan), we used the statistical metric of variance (see Methods: Structure-Function Coupling). Although other metrics for variability such as standard deviation or coefficient of variation could have been used to assess temporal SFC fluctuations over time, we chose variance because it is mathematically related to the standard deviation (i.e., its squared value), does not get adjusted by the mean of the data (like the coefficient of variation), and accounts for the total number of data points considered (Equation 1). Moreover, our choice to measure the temporal SFC variance by splitting the duration of the functional scan into 20 continuous temporal windows served the purpose of generating time windows that captured a few minutes of functional activity. Given the differences in functional scan duration and repetition time across the two participant groups (Human Connectome Project [HCP] and Penn samples) and across our processing pipelines, each of the 20 time windows corresponded to ~40 seconds of functional activity in the atlas-based analyses (HCP sample) described in the main manuscript and Supplemental Analysis 1, ~3 minutes of functional activity in the atlas-based analyses (HCP sample) described in Supplemental Analyses 2A and 2B, and 1 minute of functional activity in the atlas- and voxelbased analyses derived from analyzing the Penn sample (Supplemental Analysis 3 and main manuscript). Even though the duration of each time window could be expected to influence the corresponding temporal SFC variance, our results remained largely consistent across all analyses utilizing varying window durations. Future studies, however, should further vary the number of time windows (with or without temporal overlap) and examine whether-and to what extent-this choice impacts the resulting SFC variability over time.

Another important methodological consideration was the choice of metrics used to non-invasively assess the biological substrates of intracortical myelination and EI-ratio. For the former, we used the previously validated T1-weighted/T2-weighted signal intensity ratio approach (see **Methods: Intracortical Myelination**), as it accurately detects myelo-architectonic boundaries, is a good proxy of myelin concentration, yields a high signal-to-noise ratio, and has high test-retest reliability.^{1–7} Recent studies, however, have suggested that the T1-weighted/T2-weighted ratio captures not only myelination but also inflammation and iron accumulation—an aspect that becomes particularly relevant when examining myelination levels within the subcortical gray matter regions.^{2,6,8,9} Here, however, we only analyzed cortical regions; moreover, both participant groups consisted of healthy young adults where pathological or aberrant levels of microstructural markers (e.g., iron levels, inflammation, edemas, atrophy) would not be expected. Nonetheless, future studies could apply other proposed methods to non-invasively quantify myelin content (e.g., magnetization transfer, simultaneous tissue relaxometry, etc.)^{8–10} and examine how the relation between the estimated myelin content and SFC varies.

Furthermore, we used a recently published approach to non-invasively quantify the balance between synaptic excitation and inhibition across the human cortex, using the Hurst exponent of

the resting-state blood oxygen level-dependent (BOLD) signal time-series.¹¹ Building upon prior work,¹² this recent study demonstrated *in silico* and *in vivo* that changes in the Hurst exponent of the functional BOLD signal time-series reflect shifts in the synaptic EI-ratio.¹¹ We do acknowledge, however, the inherent limitations of these measurements: namely, changes in synaptic excitation and inhibition occur in timescales significantly smaller than the ones captured by the resting-state functional scans acquired. In addition, using the Hurst exponent of the signal time-series is an indirect assessment of the macroscale EI-ratio; a more direct—while still non-invasive—approach, for instance, could involve tracking the dynamical release and re-uptake of glutamatergic and GABA(Gamma-aminobutyric acid)-ergic neurotransmitters using pharmacological (functional) magnetic resonance imaging.¹³

Regarding our results, it should be noted that there was one main distinction between our atlasand voxel-based results discussed in section: 'Biological Correlates of Structure-Function Coupling: Regional perspective,' pertaining to the relationship between SFC and the biological substrates of interest within the polar cyto-architectonic class. More specifically, within the atlasbased analyses, there was no significant association between SFC and intracortical myelination when using the Schaefer 400 atlas, and a significant association between SFC and intracortical myelination but of the opposite directionality (i.e., a negative standardized β coefficient) when using the HCP multi-modal atlas. The association between SFC and the Hurst exponent was nonsignificant in either atlas-based analysis, within the polar cortical class. In contrast, within the voxel-based analyses, there was a significant association between SFC and both independent variables across the polar cortical regions; further, that correlation fit the broader pattern discussed in our Results and Discussion sections pointing to a gradual transition from the Hurst exponent to the intracortical myelination as the principal predictor of SFC, as we traverse from granular to progressively less granular cortical regions. This discrepancy between the atlas- and voxel-based analyses could be attributed to the relatively small number of cortical regions classified as 'polar' in the atlas-based analyses (23/400 cortical regions in the Schaefer 400 atlas and 23/360 cortical regions in the HCP multi-modal atlas). This difference could result in limited statistical powerespecially given that multiple linear regression models were invoked-to capture the underlying dynamics. The potential issue of statistical power was overcome, however, by our voxel-based analyses wherein thousands of brain regions per subject (i.e., cortical voxels) were classified as 'polar.'

Lastly, even though the goal of this study was to identify the biological substrates that mediate how strongly coupled the functional connectivity is to the structural connectivity, we do acknowledge that—in addition to intracortical myelination and EI-ratio—there could be a number of other biological markers that could contribute towards this coupling. Specific examples could include (i) cyto-architectonic properties, such as the underlying neuronal density, neuronal size, and firing behavior (e.g., tonic versus burst firing) patterns found in different brain regions, and (ii) other neuromodulatory properties, such as the contribution of various neurotransmitters and neuropeptides, and their heterogeneous effects on different brain regions.

Equation 1

Temporal SFC Variance =
$$\frac{1}{N-1} \sum_{i=1}^{N} |x_i - \mu|^2$$
(1)

where N is the total number of temporal windows used in the analysis (here, N = 20), x_i is the structure-function coupling at temporal window *i*, and μ the mean structure-function coupling across the N temporal windows.

TABLES

Supplemental Table 1

Multiple Comparisons

Dependent Variable: Structure-Function Coupling

(I) Resting-state	(J) Resting-state	Mean Difference			95% Confid	95% Confidence Interval			
functional networks	functional networks	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound			
Visual	Somatomotor	.013437154257	.010935000532	.995	02034806770	.04722237621			
	Dorsal Attention	.076266028035*	.013452090181	<.001	.03425349044	.11827856563			
	Ventral Attention	.113438364384*	.011973840778	<.001	.07618490991	.15069181886			
	Limbic	.144780830272*	.014886094533	<.001	.09697103687	.19259062368			
	Fronto-parietal	.088606331042*	.012236231460	<.001	.05058990642	.12662275566			
	Default Mode	.064906919745*	.009751748353	<.001	.03471470277	.09509913672			
Somatomotor	Visual	013437154257	.010935000532	.995	04722237621	.02034806770			
	Dorsal Attention	$.062828873778^{*}$.013352469165	<.001	.02114846810	.10450927946			
	Ventral Attention	.100001210126*	.011861811226	<.001	.06314274281	.13685967745			
	Limbic	.131343676015*	.014796131692	<.001	.08379937256	.17888797947			
	Fronto-parietal	.075169176784*	.012126626197	<.001	.03753700762	.11280134595			
	Default Mode	.051469765488*	.009613859710	<.001	.02182279699	.08111673398			
Dorsal Attention	Visual	076266028035*	.013452090181	<.001	11827856563	03425349044			
	Somatomotor	062828873778*	.013352469165	<.001	10450927946	02114846810			
	Ventral Attention	.037172336349	.014215732804	.199	00719833189	.08154300458			
	Limbic	.068514802237*	.016742461188	.003	.01546224091	.12156736356			
	Fronto-parietal	.012340303007	.014437435940	1.000	03266045089	.05734105691			
	Default Mode	011359108290	.012402047900	1.000	05033464293	.02761642635			
Ventral Attention	Visual	113438364384*	.011973840778	<.001	15069181886	07618490991			
	Somatomotor	100001210126*	.011861811226	<.001	13685967745	06314274281			
	Dorsal Attention	037172336349	.014215732804	.199	08154300458	.00719833189			
	Limbic	.031342465889	.015579606522	.657	01839391985	.08107885163			

	Fronto-parietal	024832033342	.013071101303	.730	06551284090	.01584877422
	Default Mode	048531444639*	.010780766432	<.001	08221779017	01484509911
Limbic	Visual	144780830272*	.014886094533	<.001	19259062368	09697103687
	Somatomotor	131343676015*	.014796131692	<.001	17888797947	08379937256
	Dorsal Attention	068514802237*	.016742461188	.003	12156736356	01546224091
	Ventral Attention	031342465889	.015579606522	.657	08107885163	.01839391985
	Fronto-parietal	056174499231*	.015782161980	.017	10643794502	00591105344
	Default Mode	079873910527*	.013944456689	<.001	12530544522	03444237584
Fronto-parietal	Visual	088606331042*	.012236231460	<.001	12662275566	05058990642
-	Somatomotor	075169176784*	.012126626197	<.001	11280134595	03753700762
	Dorsal Attention	012340303007	.014437435940	1.000	05734105691	.03266045089
	Ventral Attention	.024832033342	.013071101303	.730	01584877422	.06551284090
	Limbic	.056174499231*	.015782161980	.017	.00591105344	.10643794502
	Default Mode	023699411297	.011071468838	.527	05822753236	.01082870976
Default Mode	Visual	064906919745*	.009751748353	<.001	09509913672	03471470277
	Somatomotor	051469765488*	.009613859710	<.001	08111673398	02182279699
	Dorsal Attention	.011359108290	.012402047900	1.000	02761642635	.05033464293
	Ventral Attention	.048531444639*	010780766432	<.001	.01484509911	.08221779017
	Limbic	079873910527*	013944456689	< 001	03444237584	12530544522
	Fronto-parietal	023699411297	011071468838	527	- 01082870976	05822753236
	onico partecar	.0200000.11201			.51002070770	.00012,00200

Supplemental Table 1: Mean differences in structure-function coupling across the 7 resting-state functional networks. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Structure-function coupling; factor: Resting-state functional networks. Data derived from the 100 unrelated HCP subjects, analyzed using the Schaefer 400 atlas.

Supplemental Table 2

Multiple Comparisons

Dependent Variable: Structure-Function Coupling

Test: Tamhane							
(I) Cyto-	(J) Cyto-				95% Confidence Interval		
architectonic	architectonic	Mean Difference					
classes	classes	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound	
Agranular	Frontal	040037415719*	.009367735623	<.001	06665855260	01341627884	
	Parietal	069324213535*	.010774866835	<.001	09990211603	03874631104	
	Polar	.022819416864	.018708818333	.928	03344397781	.07908281153	
	Granular	113045932479*	.014725716997	<.001	15700703941	06908482555	

Frontal	Agranular	.040037415719*	.009367735623	<.001	.01341627884	.06665855260
	Parietal	029286797816*	.009078052342	.015	05502268557	00355091006
	Polar	.062856832583*	.017785757291	.015	.00852894352	.11718472165
	Granular	073008516760*	.013533662479	<.001	11437762486	03163940866
Parietal	Agranular	.069324213535*	.010774866835	<.001	.03874631104	.09990211603
	Frontal	.029286797816*	.009078052342	.015	.00355091006	.05502268557
	Polar	.092143630399*	.018565463825	<.001	.03619740163	.14808985917
	Granular	043721718944*	.014543153190	.048	08725419599	00018924190
Polar	Agranular	022819416864	.018708818333	.928	07908281153	.03344397781
	Frontal	062856832583*	.017785757291	.015	11718472165	00852894352
	Parietal	092143630399*	.018565463825	<.001	14808985917	03619740163
	Granular	135865349343*	.021105104425	<.001	19848265117	07324804752
Granular	Agranular	.113045932479*	.014725716997	<.001	.06908482555	.15700703941
	Frontal	.073008516760*	.013533662479	<.001	.03163940866	.11437762486
	Parietal	.043721718944*	.014543153190	.048	.00018924190	.08725419599
	Polar	.135865349343*	.021105104425	<.001	.07324804752	.19848265117

Supplemental Table 2: Mean differences in structure-function coupling across the 5 von-Economo/Koskinasinspired cyto-architectonic classes. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Structure-function coupling; factor: Cytoarchitectonic classes. Data derived from the 100 unrelated HCP subjects, analyzed using the Schaefer 400 atlas.

Supplemental Table 3

Multiple Comparisons

Dependent Variable: Temporal Structure-Function Coupling Variance

(I) Resting-state	(J) Resting-state	Mean Difference			95% Confid	ence Interval
functional networks	functional networks	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Visual	Somatomotor	000346001683	.000182343952	.730	00091203094	.00022002758
	Dorsal Attention	000460281011	.000215938467	.531	00113133779	.00021077577
	Ventral Attention	000611574354	.000234505602	.199	00134127354	.00011812483
	Limbic	003954179137*	.000570500319	<.001	00584861356	00205974471
	Fronto-parietal	001053082598*	.000210402807	<.001	00170571752	00040044768
	Default Mode	001337766725*	.000213111053	<.001	00199536470	00068016875
Somatomotor	Visual	.000346001683	.000182343952	.730	00022002758	.00091203094
	Dorsal Attention	000114279329	.000183039479	1.000	00068655954	.00045800088
	Ventral Attention	000265572671	.000204614044	.990	00090738489	.00037623955

	Limbic	003608177454*	.000558878022	<.001	00547879930	00173755561
	Fronto-parietal	000707080916*	.000176474844	.003	00125638535	00015777648
	Default Mode	000991765042*	.000179695159	<.001	00154558841	00043794167
Dorsal Attention	Visual	.000460281011	.000215938467	.531	00021077577	.00113133779
	Somatomotor	.000114279329	.000183039479	1.000	00045800088	.00068655954
	Ventral Attention	000151293342	.000235046828	1.000	00088452883	.00058194214
	Limbic	003493898125*	.000570723004	<.001	00538895108	00159884517
	Fronto-parietal	000592801587	.000211005865	.119	00124992760	.00006432442
	Default Mode	000877485713*	.000213706468	.002	00153945316	00021551827
Ventral Attention	Visual	.000611574354	.000234505602	.199	00011812483	.00134127354
	Somatomotor	.000265572671	.000204614044	.990	00037623955	.00090738489
	Dorsal Attention	.000151293342	.000235046828	1.000	00058194214	.00088452883
	Limbic	003342604783*	.000578003637	<.001	00525334945	00143186011
	Fronto-parietal	000441508245	.000229971588	.715	00115848538	.00027546889
	Default Mode	000726192371*	.000232451954	.047	00144795656	00000442818
Limbic	Visual	.003954179137*	.000570500319	<.001	.00205974471	.00584861356
	Somatomotor	.003608177454*	.000558878022	<.001	.00173755561	.00547879930
	Dorsal Attention	.003493898125*	.000570723004	<.001	.00159884517	.00538895108
	Ventral Attention	.003342604783*	.000578003637	<.001	.00143186011	.00525334945
	Fronto-parietal	.002901096538*	.000568651622	<.001	.00101047472	.00479171835
	Default Mode	.002616412412*	.000569659238	.002	.00072388126	.00450894356
Fronto-parietal	Visual	.001053082598*	.000210402807	<.001	.00040044768	.00170571752
	Somatomotor	.000707080916*	.000176474844	.003	.00015777648	.00125638535
	Dorsal Attention	.000592801587	.000211005865	.119	00006432442	.00124992760
	Ventral Attention	.000441508245	.000229971588	.715	00027546889	.00115848538
	Limbic	002901096538*	.000568651622	<.001	00479171835	00101047472
	Default Mode	000284684126	.000208111447	.982	00092779613	.00035842788
Default Mode	Visual	.001337766725*	.000213111053	<.001	.00068016875	.00199536470
	Somatomotor	.000991765042*	.000179695159	<.001	.00043794167	.00154558841
	Dorsal Attention	.000877485713*	.000213706468	.002	.00021551827	.00153945316
	Ventral Attention	.000726192371*	.000232451954	.047	.00000442818	.00144795656
	Limbic	002616412412*	.000569659238	.002	00450894356	00072388126
	Fronto-parietal	.000284684126	.000208111447	.982	00035842788	.00092779613

Supplemental Table 3: Mean differences in temporal structure-function coupling variance across the 7 restingstate functional networks. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Temporal structure-function coupling variance; factor: Resting-state functional networks. Data derived from the 100 unrelated HCP subjects, analyzed using the Schaefer 400 atlas.

