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ABSTRACT

We investipted the proteins extractable from cell walls ofstem tissues
when plants were subjected to low water potentials (low #4 Dark-grown
soybean seedlings (Glycine max [L.] Merr.) showed decreased stem
growth when the roots were exposed to vermiculite having low water
content (4,. = -3 bar). After a time, growth resumed but at a reduced
rate relative to the controls. The extractable protein increased in the cell
walls as A,, decreased, especially a 28-kilodalton protein in the young
tissue. In contrast, a 70 kilodalton protein, mainly extractable from
mature cell walls, appeared to decrease slightly at low .,, No hydroxy-
proline was present in either protein, which shows that neither protein is
related to extensin. The level of the 28 kilodalton protein increased in
the cell wall of the dividing region soon after the initial growth inhibition,
and it appeared in the elongating tissue at about the time growth resumed.
The correlation between growth and these protein changes suggests that
the two events could be related.

The enlargement of plant cells is often affected adversely by
low 02.3 Developing floral tissues, expanding leaves and elongat-
ing stems respond to a decrease in 0w prior to the roots, which
may grow unabated (23, 26, 31). This differential response can
be used to study the effects of low ip', on growth. In dark-grown
soybean seedlings, roots grow rapidly while stem growth is inhib-
ited at low i/. The inhibition is followed by an accumulation of
solutes that maintains turgor at a near constant value (7, 22).
The solutes are metabolic substrates derived from cotyledonary
reserves (23). Because they are present in high amounts together
with high turgor, factors other than substrate availability and
turgor must cause the inhibition of stem growth. One possibility
is that biochemical changes occur in the cell walls because wall
extensibility is metabolically controlled and undergoes modifi-
cation after long periods of low 4,6w (8, 21, 29, 30).
The constituents of cell walls are altered when tissues are

wounded (25, 27) or their growth rate changes (16, 28). Extensin,
a hydroxyproline-rich glycoprotein that crosslinks with wall car-
bohydrates, accumulates in a soluble extractable form (25, 27)
when tissue is excised (9). Hydrolytic enzymes are reported to
change in activity as a result of changes in growth (10, 15, 17,
20, 28).
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This indicates that, because stem growth is inhibited at low
4,, changes might occur in cell wall proteins. This possibility has
not been investigated. We therefore used soybean seedlings grow-
ing in vermiculite having differing water contents to examine the
proteins in the cell walls of stem tissues at low Aw. Extractable
proteins accumulated under these conditions, particularly a 28
kD protein.

MATERIALS AND METHODS

Plant Materials. Soybean seeds (Glycine max [L.] Merr. cv
Williams) were surface sterilized in 1% NaOCl, rinsed in running
tap water for 2 h, planted in vermiculite wetted to runoff with
0.1 mm CaCl2 (about 5.0 ml CaCl2/g of vermiculite), and kept
in the dark at 100% RH and 29C. After 48 h, seedlings were
selected for uniformity and transplanted to vermiculite contain-
ing the same amount of solution (lx seedlings, control) or 1/8
the amount of solution (1/8x seedlings, treatment). The I, was
-0.1 bar in the lx vermiculite and -3.0 ± 0.2 bar in the 1/8x
vermiculite and was constant throughout the experiment. All
seedling manipulations were done at 100% RH under a green
safelight (green fluorescent bulb wrapped in cellophane with
negligible transmission below 475 nm and above 575 nm).
Growth Rates. The growth rate was determined by measuring

total stem length at 24 h intervals after transplanting.
Water Potential Measurements. The VI. was determined iso-

piestically using thermocouple psychrometers according to Boyer
and Knipling (4) and Boyer (2). For the dividing region, ten 5-
mm segments were used per sample. For the elongating and
mature regions, five 15-mm segments were used per sample.
Cytoplasmic Protein and Cell Wall Protein. Stems were har-

vested 24, 48, 72, and 96 h after transplanting and divided into
3 regions: the 5 mm section just below the cotyledons (dividing
region); the next 15 mm (elongating region); and the remainder
of the stem (mature region).
Samples of 3 to 8 stem segments were ground at OC in 62.5

mM Tris-HCl (pH 7.2), 1% mercaptoethanol, and protease inhib-
itors: 0.5 mM phenyl methyl sulfonyl fluoride, 0.5 mM e-amino-
n-caproic acid, and 0.1 mM benzamidine. After centrifuging at
1,000g for 3 min, the supernatant was decanted and recentrifuged
at 13,000g for 3 min. The resulting supematant was the cyto-
plasmic extract. The pellet from the 1,000g centrifugation was
rinsed 10 times by resuspending in fresh grinding buffer, recen-
trifuging, and discarding the supernatant. The washed pellet was
the cell wall fraction. After the final rinse, the pellet was resus-
pended in 62.5 mm Tris-HCl (pH 7.2), 0.5 M CaCI2, and 5 mm
DTT and was incubated at 5°C from 3 to 12 h with occasional
mixing. The suspension was centrifuged at 13,000g for 15 min
and the supernatant (cell wall extract) was decanted from the cell
wall pellet and desalted on a miniature Sephadex G-50-80 col-
umn using the spun column technique of Helmerhorst and
Stokes (13). Protein determinations were according to Bradford
(5).

Protein Separation. SDS-Polyacrylamide gel electrophoresis
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(SDS-PAGE) was performed on the cell wall extracts according
to Laemmli (18) on 12.5% gels except the acrylamide:bis-acryl-
amide was 30:0.6. Constant amounts of protein were loaded (20
ag/lane). Gels were stained with Coomassie blue R250, de-
stained, and dried between two pieces ofporous cellophane. The
lanes on the gels were scanned at a wavelength of 550 nm in a
Beckman DU8 scanning spectrophotometer. The relative areas
under the peaks were determined by weighing the appropriate
areas of paper on which the peaks were displayed.
Amino Acid Analysis. The 28 kD and 70 kD protein bands

from the cell wall extract on an SDS-PAGE gel were made visible
with 4 M sodium acetate (14). The bands were then excised,
washed, and pulverized in 50 mm ammonium bicarbonate and
0.1% SDS. After overnight incubation at 4°C, the acrylamide
was removed by centrifugation. The supernatants (containing
protein) were concentrated and dialyzed in Amicon Centricon
10 microconcentrators. After the initial concentration, the pro-
teins were rinsed in the microconcentrators five times with 50
mM ammonium bicarbonate and five times with water. The
resulting solution was lyophilized and used for amino acid anal-
yses performed by the Biotechnology Support Laboratory at
Texas A & M University.

RESULTS
Growth and Tissue Protein Contents at Low AP,,. Stem growth

was inhibited after transplanting the seedlings to l/8x vermicu