Supplemental Table 4

Dependent Variable: Temporal Structure-Function Coupling Variance

Test: Tamhane (I) Cyto-(J) Cyto-95% Confidence Interval architectonic Mean Difference architectonic (I-J) Sig. Std. Error Lower Bound Upper Bound classes classes -.000352641780 .000167603665 .316 -.00082980057 .00012451701 Agranular Frontal Parietal .000267611133 .000192783665 .839 -.00027967034 .00081489261 $-.003862034080^{*}$.000611605373 <.001 -.00574137685 -.00198269131 Polar -.000051966217 .000284881892 1.000 -.00090557720 .00080164476 Granular Frontal Agranular .000352641780 .000167603665 .316 -.00012451701 .00082980057 Parietal .000620252914* .000153213021 <.001 .00018565300 .00105485283 Polar -.003509392299* .000600308105 <.001 -.00536772851 -.00165105609 .00110167278 Granular .000300675564 .000259742912 .950 -.00050032165 .839 Parietal -.000267611133 .000192783665 -.00081489261 .00027967034 Agranular -.000620252914* .000153213021 <.001 -.00105485283 -.00018565300 Frontal -.004129645213* .000607819360 <.001 -.00600181470 -.00225747572 Polar -.000319577350 .000276660322 .949 -.00115489925 .00051574455 Granular .003862034080* <.001 Polar .000611605373 .00198269131 .00574137685 Agranular Frontal .003509392299* .000600308105 <.001 .00165105609 .00536772851 .004129645213* .000607819360 <.001 .00225747572 .00600181470 Parietal .003810067863* .000642990299 Granular <.001 .00186342655 .00575670917 Granular Agranular .000051966217 .000284881892 1.000 -.00080164476 .00090557720 .000259742912 .950 Frontal -.000300675564 -.00110167278 .00050032165 Parietal .000319577350 .000276660322 .949 -.00051574455 .00115489925 -.003810067863* .000642990299 <.001 -.00575670917 -.00186342655 Polar

Multiple Comparisons

*. The mean difference is significant at the 0.05 level.

Supplemental Table 4: Mean differences in temporal structure-function coupling variance across the 5 von-Economo/Koskinas-inspired cyto-architectonic classes. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Temporal structure-function coupling variance; factor: Cyto-architectonic classes. Data derived from the 100 unrelated HCP subjects, analyzed using the Schaefer 400 atlas.

Supplemental Table 5

Multiple Comparisons

Dependent Variable: Structure-Function Coupling

(I) Resting-state	(J) Resting-state	Mean Difference			95% Confid	ence Interval
functional networks	functional networks	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Visual	Somatomotor	.009107576726	.011230708177	1.000	02573808010	.04395323355
	Dorsal Attention	.086044397800*	.013397380051	<.001	.04424797363	.12784082197
	Ventral Attention	.111751436338*	.010984567983	.000	.07763090343	.14587196924
	Limbic	.180775407291*	.016196657279	<.001	.12881725874	.23273355584
	Fronto-parietal	.095090988743*	.013071994472	<.001	.05435825706	.13582372043
	Default Mode	.082620982778*	.010883044118	<.001	.04894521263	.11629675293
Somatomotor	Visual	009107576726	.011230708177	1.000	04395323355	.02573808010
	Dorsal Attention	.076936821074*	.012828046023	<.001	.03679531009	.11707833206
	Ventral Attention	.102643859612*	.010282495141	<.001	.07065946383	.13462825539
	Limbic	.171667830565*	.015728975795	<.001	.12090140788	.22243425326
	Fronto-parietal	.085983412017*	.012487834561	<.001	.04696119716	.12500562687
	Default Mode	.073513406052*	.010173967850	<.001	.04202814245	.10499866965
Dorsal Attention	Visual	086044397800*	.013397380051	<.001	12784082197	04424797363
	Somatomotor	076936821074*	.012828046023	<.001	11707833206	03679531009
	Ventral Attention	.025707038538	.012613115887	.620	01382703794	.06524111502
	Limbic	.094731009492*	.017342481530	<.001	.03955536726	.14990665172
	Fronto-parietal	.009046590943	.014467446150	1.000	03612277475	.05421595664
	Default Mode	003423415022	.012524799714	1.000	04261113705	.03576430701
Ventral Attention	Visual	111751436338*	.010984567983	.000	14587196924	07763090343
	Somatomotor	102643859612*	.010282495141	<.001	13462825539	07065946383
	Dorsal Attention	025707038538	.012613115887	.620	06524111502	.01382703794
	Limbic	.069023970954*	.015554182948	.001	.01868704144	.11936090047
	Fronto-parietal	016660447594	.012266945001	.984	05505389272	.02173299753
	Default Mode	029130453560	.009901593278	.079	05979745603	.00153654891
Limbic	Visual	180775407291*	.016196657279	<.001	23273355584	12881725874
	Somatomotor	171667830565*	.015728975795	<.001	22243425326	12090140788
	Dorsal Attention	094731009492*	.017342481530	<.001	14990665172	03955536726
	Ventral Attention	069023970954*	.015554182948	.001	11936090047	01868704144
	Fronto-parietal	085684418548*	.017092364169	<.001	14014578493	03122305217
	Default Mode	098154424513*	.015482652314	<.001	14826223139	04804661764
Fronto-parietal	Visual	095090988743*	.013071994472	<.001	13582372043	05435825706
	Somatomotor	085983412017*	.012487834561	<.001	12500562687	04696119716

	Dorsal Attention	009046590943	.014467446150	1.000	05421595664	.03612277475
	Ventral Attention	.016660447594	.012266945001	.984	02173299753	.05505389272
	Limbic	.085684418548*	.017092364169	<.001	.03122305217	.14014578493
	Default Mode	012470005965	.012176118230	1.000	05049979794	.02555978601
Default Mode	Visual	082620982778*	.010883044118	<.001	11629675293	04894521263
	Somatomotor	073513406052*	.010173967850	<.001	10499866965	04202814245
	Dorsal Attention	.003423415022	.012524799714	1.000	03576430701	.04261113705
	Ventral Attention	029130453560	009901593278	079	- 00153654891	05979745603
	Limbic	098154424513*	015482652314	< 001	04804661764	14826223139
	Eronto-parietal	012470005965	012176118230	1.000	- 02555978601	05049979794
	1 Ionito pariotar	.0121/000000000	.0121,0110250	1.000	.0200001	

Supplemental Table 5: Mean differences in structure-function coupling across the 7 resting-state functional networks. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Structure-function coupling; factor: Resting-state functional networks. Data derived from the 100 unrelated HCP subjects, analyzed using the HCP multi-modal atlas.

Supplemental Table 6

Multiple Comparisons

Dependent Variable: Structure-Function Coupling

Test: Tamhane

(I) Cyto-architectonic	(J) Cyto-architectonic	Mean Difference			95% Confid	ence Interval
classes	classes	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Agranular	Frontal	030215803408*	.010382118814	.042	05984410357	00058750325
	Parietal	076467057724*	.012147499886	<.001	11099675238	04193736307
	Polar	.047520300764	.018918155080	.155	00897703122	.10401763275
	Granular	084260914284*	.019192452563	.001	14247940850	02604242007
Frontal	Agranular	.030215803408*	.010382118814	.042	.00058750325	.05984410357
	Parietal	046251254316*	.009925432749	<.001	07442092933	01808157930
	Polar	.077736104172*	.017574101781	.001	.02415386721	.13131834114
	Granular	054045110876	.017869042984	.061	10965396028	.00156373853
Parietal	Agranular	.076467057724*	.012147499886	<.001	.04193736307	.11099675238
	Frontal	.046251254316*	.009925432749	<.001	.01808157930	.07442092933
	Polar	.123987358488*	.018671433148	<.001	.06807016396	.17990455302
	Granular	007793856560	.018949302351	1.000	06548221715	.04989450403
Polar	Agranular	047520300764	.018918155080	.155	10401763275	.00897703122
	Frontal	077736104172*	.017574101781	.001	13131834114	02415386721
	Parietal	123987358488*	.018671433148	<.001	17990455302	06807016396

	Granular	131781215048*	.023862332194	<.001	20253196245	06103046765
Granular	Agranular	.084260914284*	.019192452563	.001	.02604242007	.14247940850
	Frontal	.054045110876	.017869042984	.061	00156373853	.10965396028
	Parietal	.007793856560	.018949302351	1.000	04989450403	.06548221715
	Polar	.131781215048*	.023862332194	<.001	.06103046765	.20253196245

Supplemental Table 6: Mean differences in structure-function coupling across the 5 von-Economo/Koskinasinspired cyto-architectonic classes. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Structure-function coupling; factor: Cytoarchitectonic classes. Data derived from the 100 unrelated HCP subjects, analyzed using the HCP multi-modal atlas.

Supplemental Table 7

Multiple Comparisons

Dependent Variable: Temporal Structure-Function Coupling Variance

(I) Resting-state	(J) Resting-state	Mean Difference			95% Confide	ence Interval
functional networks	functional networks	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Visual	Somatomotor	000181527307	.000285953066	1.000	00106999004	.00070693543
	Dorsal Attention	000194390164	.000267296838	1.000	00102654309	.00063776276
	Ventral Attention	000669260306	.000269344466	.266	00150664247	.00016812185
	Limbic	003945006637*	.000627551576	<.001	00601663082	00187338245
	Fronto-parietal	001152118296*	.000257475436	<.001	00195283400	00035140259
	Default Mode	001857336619*	.000307249163	<.001	00280591357	00090875966
Somatomotor	Visual	.000181527307	.000285953066	1.000	00070693543	.00106999004
	Dorsal Attention	000012862857	.000295738165	1.000	00093380899	.00090808327
	Ventral Attention	000487732999	.000297590161	.901	00141347742	.00043801142
	Limbic	003763479330*	.000640183133	<.001	00586350459	00166345406
	Fronto-parietal	000970590989*	.000286892075	.022	00186398885	00007719313
	Default Mode	001675809311*	.000332288294	<.001	00270249307	00064912555
Dorsal Attention	Visual	.000194390164	.000267296838	1.000	00063776276	.00102654309
	Somatomotor	.000012862857	.000295738165	1.000	00090808327	.00093380899
	Ventral Attention	000474870142	.000279711186	.871	00134724578	.00039750550
	Limbic	003750616473*	.000632070318	<.001	00583251891	00166871404
	Fronto-parietal	000957728132*	.000268301148	.012	00179550525	00011995102
	Default Mode	001662946455*	.000316376286	<.001	00264171672	00068417619
Ventral Attention	Visual	.000669260306	.000269344466	.266	00016812185	.00150664247
	Somatomotor	.000487732999	.000297590161	.901	00043801142	.00141347742

	Dorsal Attention	.000474870142	.000279711186	.871	00039750550	.00134724578
	Limbic	003275746331*	.000632938961	<.001	00535948880	00119200386
	Fronto-parietal	000482857990	.000270341170	.816	00132578593	.00036006995
	Default Mode	001188076313*	.000318108151	.006	00217148662	00020466601
Limbic	Visual	.003945006637*	.000627551576	<.001	.00187338245	.00601663082
	Somatomotor	$.003763479330^{*}$.000640183133	<.001	.00166345406	.00586350459
	Dorsal Attention	.003750616473*	.000632070318	<.001	.00166871404	.00583251891
	Ventral Attention	.003275746331*	.000632938961	<.001	.00119200386	.00535948880
	Fronto-parietal	.002792888341*	.000627980006	.002	.00072010438	.00486567230
	Default Mode	.002087670019	.000649974873	.057	00003425157	.00420959160
Fronto-parietal	Visual	.001152118296*	.000257475436	<.001	.00035140259	.00195283400
r	Somatomotor	.000970590989*	.000286892075	.022	.00007719313	.00186398885
	Dorsal Attention	.000957728132*	.000268301148	.012	.00011995102	.00179550525
	Ventral Attention	.000482857990	.000270341170	.816	00036006995	.00132578593
	Limbic	002792888341*	.000627980006	.002	00486567230	00072010438
	Default Mode	000705218322	.000308123279	.396	00165813552	.00024769887
Default Mode	Visual	.001857336619*	.000307249163	<.001	.00090875966	.00280591357
	Somatomotor	.001675809311*	.000332288294	<.001	.00064912555	.00270249307
	Dorsal Attention	.001662946455*	.000316376286	<.001	.00068417619	.00264171672
	Ventral Attention	001188076313*	000318108151	006	00020466601	00217148662
	Limbic	- 002087670019	000649974873	057	- 00420959160	00003425157
	Fronto-parietal	000705218322	000308123279	396	- 00024769887	00165813552
	1.5mo puriouri	.000705210522	.000000120277	.570		

Supplemental Table 7: Mean differences in temporal structure-function coupling variance across the 7 restingstate functional networks. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Temporal structure-function coupling variance; factor: Resting-state functional networks. Data derived from the 100 unrelated HCP subjects, analyzed using the HCP multimodal atlas.

Supplemental Table 8

Multiple Comparisons

Dependent Variable: Temporal Structure-Function Coupling Variance

(I) Cyto-architectonic	(J) Cyto-architectonic	Mean Difference			95% Confidence Interval	
classes	classes	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Agranular	Frontal	.000165235911	.000267496654	1.000	00059854874	.00092902057
	Parietal	.000676981514	.000276581826	.148	00011204710	.00146601012

	Polar	004328708186*	.000551685657	<.001	00598795923	00266945715
	Granular	.000469761938	.000515137830	.990	00109691157	.00203643544
Frontal	Agranular	000165235911	.000267496654	1.000	00092902057	.00059854874
	Parietal	.000511745602	.000205363784	.127	00006928745	.00109277865
	Polar	004493944097*	.000519647805	<.001	00608644297	00290144522
	Granular	.000304526026	.000480670116	1.000	00119546442	.00180451647
Parietal	Agranular	000676981514	.000276581826	.148	00146601012	.00011204710
	Frontal	000511745602	.000205363784	.127	00109277865	.00006928745
	Polar	005005689700*	.000524382387	<.001	00660755525	00340382415
	Granular	000207219576	.000485784734	1.000	00171635160	.00130191245
Polar	Agranular	.004328708186*	.000551685657	<.001	.00266945715	.00598795923
	Frontal	.004493944097*	.000519647805	<.001	.00290144522	.00608644297
	Parietal	$.005005689700^{*}$.000524382387	<.001	.00340382415	.00660755525
	Granular	.004798470124*	.000681062673	<.001	.00278077369	.00681616656
Granular	Agranular	000469761938	.000515137830	.990	00203643544	.00109691157
	Frontal	000304526026	.000480670116	1.000	00180451647	.00119546442
	Parietal	.000207219576	.000485784734	1.000	00130191245	.00171635160
	Polar	004798470124*	.000681062673	<.001	00681616656	00278077369

Supplemental Table 8: Mean differences in temporal structure-function coupling variance across the 5 von-Economo/Koskinas-inspired cyto-architectonic classes. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Temporal structurefunction coupling variance; factor: Cyto-architectonic classes. Data derived from the 100 unrelated HCP subjects, analyzed using the HCP multi-modal atlas.

Supplemental Table 9

A. Structure-Function Coupling										
	Iı	ntracortical	Myelin		Hurst Exp	onent				
Cortical Type	β_{stand}	95% BCI	Bootstrapped <i>p</i> -value (FDR)	eta_{stand}	95% BCI	Bootstrapped <i>p</i> -value (FDR)	VIF			
Granular	0.349	[0.344, 0.352]	0.075	0.502	[0.516, 0.525]	0.013	1.01			
Polar	-0.395	[-0.402, -0.397]	0.017	0.225	[0.206, 0.213]	0.239	1.04			
Parietal	0.411	[0.417, 0.421]	<10-4	0.385	[0.377, 0.380]	0.004	1.01			

Frontal	0.404	[0.403, 0.407]	<10-4	0.273	[0.269, 0.273]	0.006	1.08
Agranular	0.484	[0.472, 0.477]	0.003	0.017	[0.006, 0.011]	0.922	1.33
	В	. Temporal	Structure-Fun	ction Co	upling Vari	ance	
	I	ntracortical	Myelin				
Cortical			Bootstrapped			Bootstrapped	
Туре	β_{stand}	95% BCI	<i>p</i> -value	β_{stand}	95% BCI	<i>p</i> -value	VIF
			(FDR)	-		(FDR)	
Granular	-0.111	[-0.111,	0.625	-0.866	[-0.870,	<10-4	1.01
		-0.106]			-0.865]		
Polar	0.000	[-0.007,	0.942	-0.488	[-0.504,	0.032	1.04
		0.002]			-0.495]		
Parietal	-0.321	[-0.318,	0.001	-0.690	[-0.694,	<10-4	1.01
		-0.315]			-0.691]		
Frontal	-0.168	[-0.169,	0.035	-0.405	[-0.405,	<10-4	1.08
		-0.166]			-0.401]		
Agranular	0.015	[0.017,	0.942	-0.698	[-0.703,	<10-4	1.33
		0.021]			-0.698]		

Supplemental Table 9: Atlas-based multiple linear regression analyses – Results corresponding to the atlas-based (HCP multi-modal cortical parcellation) analyses discussed in section: 'Biological Correlates of Structure-Function Coupling: Regional perspective' of our **Supplementary Analysis 1** section above. β_{stand} : standardized β coefficient; 95% *BCI*: 95% bootstrapped standardized β coefficient confidence interval; Bootstrapped *p*-value (FDR): bootstrapped *p*-value adjusted for multiple comparisons (two-tailed test; false discovery rate: Benjamini-Hochberg method); *VIF*: Variance Inflation Factor.

Supplemental Table 10

Multiple Comparisons

Dependent Variable: Structure-Function Coupling

Test: Tamhane							
(I) Resting-state	(J) Resting-state				95% Confidence Interval		
functional	functional	Mean Difference					
networks	networks	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound	
Visual	Somatomotor	.011576259845075	.011012956877614	.999	022444447855747	.045596967545897	
	Dorsal Attention	.078762503502432*	.013690348546591	<.001	.035968531348661	.121556475656204	
	Ventral Attention	.118368833753839*	.012161435860379	<.001	.080508179813655	.156229487694023	
	Limbic	.128119853216785*	.017555886632451	<.001	.071077052959085	.185162653474485	
	Fronto-parietal	.091376027389999*	.012321795324671	<.001	.053080595024469	.129671459755530	
	Default Mode	.065777050011911*	.009769426719259	<.001	.035544696323115	.096009403700707	

Somatomotor	Visual	011576259845075	.011012956877614	.999	045596967545897	.022444447855747
	Dorsal Attention	.067186243657357*	.013738242238796	<.001	.024294299424314	.110078187890401
	Ventral Attention	.106792573908764*	.012215325565485	<.001	.068828955779320	.144756192038208
	Limbic	.116543593371710*	.017593260412332	<.001	.059430877784780	.173656308958640
	Fronto-parietal	.079799767544924*	.012374986727580	<.001	.041400518785368	.118199016304480
	Default Mode	.054200790166836*	.009836429987940	<.001	.023866709994600	.084534870339071
Dorsal Attention	Visual	078762503502432*	.013690348546591	<.001	121556475656204	035968531348661
	Somatomotor	067186243657357*	.013738242238796	<.001	110078187890401	024294299424314
	Ventral Attention	.039606330251407	.014674965172352	.161	006196449615785	.085409110118598
	Limbic	.049357349714353	.019382033847744	.256	012524703142798	.111239402571503
	Fronto-parietal	.012613523887567	.014808130221157	1.000	033549539962456	.058776587737590
	Default Mode	012985453490521	.012763063074615	1.000	053105658048820	.027134751067777
Ventral Attention	Visual	118368833753839*	.012161435860379	<.001	156229487694023	080508179813655
	Somatomotor	106792573908764*	.012215325565485	<.001	144756192038208	068828955779320
	Dorsal Attention	039606330251407	.014674965172352	.161	085409110118598	.006196449615785
	Limbic	.009751019462946	.018334069786440	1.000	049298806097523	.068800845023415
	Fronto-parietal	026992806363840	.013407296502490	.635	068720703328100	.014735090600420
	Default Mode	052591783741928*	.011107234485036	<.001	087309135730714	017874431753142
Limbic	Visual	128119853216785*	.017555886632451	<.001	185162653474485	071077052959085
	Somatomotor	116543593371710*	.017593260412332	<.001	173656308958640	059430877784780
	Dorsal Attention	049357349714353	.019382033847744	.256	111239402571503	.012524703142798
	Ventral Attention	009751019462946	.018334069786440	1.000	068800845023415	.049298806097523
	Fronto-parietal	036743825826786	.018440830587884	.678	096049043524106	.022561391870535
	Default Mode	062342803204874*	.016842781574637	.016	117697126604428	006988479805320
Fronto-parietal	Visual	0913760273899999*	.012321795324671	<.001	129671459755530	053080595024469
	Somatomotor	079799767544924*	.012374986727580	<.001	118199016304480	041400518785368
	Dorsal Attention	012613523887567	.014808130221157	1.000	058776587737590	.033549539962456
	Ventral Attention	.026992806363840	.013407296502490	.635	014735090600420	.068720703328100
	Limbic	.036743825826786	.018440830587884	.678	022561391870535	.096049043524106
	Default Mode	025598977378088	.011282587280520	.421	060782735449272	.009584780693095
Default Mode	Visual	065777050011911*	.009769426719259	<.001	096009403700707	035544696323115
	Somatomotor	054200790166836*	.009836429987940	<.001	084534870339071	023866709994600
	Dorsal Attention	.012985453490521	.012763063074615	1.000	027134751067777	.053105658048820
	Ventral Attention	.052591783741928*	.011107234485036	<.001	.017874431753142	.087309135730714
	Limbic	.062342803204874*	.016842781574637	.016	.006988479805320	.117697126604428
	Fronto-parietal	.025598977378088	.011282587280520	.421	009584780693095	.060782735449272

Supplemental Table 10: Mean differences in structure-function coupling across the 7 resting-state functional networks. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Structure-function coupling; factor: Resting-state functional networks. Data derived from the 100 unrelated HCP subjects, analyzed using the Schaefer 400 atlas.

Supplemental Table 11

Multiple Comparisons

Dependent Variable: Structure-Function Coupling

Test: Tamhane

(I) Cyto-	(J) Cyto-				95% Confide	ence Interval
architectonic	architectonic	Mean Difference				
classes	classes	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Agranular	Frontal	040761010523845*	.009823451359097	<.001	068695243443140	012826777604551
	Parietal	069817062841319*	.011092311905753	<.001	101304900166407	038329225516231
	Polar	.016041661242572	.020855710069885	.997	046843672459354	.078926994944498
	Granular	118734629145401*	.014489106713137	<.001	161682301873357	075786956417445
Frontal	Agranular	.040761010523845*	.009823451359097	<.001	.012826777604551	.068695243443140
	Parietal	029056052317473*	.009071485027428	.016	054766289625380	003345815009567
	Polar	.056802671766417	.019854800419733	.080	004021710894420	.117627054427254
	Granular	077973618621556*	.013007177654396	<.001	117592641564863	038354595678248
Parietal	Agranular	.069817062841319*	.011092311905753	<.001	.038329225516231	.101304900166407
Tarictar	Frontal	.029056052317473*	.009071485027428	.016	.003345815009567	.054766289625380
	Polar	$.085858724083890^{*}$.020512247232261	.002	.023705782176360	.148011665991421
	Granular	048917566304082*	.013990205764855	.013	090683100456517	007152032151647
Polar	Agranular	016041661242572	.020855710069885	.997	078926994944498	.046843672459355
	Frontal	056802671766417	.019854800419733	.080	117627054427254	.004021710894420
	Parietal	085858724083890*	.020512247232261	.002	148011665991421	023705782176360
	Granular	134776290387972*	.022531025641270	<.001	201952385565034	067600195210911
Granular	Agranular	.118734629145401*	.014489106713137	<.001	.075786956417445	.161682301873357
	Frontal	.077973618621556*	.013007177654396	<.001	.038354595678248	.117592641564863
	Parietal	.048917566304082*	.013990205764855	.013	.007152032151647	.090683100456517
	Polar	.134776290387972*	.022531025641270	<.001	.067600195210911	.201952385565034

*. The mean difference is significant at the 0.05 level.

Supplemental Table 11: Mean differences in structure-function coupling across the 5 von-Economo/Koskinas-inspired cyto-architectonic classes. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Structure-function coupling; factor: Cyto-architectonic classes. Data derived from the 100 unrelated HCP subjects, analyzed using the Schaefer 400 atlas.

Supplemental Table 12

Multiple Comparisons

Dependent Variable: Temporal Structure-Function Coupling Variance

(I) Resting-state	(J) Resting-state				95% Confid	ence Interval
functional	functional	Mean Difference				
networks	networks	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Visual	Somatomotor	000417954355607	.000154774488292	.158	000899728694584	.000063819983371
	Dorsal Attention	.000041389264154	.000177189191989	1.000	000508946651812	.000591725180121
	Ventral Attention	000097920589750	.000224385624386	1.000	000797604509343	.000601763329843
	Limbic	005542890908206*	.001032068903494	<.001	009008512290002	002077269526411
	Fronto-parietal	000411572760877	.000206183589545	.648	001051869024890	.000228723503135
	Default Mode	000794805647197*	.000192588821376	.001	001388905098760	000200706195633
Somatomotor	Visual	.000417954355607	.000154774488292	.158	000063819983371	.000899728694584
	Dorsal Attention	.000459343619761*	.000137748156739	.026	.000028762127004	.000889925112518
	Ventral Attention	.000320033765856	.000194749719790	.903	000295069975991	.000935137507704
	Limbic	005124936552600*	.001026033511386	<.001	008578990223859	001670882881341
	Fronto-parietal	.000006381594729	.000173465320814	1.000	000537712075290	.000550475264749
	Default Mode	000376851291590	.000157063678316	.314	000861799723140	.000108097139960
Dorsal Attention	Visual	000041389264154	.000177189191989	1.000	000591725180121	.000508946651812
	Somatomotor	000459343619761*	.000137748156739	.026	000889925112518	000028762127004
	Ventral Attention	000139309853905	.000212998405839	1.000	000806550437732	.000527930729923
	Limbic	005584280172361*	.001029653162001	<.001	009045251909679	002123308435042
	Fronto-parietal	000452962025032	.000193729411956	.367	001056963321183	.000151039271119
	Default Mode	000836194911351*	.000179192261490	<.001	001389993849054	000282395973648
Ventral Attention	Visual	.000097920589750	.000224385624386	1.000	000601763329843	.000797604509343
	Somatomotor	000320033765856	.000194749719790	.903	000935137507704	.000295069975991
	Dorsal Attention	.000139309853905	.000212998405839	1.000	000527930729923	.000806550437732
	Limbic	005444970318456*	.001038815928205	<.001	008923837663188	001966102973724
	Fronto-parietal	000313652171127	.000237663593615	.988	001054042778591	.000426738436337
	Default Mode	000696885057446	.000225970717685	.054	001399864524700	.000006094409807
Limbic	Visual	.005542890908206*	.001032068903494	<.001	.002077269526411	.009008512290002
	Somatomotor	.005124936552600*	.001026033511386	<.001	.001670882881341	.008578990223859
	Dorsal Attention	.005584280172361*	.001029653162001	<.001	.002123308435042	.009045251909679
	Ventral Attention	.005444970318456*	.001038815928205	<.001	.001966102973724	.008923837663188
	Fronto-parietal	.005131318147329*	.001035036857730	<.001	.001659909172183	.008602727122475
	Default Mode	$.004748085261010^{*}$.001032414683342	.002	.001281810846315	.008214359675705

Fronto-parietal	Visual	.000411572760877	.000206183589545	.648	000228723503135	.001051869024890
	Somatomotor	000006381594729	.000173465320814	1.000	000550475264749	.000537712075290
	Dorsal Attention	.000452962025032	.000193729411956	.367	000151039271119	.001056963321183
	Ventral Attention	.000313652171127	.000237663593615	.988	000426738436337	.001054042778591
	Limbic	005131318147329*	.001035036857730	<.001	008602727122475	001659909172183
	Default Mode	000383232886319	.000207907502072	.771	001026981642974	.000260515870336
Default Mode	Visual	.000794805647197*	.000192588821376	.001	.000200706195633	.001388905098760
	Somatomotor	.000376851291590	.000157063678316	.314	000108097139960	.000861799723140
	Dorsal Attention	.000836194911351*	.000179192261490	<.001	000282395973648	.001389993849054
	Ventral Attention	.000696885057446	.000225970717685	.054	- 000006094409807	.001399864524700
	Limbic	- 004748085261010*	001032414683342	.002	- 008214359675705	001281810846315
	Fronto-parietal	.000383232886319	.000207907502072	.771	000260515870336	.001026981642974

Supplemental Table 12: Mean differences in temporal structure-function coupling variance across the 7 resting-state functional networks. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Temporal structure-function coupling variance; factor: Resting-state functional networks. Data derived from the 100 unrelated HCP subjects, analyzed using the Schaefer 400 atlas.

Supplemental Table 13

Multiple Comparisons

Dependent Variable: Temporal Structure-Function Coupling Variance

(I) Cyto-	(J) Cyto-				95% Confide	ence Interval
architectonic	architectonic	Mean Difference				
classes	classes	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Agranular	Frontal	000144835313691	.000232862287540	1.000	000811675014589	.000522004387207
	Parietal	.000319984782868	.000246927548193	.889	000384513851014	.001024483416749
	Polar	004950262754159*	.001117304602086	.002	008395865122671	001504660385646
	Granular	000355775530766	.000297647369246	.932	001217500451292	.000505949389759
Frontal	Agranular	.000144835313691	.000232862287540	1.000	000522004387207	.000811675014589
	Parietal	.000464820096559*	.000140493767067	.011	.000066536816101	.000863103377017
	Polar	004805427440467*	.001098696891035	.002	008217285007333	001393569873602
	Granular	000210940217075	.000217621784174	.985	000877624317248	.000455743883097
Parietal	Agranular	000319984782868	.000246927548193	.889	001024483416749	.000384513851014
	Frontal	000464820096559*	.000140493767067	.011	000863103377017	000066536816101
	Polar	005270247537026*	.001101763689485	<.001	008687546127957	001852948946095
	Granular	000675760313634	.000232610425487	.064	001374068126620	.000022547499352

Polar	Agranular	.004950262754159*	.001117304602086	.002	.001504660385646	.008395865122671
	Frontal	.004805427440467*	.001098696891035	.002	.001393569873602	.008217285007333
	Parietal	.005270247537026*	.001101763689485	<.001	.001852948946095	.008687546127957
	Granular	.004594487223392*	.001114227970314	.004	.001154228370499	.008034746076285
Granular	Agranular	000355775530766	000297647369246	932	- 000505949389759	001217500451292
	Frontal	000210940217075	000217621784174	985	- 000455743883097	000877624317248
	Parietal	000675760313634	000232610425487	.765	000022547499352	001374068126620
		.000073700313034	.000232010423487	.004	000022347499332	.001374008120020
	Polar	004594487223392	.00111422/9/0314	.004	008034746076285	001154228370499

Supplemental Table 13: Mean differences in temporal structure-function coupling variance across the 5 von-Economo/Koskinas-inspired cyto-architectonic classes. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Temporal structurefunction coupling variance; factor: Cyto-architectonic classes. Data derived from the 100 unrelated HCP subjects, analyzed using the Schaefer 400 atlas.

Supplemental Table 14

Г

		A. St	tructure-Funct	ion Coup	ling		
	I	ntracortical	Myelin		Hurst Exp	onent	
Cortical Type	β_{stand}	95% BCI	Bootstrapped <i>p</i> -value (FDR)	β_{stand}	95% BCI	Bootstrapped <i>p</i> -value (FDR)	VIF
Granular	0.178	[0.131, 0.140]	0.305	0.704	[0.717, 0.723]	6.7x10 ⁻⁴	1.01
Polar	0.303	[0.233, 0.244]	0.305	-0.275	[-0.264, -0.253]	0.422	1.04
Parietal	0.416	[0.412, 0.415]	<10-4	0.538	[0.533, 0.536]	<10-4	1.01
Frontal	0.437	[0.437, 0.439]	<10-4	0.275	[0.273, 0.276]	<10-4	1.08
Agranular	0.456	[0.456, 0.460]	<10-4	0.050	[0.055, 0.061]	0.712	1.32
	В.	Temporal S	tructure-Funct	ion Coup	oling Variar	ice	
	I	ntracortical	Myelin				
Cortical	1		Bootstrapped			Bootstrapped	

				1		
ortical Type	eta_{stand}	95% BCI	Bootstrapped <i>p</i> -value (FDR)	eta_{stand}	95% BCI	Bootstrapped <i>p</i> -value (FDR)

VIF

Granular	0.326	[0.285,	0.209	-0.462	[-0.447,	0.020	1.01
		0.294]			-0.440]		
Polar	-0.171	[-0.177,	0.209	-0.759	[-0.752,	<10-4	1.04
		-0.173]			-0.745]		
Parietal	-0.002	[-0.001,	0.999	-0.433	[-0.428,	0.006	1.01
		0.004]			-0.423]		
Frontal	0.024	[0.024,	0.846	-0.428	[-0.425,	<10-4	1.08
		0.027]			-0.422]		
Agranular	-0.106	[-0.102,	0.209	-0.627	[-0.612,	<10-4	1.32
		-0.099]			-0.605]		

Supplemental Table 14: Atlas-based multiple linear regression analyses – Results corresponding to the atlas-based analyses discussed in section: 'Biological Correlates of Structure-Function Coupling: Regional perspective' of our Supplementary Analysis 2A section above. β_{stand} : standardized β coefficient; 95% *BCI*: 95% bootstrapped standardized β coefficient confidence interval; Bootstrapped *p*-value (FDR): bootstrapped *p*-value adjusted for multiple comparisons (two-tailed test; false discovery rate [FDR]: Benjamini-Hochberg method); *VIF*: Variance Inflation Factor.

Supplemental Table 15

Multiple Comparisons

Dependent Variable: Structure-Function Coupling

(I) Resting-state	(J) Resting-state				95% Confid	ence Interval
functional	functional	Mean Difference				
networks	networks	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Visual	Somatomotor	.006595690357668	.011152932253749	1.000	028005313256099	.041196693971435
	Dorsal Attention	.089199981977586*	.013443616348244	<.001	.047206436932407	.131193527022764
	Ventral Attention	.115358404655630*	.010886647680366	.000	.081545531250935	.149171278060325
	Limbic	.173452816714172*	.016575717428391	<.001	.120068621897863	.226837011530481
	Fronto-parietal	.098206698052394*	.013127895630619	<.001	.057252070748308	.139161325356481
	Default Mode	.083421262434394*	.010651487279391	<.001	.050477657593982	.116364867274805
Somatomotor	Visual	006595690357668	.011152932253749	1.000	041196693971435	.028005313256099
	Dorsal Attention	.082604291619917*	.013192885667825	<.001	.041321656829333	.123886926410502
	Ventral Attention	.108762714297962*	.010575467339176	.000	.075867006617745	.141658421978178
	Limbic	.166857126356504*	.016373021101538	<.001	.113974314455770	.219739938257238
	Fronto-parietal	.091611007694726*	.012871016098738	<.001	.051389358434193	.131832656955260
	Default Mode	.076825572076725*	.010333227617186	<.001	.044835858878752	.108815285274699
Dorsal Attention	Visual	089199981977585*	.013443616348244	<.001	131193527022764	047206436932407
	Somatomotor	082604291619917*	.013192885667825	<.001	123886926410502	041321656829333
	Ventral Attention	.026158422678044	.012968555513396	.638	014489849006625	.066806694362713

	Limbic	.084252834736587*	.018011627984540	<.001	.026912628460240	.141593041012933
	Fronto-parietal	.009006716074809	.014899865035497	1.000	037512243136162	.055525675285780
	Default Mode	005778719543192	.012771785922518	1.000	045770053655846	.034212614569463
Ventral Attention	Visual	115358404655630*	.010886647680366	.000	149171278060325	081545531250935
	Somatomotor	108762714297962*	.010575467339176	.000	141658421978178	075867006617745
	Dorsal Attention	026158422678044	.012968555513396	.638	066806694362713	.014489849006625
	Limbic	.058094412058542*	.016192807658066	.019	.005652832643577	.110535991473508
	Fronto-parietal	017151706603235	.012640975250102	.984	056718410714937	.022414997508466
	Default Mode	031937142221236*	.010045237321651	.039	063060640844704	000813643597768
Limbic	Visual	173452816714172*	.016575717428391	<.001	226837011530481	120068621897863
	Somatomotor	166857126356504*	.016373021101538	<.001	219739938257238	113974314455770
	Dorsal Attention	084252834736587*	.018011627984540	<.001	141593041012933	026912628460240
	Ventral Attention	058094412058542*	.016192807658066	.019	110535991473508	005652832643577
	Fronto-parietal	075246118661778*	.017777220418927	.002	131918808260778	018573429062778
	Default Mode	090031554279778*	.016035651012595	<.001	142037313087382	038025795472175
Fronto-parietal	Visual	098206698052394*	.013127895630619	<.001	139161325356481	057252070748308
	Somatomotor	091611007694726*	.012871016098738	<.001	131832656955260	051389358434193
	Dorsal Attention	009006716074809	.014899865035497	1.000	055525675285780	.037512243136162
	Ventral Attention	.017151706603235	.012640975250102	.984	022414997508466	.056718410714937
	Limbic	.075246118661778*	.017777220418927	.002	.018573429062778	.131918808260778
	Default Mode	014785435618001	.012439024833977	.997	053668368054729	.024097496818728
Default Mode	Visual	083421262434394*	.010651487279391	<.001	116364867274805	050477657593982
	Somatomotor	076825572076725*	.010333227617186	<.001	108815285274699	044835858878752
	Dorsal Attention	.005778719543192	.012771785922518	1.000	034212614569463	.045770053655846
	Ventral Attention	.031937142221236*	.010045237321651	.039	.000813643597768	.063060640844704
	Limbic	.090031554279778*	.016035651012595	<.001	.038025795472175	.142037313087382
	Fronto-parietal	.014785435618001	.012439024833977	.997	024097496818728	.053668368054729

Supplemental Table 15: Mean differences in structure-function coupling across the 7 resting-state functional networks. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Structure-function coupling; factor: Resting-state functional networks. Data derived from the 100 unrelated HCP subjects, analyzed using the HCP multi-modal atlas.

Supplemental Table 16

Multiple Comparisons

Dependent Variable: Structure-Function Coupling

(I) Cyto-architectonic	(J) Cyto-architectonic	Mean Difference			95% Confidence Interval	
classes	classes	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Agranular	Frontal	031393611993111*	.010588691139072	.036	061616598590347	001170625395876
	Parietal	078536163634367*	.012220454391461	<.001	113281772319706	043790554949027
	Polar	.042970489686404	.019237787376667	.277	014459914419736	.100400893792543
	Granular	091632473294457*	.019347038147953	<.001	150250601727033	033014344861882
Frontal	Agranular	.031393611993111*	.010588691139072	.036	.001170625395876	.061616598590347
	Parietal	047142551641255*	.009870464212241	<.001	075148010242777	019137093039734
	Polar	.074364101679515*	.017837573304158	.003	.019973494345965	.128754709013065
	Granular	060238861301346*	.017955345814818	.028	116097650215567	004380072387125
Parietal	Agranular	.078536163634367*	.012220454391461	<.001	.043790554949028	.113281772319706
	Frontal	.047142551641256*	.009870464212241	<.001	.019137093039734	.075148010242777
	Polar	.121506653320771*	.018852006441658	<.001	.064967695753079	.178045610888462
	Granular	013096309660090	.018963479871185	.999	070890528238412	.044697908918232
Polar	Agranular	042970489686404	.019237787376667	.277	100400893792543	.014459914419736
	Frontal	074364101679515*	.017837573304158	.003	128754709013065	019973494345965
	Parietal	121506653320771*	.018852006441658	<.001	178045610888462	064967695753079
	Granular	134602962980861*	.024090797546800	<.001	206020639278371	063185286683350
Granular	Agranular	.091632473294457*	.019347038147953	<.001	.033014344861882	.150250601727033
	Frontal	.060238861301346*	.017955345814818	.028	.004380072387125	.116097650215567
	Parietal	.013096309660090	.018963479871185	.999	044697908918232	.070890528238412
	Polar	.134602962980861*	.024090797546800	<.001	.063185286683350	.206020639278371

Supplemental Table 16: Mean differences in structure-function coupling across the 5 von-Economo/Koskinasinspired cyto-architectonic classes. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Structure-function coupling; factor: Cytoarchitectonic classes. Data derived from the 100 unrelated HCP subjects, analyzed using the HCP multi-modal atlas.

Supplemental Table 17

Multiple Comparisons

Dependent Variable: Temporal Structure-Function Coupling Variance

Resting-state	Resting-state				95% Confide	ence Interval
functional	functional	Mean Difference				
networks	networks	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Visual	Somatomotor	000644763768222*	.000196551583272	.029	001255195532850	000034332003595
	Dorsal Attention	.000035061888054	.000191377616998	1.000	000560977943323	.000631101719430
	Ventral Attention	000504000165758	.000231117768225	.495	001226258148620	.000218257817105

	Limbic	004866947966887*	.000698430782721	<.001	007194908386460	002538987547314
	Fronto-parietal	000704377184006*	.000224930645473	.049	001407950665982	000000803702030
	Default Mode	001498539856996*	.000253648956782	<.001	002282887795359	000714191918634
Somatomotor	Visual	.000644763768222*	.000196551583272	.029	.000034332003595	.001255195532850
	Dorsal Attention	.000679825656276*	.000206632886918	.029	.000036327730329	.001323323582223
	Ventral Attention	.000140763602465	.000243899939437	1.000	000619694384840	.000901221589770
	Limbic	004222184198665*	.000702764054232	<.001	006559083122257	001885285275072
	Fronto-parietal	000059613415783	.000238045274982	1.000	000802435621620	.000683208790053
	Default Mode	000853776088774*	.000265347980857	.034	001673715965942	000033836211606
Dorsal Attention	Visual	000035061888054	.000191377616998	1.000	000631101719430	.000560977943323
	Somatomotor	000679825656276*	.000206632886918	.029	001323323582223	000036327730329
	Ventral Attention	000539062053811	.000239749969466	.439	001288118038365	.000209993930743
	Limbic	004902009854941*	.000701334573026	<.001	007235991093424	002568028616457
	Fronto-parietal	000739439072059*	.000233791403483	.045	001470613577557	000008264566562
	Default Mode	001533601745050*	.000261538559961	<.001	002342719593896	000724483896204
Ventral Attention	Visual	.000504000165758	.000231117768225	.495	000218257817105	.001226258148620
	Somatomotor	000140763602465	.000243899939437	1.000	000901221589770	.000619694384840
	Dorsal Attention	.000539062053811	.000239749969466	.439	000209993930743	.001288118038365
	Limbic	004362947801129*	.000713204188030	<.001	006722053205082	002003842397176
	Fronto-parietal	000200377018248	.000267298430305	1.000	001033752580219	.000632998543722
	Default Mode	000994539691239*	.000291877455189	.018	001897217734338	000091861648140
Limbic	Visual	.004866947966887*	.000698430782721	<.001	.002538987547314	.007194908386460
	Somatomotor	.004222184198665*	.000702764054232	<.001	.001885285275072	.006559083122257
	Dorsal Attention	.004902009854941*	.000701334573026	<.001	.002568028616457	.007235991093424
	Ventral Attention	.004362947801129*	.000713204188030	<.001	.002003842397176	.006722053205082
	Fronto-parietal	.004162570782881*	.000711223302702	<.001	.001807698415285	.006517443150477
	Default Mode	.003368408109890*	.000720820771281	.001	.000993092952972	.005743723266809
Fronto-parietal	Visual	.000704377184006*	.000224930645473	.049	.000000803702030	.001407950665982
	Somatomotor	.000059613415783	.000238045274982	1.000	000683208790053	.000802435621620
	Dorsal Attention	.000739439072059*	.000233791403483	.045	.000008264566562	.001470613577557
	Ventral Attention	.000200377018248	.000267298430305	1.000	000632998543722	.001033752580219
	Limbic	004162570782881*	.000711223302702	<.001	006517443150477	001807698415285
	Default Mode	000794162672991	.000287003173033	.128	001682153433412	.000093828087431
Default Mode	Visual	.001498539856996*	.000253648956782	<.001	.000714191918634	.002282887795359
	Somatomotor	.000853776088774*	.000265347980857	.034	.000033836211606	.001673715965942
	Dorsal Attention	.001533601745050*	.000261538559961	<.001	.000724483896204	.002342719593896
	Ventral Attention	.000994539691239*	.000291877455189	.018	.000091861648140	.001897217734338
	Limbic	003368408109890*	.000720820771281	.001	005743723266809	000993092952972

Fronto-parietal .000794162672991 .000287003173033 .128000093828087431 .001682153433412	Fronto-parietal	.000794162672991	.000287003173033	.128	000093828087431	.001682153433412
--	-----------------	------------------	------------------	------	-----------------	------------------

Supplemental Table 17: Mean differences in temporal structure-function coupling variance across the 7 resting-state functional networks. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Temporal structure-function coupling variance; factor: Resting-state functional networks. Data derived from the 100 unrelated HCP subjects, analyzed using the HCP multi-modal atlas.

Supplemental Table 18

Multiple Comparisons

Dependent Variable: Temporal Structure-Function Coupling Variance

Test: Tamhane

(I) Cyto-	(J) Cyto-				95% Confide	nce Interval
architectonic	architectonic	Mean Difference				
classes	classes	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Agranular	Frontal	.000029007357304	.000251970747020	1.000	000691082944608	.000749097659216
	Parietal	.000466081754380	.000254762283098	.516	000262004358687	.001194167867446
	Polar	004784469640829*	.000650135247800	<.001	006760127105449	002808812176209
	Granular	000534238374398	.000472671555764	.956	001967237622433	.000898760873638
Frontal	Agranular	000029007357304	.000251970747020	1.000	000749097659216	.000691082944608
	Parietal	.000437074397075	.000178737328713	.142	000068353307819	.000942502101970
	Polar	004813476998133*	.000624274821067	<.001	006738227390162	002888726606104
	Granular	000563245731702	.000436419077739	.906	001925284191606	.000798792728202
Parietal	Agranular	000466081754380	.000254762283098	.516	001194167867446	.000262004358687
	Frontal	000437074397075	.000178737328713	.142	000942502101970	.000068353307819
	Polar	005250551395209*	.000625406760240	<.001	007177448746103	003323654044314
	Granular	001000320128777	.000438036727855	.282	002365286835226	.000364646577671
Polar	Agranular	.004784469640829*	.000650135247800	<.001	.002808812176209	.006760127105449
	Frontal	.004813476998133*	.000624274821067	<.001	.002888726606104	.006738227390162
	Parietal	.005250551395209*	.000625406760240	<.001	.003323654044314	.007177448746103
	Granular	.004250231266431*	.000741382623544	<.001	.002044982752900	.006455479779963
Granular	Agranular	.000534238374398	.000472671555764	.956	000898760873638	.001967237622433
	Frontal	.000563245731702	.000436419077739	.906	000798792728202	.001925284191606
	Parietal	.001000320128777	.000438036727855	.282	000364646577671	.002365286835226
	Polar	004250231266431*	.000741382623544	<.001	006455479779963	002044982752900

*. The mean difference is significant at the 0.05 level.

Supplemental Table 18: Mean differences in temporal structure-function coupling variance across the 5 von-Economo/Koskinas-inspired cyto-architectonic classes. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Temporal structure-function coupling variance; factor: Cyto-architectonic classes. Data derived from the 100 unrelated HCP subjects, analyzed using the HCP multi-modal atlas.

A. Structure-Function Coupling										
	I	ntracortical	Myelin		Hurst Exp	onent				
Cortical Type	eta_{stand}	95% BCI	Bootstrapped <i>p</i> -value (FDR)	eta_{stand}	95% BCI	Bootstrapped <i>p</i> -value (FDR)	VIF			
Granular	0.384	[0.379, 0.387]	0.055	0.451	[0.463, 0.472]	0.040	1.01			
Polar	-0.387	[-0.394, -0.388]	0.030	0.128	[0.105, 0.112]	0.614	1.04			
Parietal	0.424	[0.430, 0.435]	<10-4	0.342	[0.334, 0.338]	0.016	1.01			
Frontal	0.420	[0.419, 0.422]	<10-4	0.227	[0.222, 0.225]	0.040	1.08			
Agranular	0.488	[0.477, 0.482]	0.005	-0.026	[-0.038, -0.033]	0.800	1.32			

Supplemental Table 19

B. Temporal Structure-Function Coupling Variance

	Iı	ntracortical	Myelin		Hurst Exp	onent	
Cortical			Bootstrapped			Bootstrapped	
Туре	eta_{stand}	95% BCI	<i>p</i> -value	β_{stand}	95% BCI	<i>p</i> -value	VIF
			(FDR)			(FDR)	
Granular	-0.183	[-0.183,	0.773	-0.741	[-0.746,	<10-4	1.01
		-0.176]			-0.739]		
Polar	0.018	[0.005,	0.867	-0.847	[-0.859,	<10-4	1.04
		0.009]			-0.854]		
Parietal	-0.162	[-0.159,	0.063	-0.757	[-0.760,	<10-4	1.01
		-0.157]			-0.756]		
Frontal	-0.041	[-0.042,	0.819	-0.540	[-0.540,	<10-4	1.08
		-0.040]			-0.536]		
Agranular	0.046	[0.038,	0.819	-0.756	[-0.757,	<10-4	1.32
		0.042]			-0.752]		

Supplemental Table 19: Atlas-based multiple linear regression analyses – Results corresponding to the atlas-based (HCP multi-modal cortical parcellation) analyses discussed in section: 'Biological Correlates of Structure-Function Coupling: Regional perspective' of our **Supplementary Analysis 2B** section above. β_{stand} : standardized β coefficient; 95% *BCI*: 95% bootstrapped standardized β coefficient confidence interval; Bootstrapped *p*-value (FDR):

bootstrapped *p*-value adjusted for multiple comparisons (two-tailed test; false discovery rate: Benjamini-Hochberg method); *VIF*: Variance Inflation Factor.

Supplemental Table 20

Multiple Comparisons

Dependent Variable: Structure-Function Coupling

(I) Resting-state	(J) Resting-state	Mean Difference			95% Confid	ence Interval
functional networks	functional networks	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Visual	Somatomotor	.046571860093*	.012085556725	.004	.00924424789	.08389947230
	Dorsal Attention	.102452385791*	.013670633892	<.001	.05973252997	.14517224161
	Ventral Attention	.074065390806*	.020485675619	.013	.00931098240	.13881979921
	Limbic	.072603990842	.024628215535	.125	00934961429	.15455759597
	Fronto-parietal	.116884042448*	.023993919714	<.001	.04098685964	.19278122526
	Default Mode	.095750893648*	.019238360260	<.001	.03613178235	.15537000494
Somatomotor	Visual	046571860093*	.012085556725	.004	08389947230	00924424789
	Dorsal Attention	.055880525698*	.014531189922	.004	.01068604928	.10107500212
	Ventral Attention	.027493530713	.021069697556	.990	03883480452	.09382186595
	Limbic	.026032130749	.025116095437	1.000	05695669605	.10902095755
	Fronto-parietal	.070312182356	.024494436773	.110	00692075104	.14754511575
	Default Mode	.049179033555	.019859097538	.265	01223354095	.11059160806
Dorsal Attention	Visual	102452385791*	.013670633892	<.001	14517224161	05973252997
	Somatomotor	055880525698*	.014531189922	.004	10107500212	01068604928
	Ventral Attention	028386994985	.022017213829	.991	09746692193	.04069293196
	Limbic	029848394949	.025916091519	.998	11471777540	.05502098550
	Fronto-parietal	.014431656657	.025314086641	1.000	06512206101	.09398537432
	Default Mode	006701492143	.020861670707	1.000	07120701796	.05780403367
Ventral Attention	Visual	074065390806*	.020485675619	.013	13881979921	00931098240
	Somatomotor	027493530713	.021069697556	.990	09382186595	.03883480452
	Dorsal Attention	.028386994985	.022017213829	.991	04069293196	.09746692193
	Limbic	001461399965	.030073584326	1.000	09728164658	.09435884665
	Fronto-parietal	.042818651642	.029556380986	.968	04927491838	.13491222166
	Default Mode	.021685502842	.025845424726	1.000	05843550184	.10180650752
Limbic	Visual	072603990842	.024628215535	.125	15455759597	.00934961429
	Somatomotor	026032130749	.025116095437	1.000	10902095755	.05695669605
	Dorsal Attention	.029848394949	.025916091519	.998	05502098550	.11471777540
	Ventral Attention	.001461399965	.030073584326	1.000	09435884665	.09728164658

	Fronto-parietal	.044280051607	.032564793134	.984	05867814848	.14723825169
	Default Mode	.023146902806	.029238195466	1.000	07001315299	.11630695860
Fronto-parietal	Visual	116884042448*	.023993919714	<.001	19278122526	04098685964
	Somatomotor	070312182356	.024494436773	.110	14754511575	.00692075104
	Dorsal Attention	014431656657	.025314086641	1.000	09398537432	.06512206101
	Ventral Attention	042818651642	.029556380986	.968	13491222166	.04927491838
	Limbic	044280051607	.032564793134	.984	14723825169	.05867814848
	Default Mode	- 021133148800	028705944627	1.000	- 11031381899	.06804752139
Default Mode	Visual	- 095750893648*	.019238360260	<.001	- 15537000494	03613178235
	Somatomotor	- 049179033555	019859097538	265	- 11059160806	01223354095
	Dorsal Attention	006701492143	020861670707	1 000	- 05780403367	07120701796
	Ventral Attention	021685502842	025845424726	1.000	10180650752	05842550184
	Limbia	021085502842	020228105466	1.000	10180030732	07001215200
		023146902806	.029258195466	1.000	11050695860	.07001315299
	Fronto-parietal	.021133148800	.028/0594462/	1.000	06804752139	.11031381899

Supplemental Table 20: Mean differences in structure-function coupling across the 7 resting-state functional networks. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Structure-function coupling; factor: Resting-state functional networks. Data derived from the 14 Penn subjects, analyzed using the Schaefer 400 atlas.

Supplemental Table 21

Multiple Comparisons

Dependent Variable: Structure-Function Coupling

(I) Cyto-	(J) Cyto-	Mean Difference			95% Confidence Interval		
architectonic classes	architectonic classes	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound	
Agranular	Frontal	015546811608	.019274271698	.996	07041831243	.03932468922	
	Parietal	063639772380*	.018726047030	.009	11707375860	01020578616	
	Polar	025422840145	.030967215421	.995	11747328708	.06662760679	
	Granular	077815060676	.026796084602	.055	15662981791	.00099969656	
Frontal	Agranular	.015546811608	.019274271698	.996	03932468922	.07041831243	
	Parietal	048092960772*	.013061719163	.003	08498008565	01120583589	
	Polar	009876028537	.027908996776	1.000	09522582511	.07547376804	
	Granular	062268249068	.023194262655	.114	13272992081	.00819342267	
Parietal	Agranular	$.063639772380^{*}$.018726047030	.009	.01020578616	.11707375860	
	Frontal	.048092960772*	.013061719163	.003	.01120583589	.08498008565	
	Polar	.038216932235	.027533241526	.858	04641967292	.12285353739	
	Granular	- 014175288296	022740736751	1 000	- 08374971571	05539913911	
----------	-----------	----------------	---------------	-------	---------------	--------------	
	Granulai	.014175200270	.022740750751	1.000	.005/47/15/1	.05557715711	
Polar	Agranular	.025422840145	.030967215421	.995	06662760679	.11747328708	
	Frontal	.009876028537	.027908996776	1.000	07547376804	.09522582511	
	Parietal	038216932235	.027533241526	.858	12285353739	.04641967292	
	Granular	052392220531	.033547648227	.742	15213637083	.04735192977	
Granular	Agranular	.077815060676	.026796084602	.055	00099969656	.15662981791	
	Frontal	.062268249068	.023194262655	.114	00819342267	.13272992081	
	Parietal	.014175288296	.022740736751	1.000	05539913911	.08374971571	
	Polar	.052392220531	.033547648227	.742	04735192977	.15213637083	

Supplemental Table 21: Mean differences in structure-function coupling across the 5 von-Economo/Koskinasinspired cyto-architectonic classes. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Structure-function coupling; factor: Cytoarchitectonic classes. Data derived from the 14 Penn subjects, analyzed using the Schaefer 400 atlas.

Supplemental Table 22

Multiple Comparisons

Dependent Variable: Temporal Structure-Function Coupling Variance

Test: Tamhane

(I) Resting-state	(J) Resting-state	Mean Difference			95% Confide	ence Interval
functional networks	functional networks	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Visual	Somatomotor	019355395635*	.004450437805	<.001	03323580953	00547498174
	Dorsal Attention	006240959101	.003365738827	.775	01688583165	.00440391345
	Ventral Attention	032452431217*	.008241598832	.006	05881187431	00609298812
	Limbic	044655912932*	.008553793779	<.001	07360632101	01570550485
	Fronto-parietal	044847718017*	.011568246138	.006	08177013595	00792530009
	Default Mode	039087689790^{*}	.007146225690	<.001	06136953406	01680584552
Somatomotor	Visual	.019355395635*	.004450437805	<.001	.00547498174	.03323580953
	Dorsal Attention	.013114436534	.005267744251	.259	00319419845	.02942307152
	Ventral Attention	013097035582	.009183947025	.973	04195761841	.01576354725
	Limbic	025300517297	.009465110652	.212	05619063183	.00558959723
	Fronto-parietal	025492322382	.012257456929	.591	06421075753	.01322611277
	Default Mode	019732294155	.008215197701	.312	04509762238	.00563303407
Dorsal Attention	Visual	.006240959101	.003365738827	.775	00440391345	.01688583165
	Somatomotor	013114436534	.005267744251	.259	02942307152	.00319419845
	Ventral Attention	026211472116	.008710148342	.078	05379386338	.00137091915
	Limbic	038414953832*	.009006115747	.004	06827923828	00855066938

	Fronto-parietal	038606758917*	.011906596976	.041	07640153922	00081197861
	Default Mode	032846730689*	.007681879617	<.001	05666289517	00903056621
Ventral Attention	Visual	.032452431217*	.008241598832	.006	.00609298812	.05881187431
	Somatomotor	.013097035582	.009183947025	.973	01576354725	.04195761841
	Dorsal Attention	.026211472116	.008710148342	.078	00137091915	.05379386338
	Limbic	012203481715	.011734814626	.999	04934599515	.02493903172
	Fronto-parietal	012395286800	.014084133094	1.000	05636245651	.03157188291
	Default Mode	006635258573	.010752070866	1.000	04000910419	.02673858704
Limbic	Visual	.044655912932*	.008553793779	<.001	.01570550485	.07360632101
	Somatomotor	.025300517297	.009465110652	.212	00558959723	.05619063183
	Dorsal Attention	.038414953832*	.009006115747	.004	.00855066938	.06827923828
	Ventral Attention	.012203481715	.011734814626	.999	02493903172	.04934599515
	Fronto-parietal	000191805085	.014269065902	1.000	04502549228	.04464188211
	Default Mode	.005568223142	.010993200836	1.000	02926650112	.04040294740
Fronto-parietal	Visual	$.044847718017^{*}$.011568246138	.006	.00792530009	.08177013595
	Somatomotor	.025492322382	.012257456929	.591	01322611277	.06421075753
	Dorsal Attention	.038606758917*	.011906596976	.041	.00081197861	.07640153922
	Ventral Attention	.012395286800	.014084133094	1.000	03157188291	.05636245651
	Limbic	.000191805085	.014269065902	1.000	04464188211	.04502549228
	Default Mode	.005760028227	.013472468048	1.000	03632039553	.04784045198
Default Mode	Visual	$.039087689790^{*}$.007146225690	<.001	.01680584552	.06136953406
	Somatomotor	.019732294155	.008215197701	.312	00563303407	.04509762238
	Dorsal Attention	.032846730689*	.007681879617	<.001	.00903056621	.05666289517
	Ventral Attention	.006635258573	.010752070866	1.000	02673858704	.04000910419
	Limbic	005568223142	.010993200836	1.000	04040294740	.02926650112
	Fronto-parietal	005760028227	.013472468048	1.000	04784045198	.03632039553

Supplemental Table 22: Mean differences in temporal structure-function coupling variance across the 7 resting-state functional networks. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Temporal structure-function coupling variance; factor: Resting-state functional networks. Data derived from the 14 Penn subjects, analyzed using the Schaefer 400 atlas.

Supplemental Table 23

Multiple Comparisons

Dependent Variable: Temporal Structure-Function Coupling Variance

Test: Tamhane

(I) Cyto-architectonic	(J) Cyto-architectonic Mean Differenc				95% Confidence Interval	
classes	classes	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Agranular	Frontal	.009639618584	.007829158548	.917	01259897913	.03187821630
	Parietal	.024060176447*	.007240128943	.012	.00339749917	.04472285372
	Polar	.012948393733	.011367563118	.952	02068152742	.04657831488
	Granular	.020581815956	.012723846972	.706	01755193020	.05871556211
Frontal	Agranular	009639618584	.007829158548	.917	03187821630	.01259897913
	Parietal	.014420557863	.005549221440	.094	00124381476	.03008493049
	Polar	.003308775148	.010372843521	1.000	02803310449	.03465065478
	Granular	.010942197372	.011843592076	.989	02530821289	.04719260763
Parietal	Agranular	024060176447*	.007240128943	.012	04472285372	00339749917
	Frontal	014420557863	.005549221440	.094	03008493049	.00124381476
	Polar	011111782715	.009935775070	.959	04157680686	.01935324143
	Granular	003478360491	.011462740370	1.000	03901723240	.03206051142
Polar	Agranular	012948393733	.011367563118	.952	04657831488	.02068152742
	Frontal	003308775148	.010372843521	1.000	03465065478	.02803310449
	Parietal	.011111782715	.009935775070	.959	01935324143	.04157680686
	Granular	.007633422224	.014429013858	1.000	03526148801	.05052833246
Granular	Agranular	020581815956	.012723846972	.706	05871556211	.01755193020
	Frontal	010942197372	.011843592076	.989	04719260763	.02530821289
	Parietal	.003478360491	.011462740370	1.000	03206051142	.03901723240
	Polar	007633422224	.014429013858	1.000	05052833246	.03526148801

Supplemental Table 23: Mean differences in temporal structure-function coupling variance across the 5 von-Economo/Koskinas-inspired cyto-architectonic classes. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Temporal structurefunction coupling; factor: Cyto-architectonic classes. Data derived from the 14 Penn subjects, analyzed using the Schaefer 400 atlas.

Supplemental Table 24

	A. Structure-Function Coupling								
	Intracortical Myelin			Hurst Exponent					
Cortical Type	β_{stand}	95% BCI	Bootstrapped <i>p</i> -value	Bootstrapped <i>p</i> -value (FDR)	β_{stand}	95% BCI	Bootstrapped <i>p</i> -value	Bootstrapped <i>p</i> -value (FDR)	VIF
Granular	0.128	[0.101, 0.112]	0.653	0.653	0.498	[0.483, 0.494]	0.091	0.152	1.37
Polar	0.536	[0.483, 0.497]	0.107	0.134	-0.540	[-0.545, -0.535]	0.016	0.040	1.18
Parietal	0.410	[0.410, 0.415]	0.001	0.005	0.255	[0.251, 0.255]	0.010	0.040	1.11

Frontal	0.144	[0.144, 0.147]	0.102	0.134	0.019	[0.018, 0.021]	0.731	0.731	1.00
Agranular	0.269	[0.265, 0.271]	0.044	0.110	-0.040	[-0.042, -0.038]	0.721	0.731	1.00
	B. Temporal Structure-Function Coupling Variance								
		Intr	acortical Myelin				Hurst Exponer	nt	
Cortical	β_{stand}	95% BCI	Bootstrapped	Bootstrapped	β_{stand}	95%	Bootstrapped	Bootstrapped	VIF
Туре			<i>p</i> -value	p-value (FDR)		BCI	<i>p</i> -value	p-value (FDR)	
Granular	-0.873	[-0.876,	$4x10^{-4}$	5x10 ⁻⁴	-0.311	[-0.303,	0.030	0.050	1.37
		-0.865]				-0.297]			
Polar	-0.211	[-0.024,	0.651	0.651	0.116	[0.114,	0.811	0.855	1.18
		-0.001]				0.129]			
Parietal	-0.401	[-0.406,	<10-4	<10-4	-0.465	[-0.472,	<10-4	<10-4	1.11
		-0.403]				-0.468]			
Frontal	-0.362	[-0.365,	<10-4	<10-4	-0.159	[-0.161,	0.003	0.007	1.00
		-0.362]				-0.159]			
Agranular	-0.394	[-0.394,	2x10 ⁻⁴	3.3x10 ⁻⁴	0.022	[0.020,	0.855	0.855	1.00
-		-0.390]				0.025]			

Supplemental Table 24: Atlas-based multiple linear regression analyses – Results corresponding to the atlas-based (Schaefer cortical parcellation) analyses discussed in section: 'Biological Correlates of Structure-Function Coupling: Regional perspective' of our **Supplementary Analysis 3** section above. β_{stand} : standardized β coefficient; 95% *BCI*: 95% bootstrapped standardized β coefficient confidence interval; Bootstrapped *p*-value: bootstrapped *p*-value (two-tailed test); Bootstrapped *p*-value (FDR): bootstrapped *p*-value adjusted for multiple comparisons (two-tailed test; false discovery rate: Benjamini-Hochberg method); *VIF*: Variance Inflation Factor.

Supplemental Table 25

Multiple Comparisons

Dependent Variable: Structure-Function Coupling

Test: Tamhane

(I) Resting-state	(J) Resting-state				95% Confid	ence Interval
functional	functional	Mean Difference				
networks	networks	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Visual	Somatomotor	-0.106235409*	0.001233326	<.001	-0.109973804	-0.102497014
	Dorsal Attention	-0.044014034*	0.001368841	<.001	-0.048163435	-0.039864633
	Ventral Attention	-0.032940312*	0.001563191	<.001	-0.037678993	-0.028201631
	Limbic	0.013946968*	0.001398494	<.001	0.009707501	0.018186436
	Fronto-parietal	-0.015712364*	0.001358959	<.001	-0.019831683	-0.011593045
	Default Mode	-0.020298196*	0.001163993	<.001	-0.023826305	-0.016770087
Somatomotor	Visual	0.106235409*	0.001233326	<.001	0.102497014	0.109973804
	Dorsal Attention	0.062221375*	0.001501823	<.001	0.05766897	0.066773781
	Ventral Attention	0.073295097*	0.001672613	<.001	0.068224886	0.078365308
	Limbic	0.120182377*	0.001524345	<.001	0.115561576	0.124803179
	Fronto-parietal	0.090523045*	0.001490896	<.001	0.08600386	0.09504223
	Default Mode	0.085937213*	0.001310131	<.001	0.081966095	0.089908331

Dorsal Attention	Visual	0.044014034*	0.001368841	<.001	0.039864633	0.048163435
	Somatomotor	-0.062221375*	0.001501823	<.001	-0.066773781	-0.05766897
	Ventral Attention	0.011073722*	0.001781448	<.001	0.005673606	0.016473837
	Limbic	0.057961002*	0.001641708	<.001	0.052984396	0.062937608
	Fronto-parietal	0.02830167*	0.001604262	<.001	0.023438775	0.033164564
	Default Mode	0.023715838*	0.001443879	<.001	0.019339094	0.028092581
Ventral Attention	Visual	0.032940312*	0.001563191	<.001	0.028201631	0.037678993
	Somatomotor	-0.073295097*	0.001672613	<.001	-0.078365308	-0.068224886
	Dorsal Attention	-0.011073722*	0.001781448	<.001	-0.016473837	-0.005673606
	Limbic	0.046887281*	0.001803335	<.001	0.041420738	0.052353823
	Fronto-parietal	0.017227948*	0.001771489	<.001	0.011858075	0.022597822
	Default Mode	0.012642116*	0.001622321	<.001	0.007724333	0.017559899
Limbic	Visual	-0.013946968*	0.001398494	<.001	-0.018186436	-0.009707501
	Somatomotor	-0.120182377*	0.001524345	<.001	-0.124803179	-0.115561576
	Dorsal Attention	-0.057961002*	0.001641708	<.001	-0.062937608	-0.052984396
	Ventral Attention	-0.046887281*	0.001803335	<.001	-0.052353823	-0.041420738
	Fronto-parietal	-0.029659332*	0.001633931	<.001	-0.034612298	-0.024706366
	Default Mode	-0.034245165*	0.001470567	<.001	-0.038702963	-0.029787366
Fronto-parietal	Visual	0.015712364*	0.001358959	<.001	0.011593045	0.019831683
	Somatomotor	-0.090523045*	0.001490896	<.001	-0.09504223	-0.08600386
	Dorsal Attention	-0.02830167*	0.001604262	<.001	-0.033164564	-0.023438775
	Ventral Attention	-0.017227948*	0.001771489	<.001	-0.022597822	-0.011858075
	Limbic	0.029659332*	0.001633931	<.001	0.024706366	0.034612298
	Default Mode	-0.004585832*	0.0014309	<.001	-0.008923119	-0.000248545
Default Mode	Visual	0.020298196*	0.001163993	<.001	0.016770087	0.023826305
	Somatomotor	-0.085937213*	0.001310131	<.001	-0.089908331	-0.081966095
	Dorsal Attention	-0.023715838*	0.001443879	<.001	-0.028092581	-0.019339094
	Ventral Attention	-0.012642116*	0.001622321	<.001	-0.017559899	-0.007724333
	Limbic	0.034245165*	0.001470567	<.001	0.029787366	0.038702963
	Fronto-parietal	0.004585832*	0.0014309	<.001	0.000248545	0.008923119

Supplemental Table 25: Mean differences in structure-function coupling across the 7 resting-state functional networks. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Structure-function coupling; factor: Resting-state functional networks. Data reported in each table column were averaged across the 9 subjects scanned at Penn that passed quality-control and analyzed using our voxel-based analysis approach; the *p*-values reported under the 'Sig.' column represent the combined p_{fisher} value across the 9 subjects.

Supplemental Table 26

Multiple Comparisons

Dependent Variable: Structure-Function Coupling

Test: Tamhane

(I) Cyto-architectonic	(J) Cyto-architectonic	Mean Difference	Mean Difference		95% Confide	nce Interval
classes	classes	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Agranular	Frontal	-1.10E-03*	1.27E-03	<.001	-4.65E-03	2.45E-03
	Parietal	-1.35E-02*	1.32E-03	<.001	-1.72E-02	-9.81E-03
	Polar	1.59E-02*	1.68E-03	<.001	1.12E-02	2.06E-02
	Granular	-2.74E-02*	1.78E-03	<.001	-3.23E-02	-2.24E-02
Frontal	Agranular	1.10E-03*	1.27E-03	<.001	-2.45E-03	4.65E-03
	Parietal	-1.24E-02*	1.02E-03	<.001	-1.53E-02	-9.55E-03
	Polar	1.70E-02*	1.45E-03	<.001	1.29E-02	2.10E-02
	Granular	-2.63E-02*	1.56E-03	<.001	-3.06E-02	-2.19E-02
Parietal	Agranular	1.35E-02*	1.32E-03	<.001	9.81E-03	1.72E-02
	Frontal	1.24E-02*	1.02E-03	<.001	9.55E-03	1.53E-02
	Polar	2.94E-02*	1.50E-03	<.001	2.52E-02	3.36E-02
	Granular	-1.39E-02*	1.61E-03	<.001	-1.83E-02	-9.35E-03
Polar	Agranular	-1.59E-02*	1.68E-03	<.001	-2.06E-02	-1.12E-02
	Frontal	-1.70E-02*	1.45E-03	<.001	-2.10E-02	-1.29E-02
	Parietal	-2.94E-02*	1.50E-03	<.001	-3.36E-02	-2.52E-02
	Granular	-4.32E-02*	1.91E-03	<.001	-4.86E-02	-3.79E-02
Granular	Agranular	2.74E-02*	1.78E-03	<.001	2.24E-02	3.23E-02
	Frontal	2.63E-02*	1.56E-03	<.001	2.19E-02	3.06E-02
	Parietal	1.39E-02*	1.61E-03	<.001	9.35E-03	1.83E-02
	Polar	4.32E-02*	1.91E-03	<.001	3.79E-02	4.86E-02

*. The mean difference is significant at the 0.05 level.

Supplemental Table 26: Mean differences in structure-function coupling across the 5 von-Economo/Koskinasinspired cyto-architectonic classes. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Structure-function coupling; factor: Cytoarchitectonic classes. Data reported in each table column were averaged across the 9 subjects scanned at Penn that passed quality-control and analyzed using our voxel-based analysis approach; the *p*-values reported under the 'Sig.' column represent the combined p_{fisher} value across the 9 subjects.

Supplemental Table 27

Multiple Comparisons

Dependent Variable: Temporal Structure-Function Coupling Variance

Test: Tamhane

Resting-state	Resting-state				95% Confid	lence Interval
functional	functional	Mean Difference				
networks	networks	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Visual	Somatomotor	-0.000152648*	4.7316E-05	<.001	-0.0002961	-9.225E-06
	Dorsal Attention	0.000929401*	4.3957E-05	<.001	0.00079616	0.00106264
	Ventral Attention	0.000527939*	4.9728E-05	<.001	0.0003772	0.00067868
	Limbic	-0.000866467*	7.4769E-05	<.001	-0.0010931	-0.0006398
	Fronto-parietal	-0.000511196*	5.8235E-05	<.001	-0.0006877	-0.0003347
	Default Mode	-0.002924993*	6.4663E-05	<.001	-0.003121	-0.002729
Somatomotor	Visual	0.000152648*	4.7316E-05	<.001	9.2247E-06	0.00029607
	Dorsal Attention	0.001082049*	4.488E-05	<.001	0.00094601	0.00121809
	Ventral Attention	0.000680587*	5.0361E-05	<.001	0.00052793	0.00083324
	Limbic	-0.000713819*	7.4603E-05	<.001	-0.00094	-0.0004877
	Fronto-parietal	-0.000358549*	5.8634E-05	<.001	-0.0005363	-0.0001808
	Default Mode	-0.002772345*	6.4748E-05	<.001	-0.0029686	-0.0025761
Dorsal Attention	Visual	-0.000929401*	4.3957E-05	<.001	-0.0010626	-0.0007962
	Somatomotor	-0.001082049*	4.488E-05	<.001	-0.0012181	-0.000946
	Ventral Attention	-0.000401462*	4.7281E-05	<.001	-0.0005448	-0.0002581
	Limbic	-0.001795868*	7.2694E-05	<.001	-0.0020163	-0.0015755
	Fronto-parietal	-0.001440597*	5.5968E-05	<.001	-0.0016103	-0.0012709
	Default Mode	-0.003854394*	6.2442E-05	<.001	-0.0040437	-0.0036651
Ventral Attention	Visual	-0.000527939*	4.9728E-05	<.001	-0.0006787	-0.0003772
	Somatomotor	-0.000680587*	5.0361E-05	<.001	-0.0008332	-0.0005279
	Dorsal Attention	0.000401462*	4.7281E-05	<.001	0.00025814	0.00054479
	Limbic	-0.001394406*	7.5947E-05	<.001	-0.0016246	-0.0011642
	Fronto-parietal	-0.001039135*	6.0139E-05	<.001	-0.0012214	-0.0008568
	Default Mode	-0.003452932*	6.605E-05	<.001	-0.0036531	-0.0032527
Limbic	Visual	0.000866467*	7.4769E-05	<.001	0.00063979	0.00109314
	Somatomotor	0.000713819*	7.4603E-05	<.001	0.00048765	0.00093999
	Dorsal Attention	0.001795868*	7.2694E-05	<.001	0.00157548	0.00201625
	Ventral Attention	0.001394406*	7.5947E-05	<.001	0.00116417	0.00162464
	Fronto-parietal	0.000355271*	8.1684E-05	<.001	0.00010765	0.00060289
	Default Mode	-0.002058526*	8.5938E-05	<.001	-0.002319	-0.001798
Fronto-parietal	Visual	0.000511196*	5.8235E-05	<.001	0.00033467	0.00068772
	Somatomotor	0.000358549*	5.8634E-05	<.001	0.00018081	0.00053628
	Dorsal Attention	0.001440597*	5.5968E-05	<.001	0.00127094	0.00161025
	Ventral Attention	0.001039135*	6.0139E-05	<.001	0.00085684	0.00122143
	Limbic	-0.000355271*	8.1684E-05	<.001	-0.0006029	-0.0001077

Default Mode	-0.002413797*	7.2447E-05	<.001	-0.0026334	-0.0021942
Visual	0.002924993*	6.4663E-05	<.001	0.00272899	0.00312099
Somatomotor	0.002772345*	6.4748E-05	<.001	0.00257609	0.0029686
Dorsal Attention	0.003854394*	6.2442E-05	<.001	0.00366513	0.00404366
Ventral Attention	0.003452932*	6.605E-05	< 001	0.00325273	0.00365314
Limbic	0.002058526*	8 5938E-05	< 001	0.00179802	0.00231903
Eronto-narietal	0.002413797*	7 2447E-05	< 001	0.0021942	0.00263339
	Default Mode Visual Somatomotor Dorsal Attention Ventral Attention Limbic Fronto-parietal	Default Mode -0.002413797* Visual 0.002924993* Somatomotor 0.002772345* Dorsal Attention 0.003854394* Ventral Attention 0.003452932* Limbic 0.002058526* Fronto-parietal 0.002413797*	Default Mode -0.002413797* 7.2447E-05 Visual 0.002924993* 6.4663E-05 Somatomotor 0.002772345* 6.4748E-05 Dorsal Attention 0.003854394* 6.2442E-05 Ventral Attention 0.003452932* 6.605E-05 Limbic 0.002058526* 8.5938E-05 Fronto-parietal 0.002413797* 7.2447E-05	Default Mode -0.002413797* 7.2447E-05 <.001 Visual 0.002924993* 6.4663E-05 <.001	Default Mode -0.002413797* 7.2447E-05 <.001 -0.0026334 Visual 0.002924993* 6.4663E-05 <.001

Supplemental Table 27: Mean differences in temporal structure-function coupling variance across the 7 resting-state functional networks. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Temporal structure-function coupling variance; factor: Resting-state functional networks. Data reported in each table column were averaged across the 9 subjects scanned at Penn that passed quality-control and analyzed using our voxel-based analysis approach; the *p*-values reported under the 'Sig.' column represent the combined p_{fisher} value across the 9 subjects.

Supplemental Table 28

Multiple Comparisons

Dependent Variable: Temporal Structure-Function Coupling Variance

Test:	Tamhane

(I) Cyto-	(J) Cyto-				95% Confidence Interval	
architectonic	architectonic	Mean Difference				
classes	classes	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Agranular	Frontal	-0.001311816*	5.1232E-05	<.001	-0.0014553	-0.0011684
	Parietal	-0.000154774*	4.8352E-05	<.001	-0.0002902	-1.939E-05
	Polar	-0.000709449*	7.4163E-05	<.001	-0.0009171	-0.0005018
	Granular	-0.00055056*	6.0604E-05	<.001	-0.0007203	-0.0003809
Frontal	Agranular	0.001311816*	5.1232E-05	<.001	0.00116838	0.00145526
	Parietal	0.001157042*	4.7188E-05	<.001	0.00102493	0.00128916
	Polar	0.000602367*	7.3586E-05	<.001	0.0003963	0.00080844
	Granular	0.000761256*	6.0206E-05	<.001	0.00059267	0.00092984
Parietal	Agranular	0.000154774*	4.8352E-05	<.001	1.9395E-05	0.00029015
	Frontal	-0.001157042*	4.7188E-05	<.001	-0.0012892	-0.0010249
	Polar	-0.000554676*	7.1277E-05	<.001	-0.0007543	-0.0003551
	Granular	-0.000395786*	5.7478E-05	<.001	-0.0005567	-0.0002348
Polar	Agranular	0.000709449*	7.4163E-05	<.001	0.00050176	0.00091714
	Frontal	-0.000602367*	7.3586E-05	<.001	-0.0008084	-0.0003963
	Parietal	0.000554676*	7.1277E-05	<.001	0.00035507	0.00075429
	Granular	0.000158889*	8.0076E-05	<.001	-6.535E-05	0.00038313

Granular	Agranular	0.00055056*	6.0604E-05	<.001	0.00038085	0.00072027
	Frontal	-0.000761256*	6.0206E-05	<.001	-0.0009298	-0.0005927
	Parietal	0.000395786*	5.7478E-05	<.001	0.00023483	0.00055674
	Polar	-0.000158889*	8.0076E-05	<.001	-0.0003831	6.5352E-05

Supplemental Table 28: Mean differences in temporal structure-function coupling variance across the 5 von-Economo/Koskinas-inspired cyto-architectonic classes. One-way ANOVA table with post-hoc correction for multiple comparisons (Tamhane's T2 – equal variances not assumed): Dependent variable: Temporal structurefunction coupling variance; factor: Cyto-architectonic classes. Data reported in each table column were averaged across the 9 subjects scanned at Penn that passed quality-control and analyzed using our voxel-based analysis approach; the *p*-values reported under the 'Sig.' column represent the combined p_{fisher} value across the 9 subjects.

FIGURES

Supplemental Figure 1

Supplemental Figure 1 – Regional variations in structure-function coupling: atlas-based analysis.

A: Mean differences in structure-function coupling across the 7 resting-state functional systems (generated using the 100 unrelated HCP subjects and HCP multi-modal atlas; n=360 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data; single datapoints denote outliers. The brain regions in each functional system are overlayed on the standardized *fsaverage* brain's surface and illustrated on the left side. LIM: Limbic, VEN: Ventral Attention, FP: Fronto-Parietal, DMN: Default Mode Network, DOR: Dorsal Attention, MOT: Somatomotor, VIS: Visual. B: Mean differences in structure-function coupling across the 5 cytoarchitectonic classes (generated using the 100 unrelated HCP subjects and HCP multi-modal atlas; n=360 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data; single datapoints denote outliers. The brain regions involved within each class are overlayed on the standardized fsaverage brain's surface and illustrated on the left side. POL: Polar, AGR: Agranular, FRO: Frontal, PAR: Parietal, GRA: Granular. C: Scatterplot between the principal functional gradient scalar of each brain region and its corresponding structure-function coupling (n=360 brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), p-value corresponding to the spatial permutation test (p_{spin}), and histograms corresponding to each variable are reported. **D**: Scatterplot between the "BigBrain" gradient scalar of each brain region and its corresponding structure-function coupling (n=360 brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), p-value corresponding to the spatial permutation test (p_{spin}) , and histograms corresponding to each variable are reported. Source data are provided as a Source Data file.

 $r = 0.42; p_{spin} = 0.007$

-5.0

5.0 –2.5 0.0 2.5 5.0 Principal Functional Gradient

Supplemental Figure 2 – Regional variations in temporal structure-function coupling variance: atlas-based analysis.

A: Mean differences in temporal structure-function coupling variance across the 7 resting-state functional systems (generated using the 100 unrelated HCP subjects and HCP multi-modal atlas; n=360 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data; single datapoints denote outliers. The brain regions involved within each functional system are overlayed on the standardized *fsaverage* brain's surface and illustrated on the left side. DOR: Dorsal Attention, VIS: Visual, MOT: Somatomotor, VEN: Ventral Attention, FP: Fronto-Parietal, DMN: Default Mode Network, LIM: Limbic. B: Mean differences in temporal structure-function coupling variance across the 5 cyto-architectonic classes (generated using the 100 unrelated HCP subjects and HCP multi-modal atlas; n=360 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data: single datapoints denote outliers. The brain regions involved within each class are overlayed on the standardized *fsaverage* brain's surface and illustrated on the left side. PAR: Parietal, AGR: Agranular, FRO: Frontal, GRA: Granular, POL: Polar. C: Scatterplot between the principal functional gradient scalar of each brain region and its corresponding temporal structure-function coupling variance (n=360 brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), p-value corresponding to the spatial permutation test (p_{spin}), and histograms corresponding to each variable are reported. D: Scatterplot between the "BigBrain" gradient scalar of each brain region and its corresponding temporal structure-function coupling variance (n=360 brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), p-value corresponding to the spatial permutation test (p_{spin}), and histograms corresponding to each variable are reported. Source data are provided as a Source Data file.

Supplemental Figure 3

Supplemental Figure 3 – Scatterplots between the variables of interest: atlas-based analysis.

Scatterplot showing the association between each brain region's: mean structure-function coupling and intracortical myelin content as estimated by the T1-weighted/T2-weighted signal intensity ratio (**A**), mean temporal structure-function coupling variance and intracortical myelin content (**B**), mean structure-function coupling and the Hurst exponent of the functional signal time series (**C**), and mean temporal structure-function coupling variance and the Hurst exponent of the functional signal time series (**D**). For each scatterplot, a linear regression was fit along with a 95% confidence interval (shown in red); correlation coefficients (two-tailed Spearman's ρ : r), p-values corresponding to the spatial permutation test (p_{spin}), and histograms corresponding to each variable are displayed. Note: n=360 brain regions in all panels. Source data are provided as a Source Data file.

Supplemental Figure 4 – Regional variations in structure-function coupling: atlas-based analysis.

A: Mean differences in structure-function coupling across the 7 resting-state functional systems (generated using the 100 unrelated HCP subjects and Schaefer 400 atlas; n=400 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data; single datapoints denote outliers. The brain regions in each functional system are overlayed on the standardized *fsaverage* brain's surface and illustrated on the left side. LIM: Limbic, VEN: Ventral Attention, FP: Fronto-Parietal, DMN: Default Mode Network, DOR: Dorsal Attention, MOT: Somatomotor, VIS: Visual. B: Mean differences in structure-function coupling across the 5 cyto-architectonic classes (generated using the 100 unrelated HCP subjects and Schaefer 400 atlas; n=400 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data; single datapoints denote outliers. The brain regions involved within each class are overlayed on the standardized fsaverage brain's surface and illustrated on the left side. POL: Polar, AGR: Agranular, FRO: Frontal, PAR: Parietal, GRA: Granular. C: Scatterplot between the principal functional gradient scalar of each brain region and its corresponding structure-function coupling (n=400 brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), p-value corresponding to the spatial permutation test (p_{spin}), and histograms corresponding to each variable are reported. D: Scatterplot between the "BigBrain" gradient scalar of each brain region and its corresponding structure-function coupling (n=400 brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), p-value corresponding to the spatial permutation test (pspin), and histograms corresponding to each variable are reported. Source data are provided as a Source Data file.

Supplemental Figure 5

Supplemental Figure 5 – Regional variations in temporal structure-function coupling variance: atlas-based analysis.

A: Mean differences in temporal structure-function coupling variance across the 7 resting-state functional systems (generated using the 100 unrelated HCP subjects and Schaefer 400 atlas; n=400 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data; single datapoints denote outliers. The brain regions involved within each functional system are overlayed on the standardized *fsaverage* brain's surface and illustrated on the left side. DOR: Dorsal Attention, VIS: Visual, MOT: Somatomotor, VEN: Ventral Attention, FP: Fronto-Parietal, DMN: Default Mode Network, LIM: Limbic. B: Mean differences in temporal structure-function coupling variance across the 5 cyto-architectonic classes (generated using the 100 unrelated HCP subjects and Schaefer 400 atlas; n=400 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data: single datapoints denote outliers. The brain regions involved within each class are overlayed on the standardized *fsaverage* brain's surface and illustrated on the left side. PAR: Parietal, AGR: Agranular, FRO: Frontal, GRA: Granular, POL: Polar. C: Scatterplot between the principal functional gradient scalar of each brain region and its corresponding temporal structure-function coupling variance (n=400 brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), p-value corresponding to the spatial permutation test (p_{spin}), and histograms corresponding to each variable are reported. D: Scatterplot between the "BigBrain" gradient scalar of each brain region and its corresponding temporal structure-function coupling variance (n=400 brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), p-value corresponding to the spatial permutation test (p_{spin}), and histograms corresponding to each variable are reported. Source data are provided as a Source Data file.

Supplemental Figure 6

Supplemental Figure 6 - Scatterplots between the variables of interest: atlas-based analysis.

Scatterplot showing the association between each brain region's: mean structure-function coupling and intracortical myelin content as estimated by the T1-weighted/T2-weighted signal intensity ratio (**A**), mean temporal structure-function coupling variance and intracortical myelin content (**B**), mean structure-function coupling and the Hurst exponent of the functional signal time series (**C**), and mean temporal structure-function coupling variance and the Hurst exponent of the functional signal time series (**D**). For each scatterplot, a linear regression was fit along with a 95% confidence interval (shown in red); correlation coefficients (two-tailed Spearman's ρ : r), p-values corresponding to the spatial permutation test (p_{spin}), and histograms corresponding to each variable are displayed. Note: n=400 brain regions in all panels. Source data are provided as a Source Data file.

Supplemental Figure 7 – Regional variations in structure-function coupling: atlas-based analysis.

A: Mean differences in structure-function coupling across the 7 resting-state functional systems (generated using the 100 unrelated HCP subjects and HCP multi-modal atlas; n=360 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data; single datapoints denote outliers. The brain regions in each functional system are overlayed on the standardized *fsaverage* brain's surface and illustrated on the left side. LIM: Limbic, VEN: Ventral Attention, FP: Fronto-Parietal, DMN: Default Mode Network, DOR: Dorsal Attention, MOT: Somatomotor, VIS: Visual. B: Mean differences in structure-function coupling across the 5 cytoarchitectonic classes (generated using the 100 unrelated HCP subjects and HCP multi-modal atlas; n=360 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data; single datapoints denote outliers. The brain regions involved within each class are overlayed on the standardized fsaverage brain's surface and illustrated on the left side. POL: Polar, AGR: Agranular, FRO: Frontal, PAR: Parietal, GRA: Granular. C: Scatterplot between the principal functional gradient scalar of each brain region and its corresponding structure-function coupling (n=360 brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), p-value corresponding to the spatial permutation test (p_{spin}), and histograms corresponding to each variable are reported. **D**: Scatterplot between the "BigBrain" gradient scalar of each brain region and its corresponding structure-function coupling (n=360 brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), p-value corresponding to the spatial permutation test (p_{spin}) , and histograms corresponding to each variable are reported. Source data are provided as a Source Data file.

Supplemental Figure 8

Supplemental Figure 8 – Regional variations in temporal structure-function coupling variance: atlas-based analysis.

A: Mean differences in temporal structure-function coupling variance across the 7 resting-state functional systems (generated using the 100 unrelated HCP subjects and HCP multi-modal atlas; n=360 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data; single datapoints denote outliers. The brain regions involved within each functional system are overlayed on the standardized *fsaverage* brain's surface and illustrated on the left side. DOR: Dorsal Attention, VIS: Visual, MOT: Somatomotor, VEN: Ventral Attention, FP: Fronto-Parietal, DMN: Default Mode Network, LIM: Limbic. B: Mean differences in temporal structure-function coupling variance across the 5 cyto-architectonic classes (generated using the 100 unrelated HCP subjects and HCP multi-modal atlas; n=360 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data: single datapoints denote outliers. The brain regions involved within each class are overlayed on the standardized *fsaverage* brain's surface and illustrated on the left side. PAR: Parietal, AGR: Agranular, FRO: Frontal, GRA: Granular, POL: Polar. C: Scatterplot between the principal functional gradient scalar of each brain region and its corresponding temporal structure-function coupling variance (n=360 brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), p-value corresponding to the spatial permutation test (p_{spin}), and histograms corresponding to each variable are reported. D: Scatterplot between the "BigBrain" gradient scalar of each brain region and its corresponding temporal structure-function coupling variance (n=360 brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), p-value corresponding to the spatial permutation test (p_{spin}), and histograms corresponding to each variable are reported. Source data are provided as a Source Data file.

Supplemental Figure 9

62

Supplemental Figure 9 - Scatterplots between the variables of interest: atlas-based analysis.

Scatterplot showing the association between each brain region's: mean structure-function coupling and intracortical myelin content as estimated by the T1-weighted/T2-weighted signal intensity ratio (**A**), mean temporal structure-function coupling variance and intracortical myelin content (**B**), mean structure-function coupling and the Hurst exponent of the functional signal time series (**C**), and mean temporal structure-function coupling variance and the Hurst exponent of the functional signal time series (**D**). For each scatterplot, a linear regression was fit along with a 95% confidence interval (shown in red); correlation coefficients (two-tailed Spearman's ρ : r), p-values corresponding to the spatial permutation test (p_{spin}), and histograms corresponding to each variable are displayed. Note: n=360 brain regions in all panels. Source data are provided as a Source Data file.

Supplemental Figure 10 – Regional variations in structure-function coupling: atlas-based analysis.

A: Mean differences in structure-function coupling across the 7 resting-state functional systems (generated using the 14 Penn subjects and Schaefer cortical atlas; n=400 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data; single datapoints denote outliers. The brain regions involved within each functional system are overlayed on the standardized *fsaverage* brain's surface and illustrated on the left side. DOR: Dorsal Attention, VIS: Visual, MOT: Somatomotor, VEN: Ventral Attention, FP: Fronto-Parietal, DMN: Default Mode Network, LIM: Limbic. B: Mean differences in structure-function coupling across the 5 cytoarchitectonic classes (generated using the 14 Penn subjects and Schaefer cortical atlas; n=400 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data; single datapoints denote outliers. The brain regions involved within each class are overlayed on the standardized fsaverage brain's surface and illustrated on the left side. PAR: Parietal, AGR: Agranular, FRO: Frontal, GRA: Granular, POL: Polar. C: Scatterplot between the principal functional gradient scalar of each brain region and its corresponding structure-function coupling (n=400 brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), p-value corresponding to the spatial permutation test (p_{spin}), and histograms corresponding to each variable are reported. **D**: Scatterplot between the "BigBrain" gradient scalar of each brain region and its corresponding structure-function coupling (n=400 brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), p-value corresponding to the spatial permutation test (p_{spin}) , and histograms corresponding to each variable are reported. Source data are provided as a Source Data file.

A Children & The Second

–5.0 –2.5 0.0 2.5 5.0 Principal Functional Gradient

April alberry

-0.10

ALC: NO. LAS

-0.05 0.00 0.05 BigBrain Gradient

11.15

Supplemental Figure 11 – Regional variations in temporal structure-function coupling variance: atlas-based analysis.

A: Mean differences in temporal structure-function coupling variance across the 7 resting-state functional systems (generated using the 14 Penn subjects and Schaefer cortical atlas; n=400 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data; single datapoints denote outliers. The brain regions involved within each functional system are overlayed on the standardized fsaverage brain's surface and illustrated on the left side. DOR: Dorsal Attention, VIS: Visual, MOT: Somatomotor, VEN: Ventral Attention, FP: Fronto-Parietal, DMN: Default Mode Network, LIM: Limbic. B: Mean differences in temporal structure-function coupling variance across the 5 cyto-architectonic classes (generated using the 14 Penn subjects and Schaefer cortical atlas; n=400 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data: single datapoints denote outliers. The brain regions involved within each class are overlayed on the standardized fsaverage brain's surface and illustrated on the left side. PAR: Parietal, AGR: Agranular, FRO: Frontal, GRA: Granular, POL: Polar. C: Scatterplot between the principal functional gradient scalar of each brain region and its corresponding temporal structure-function coupling variance (n=400 brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), *p*-value corresponding to the spatial permutation test (p_{spin}) , and histograms corresponding to each variable are reported. D: Scatterplot between the "BigBrain" gradient scalar of each brain region and its corresponding temporal structure-function coupling variance (n=400 brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), p-value corresponding to the spatial permutation test (p_{spin}) , and histograms corresponding to each variable are reported. Source data are provided as a Source Data file.

Supplemental Figure 12

Supplemental Figure 12 - Scatterplots between the variables of interest: atlas-based analysis.

Scatterplot showing the association between each brain region's: mean structure-function coupling and intracortical myelin content as estimated by the T1-weighted/T2-weighted signal intensity ratio (**A**), mean temporal structure-function coupling variance and intracortical myelin content (**B**), mean structure-function coupling and the Hurst exponent of the functional signal time series (**C**), and mean temporal structure-function coupling variance and the Hurst exponent of the functional signal time series (**D**). For each scatterplot, a linear regression was fit along with a 95% confidence interval (shown in red); correlation coefficients (two-tailed Spearman's ρ : r), p-values corresponding to the spatial permutation test (p_{spin}), and histograms corresponding to each variable are displayed. Note: n=400 brain regions in all panels. Source data are provided as a Source Data file.

-5.0 -2.5 0.0 2.5 5.0 Principal Functional Gradient

0.0 -0.1 -0.2

Supplemental Figure 13 – Regional variations in structure-function coupling: voxel-based analysis – representative subject shown.

A: Mean differences in structure-function coupling across the 7 resting-state functional networks (generated using one representative Penn subject analyzed with our voxel-based connectivity approach; n=71,561 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data; single datapoints denote outliers. The brain regions involved within each functional network are overlayed on the standardized *fsaverage* brain's surface and illustrated on the left side. LIM: Limbic, VEN: Ventral Attention, FP: Fronto-Parietal, DMN: Default Mode Network, DOR: Dorsal Attention, MOT: Somatomotor, VIS: Visual. B: Mean differences in structurefunction coupling across the 5 cyto-architectonic classes (generated using one representative Penn subject analyzed with our voxel-based connectivity approach; n=71,561 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data; single datapoints denote outliers. The brain regions involved within each class are overlayed on the standardized *fsaverage* brain's surface and illustrated on the left side. POL: Polar, AGR: Agranular, FRO: Frontal, PAR: Parietal, GRA: Granular. C: High density plot between the principal functional gradient scalar of each brain region and its corresponding structure-function coupling (n=71,561brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), p-value corresponding to the spatial permutation test (p_{spin}), and histograms corresponding to each variable are displayed. Source data are provided as a Source Data file.

-5.0 -2.5 0.0 2.5 5.0 Principal Functional Gradient
Supplemental Figure 14 – Regional variations in temporal structure-function coupling variance: voxel-based analysis – representative subject shown.

A: Mean differences in temporal structure-function coupling variance across the 7 resting-state functional networks (generated using one representative Penn subject analyzed with our voxel-based connectivity approach; n=71,561brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data; single datapoints denote outliers. The brain regions involved within each functional network are overlayed on the standardized *fsaverage* brain's surface and illustrated on the left side. DOR: Dorsal Attention, VIS: Visual, MOT: Somatomotor, VEN: Ventral Attention, FP: Fronto-Parietal, DMN: Default Mode Network, LIM: Limbic. B: Mean differences in temporal structure-function coupling variance across the 5 cyto-architectonic classes (generated using one representative Penn subject analyzed with our voxel-based connectivity approach; n=71,561 brain regions/datapoints). Data are presented as boxplots (median value at center line, lower quartile at left bound, upper quartile at right bound) with whiskers extending towards the minimum and maximum non-outlier values of the data: single datapoints denote outliers. The brain regions involved within each class are overlayed on the standardized fsaverage brain's surface and illustrated on the left side. PAR: Parietal, AGR: Agranular, FRO: Frontal, GRA: Granular, POL: Polar. C: High density plot between the principal functional gradient scalar of each brain region and its corresponding temporal structure-function coupling variance (n=71,561 brain regions/datapoints). A linear regression was fit along with a 95% confidence interval (shown in red); the correlation coefficient (two-tailed Spearman's ρ : r), p-value corresponding to the spatial permutation test (p_{spin}), and histograms corresponding to each variable are displayed. Source data are provided as a Source Data file.

Supplemental Figure 15

74

Supplemental Figure 15 – Scatterplots between the variables of interest: voxel-based analysis – representative subject shown.

Scatterplots showing the association between each cortical voxel's: mean structure-function coupling and intracortical myelin content estimated by the T1-weighted/T2-weighted signal intensity ratio (A), mean temporal structure-function coupling variance and intracortical myelin content (B), mean structure-function coupling and the Hurst exponent of the functional signal time series (C), and mean temporal structure-function coupling variance and the Hurst exponent of the functional signal time series (D). For plots (A), (B), and (C), a linear regression was fit along with a 95% confidence interval (shown in red); correlation coefficients (two-tailed Spearman's ρ : r), p-values corresponding to the spatial permutation test (p_{spin}), and histograms corresponding to each variable are displayed. In plot (D), a quadratic regression was fit along with a 95% confidence interval (shown in red); the standardized β coefficient and bootstrapped p-value corresponding to the quadratic regression mentioned in the voxel-based analysis component of our Results section: 'Biological Correlates of Structure-Function Coupling: Whole-brain perspective,' are also reported. Data shown in this figure were obtained from a representative subject that was analyzed using our voxel-based connectivity approach. Note: n=71,561 voxels in all panels. Source data are provided as a Source Data file.

SUPPLEMENTARY REFERENCES

- Glasser, M. F. & Van Essen, D. C. Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI. *J. Neurosci.* **31**, 11597–11616 (2011).
- 2. Ganzetti, M., Wenderoth, N. & Mantini, D. Whole brain myelin mapping using T1- and T2weighted MR imaging data. *Front. Hum. Neurosci.* **8**, 671 (2014).
- 3. Ganzetti, M., Wenderoth, N. & Mantini, D. Mapping pathological changes in brain structure by combining T1- and T2-weighted MR imaging data. *Neuroradiology* **57**, 917–928 (2015).
- Nerland, S. *et al.* Multisite reproducibility and test-retest reliability of the T1w/T2w-ratio: A comparison of processing methods. *NeuroImage* 245, 118709 (2021).
- Glasser, M. F. *et al.* Empirical transmit field bias correction of T1w/T2w myelin maps. *NeuroImage* 258, 119360 (2022).
- Arshad, M., Stanley, J. A. & Raz, N. Test–retest reliability and concurrent validity of in vivo myelin content indices: Myelin water fraction and calibrated T1w/T2w image ratio. *Hum. Brain Mapp.* 38, 1780–1790 (2016).
- Shams, Z., Norris, D. G. & Marques, J. P. A comparison of in vivo MRI based cortical myelin mapping using T1w/T2w and R1 mapping at 3T. *PLOS ONE* 14, e0218089 (2019).
- Uddin, M. N., Figley, T. D., Marrie, R. A., Figley, C. R. & for the CCOMS Study Group. Can T1w/T2w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-based T1w/ T2w ratios, GRASE-based T1w/T2w ratios and multi-echo GRASE-based myelin water fractions. *NMR Biomed.* 31, e3868 (2018).
- Hagiwara, A. *et al.* Myelin Measurement: Comparison Between Simultaneous Tissue Relaxometry, Magnetization Transfer Saturation Index, and T1w/T2w Ratio Methods. *Sci. Rep.* 8, 10554 (2018).

- 10. Piredda, G. F., Hilbert, T., Thiran, J.-P. & Kober, T. Probing myelin content of the human brain with MRI: A review. *Magn. Reson. Med.* **85**, 627–652 (2021).
- 11. Trakoshis, S. *et al.* Intrinsic excitation-inhibition imbalance affects medial prefrontal cortex differently in autistic men versus women. *eLife* **9**, e55684 (2020).
- Gao, R., Peterson, E. J. & Voytek, B. Inferring synaptic excitation/inhibition balance from field potentials. *NeuroImage* 158, 70–78 (2017).
- Larsen, B. *et al.* A developmental reduction of the excitation:inhibition ratio in association cortex during adolescence. *Sci. Adv.* 8, eabj8750 (2022).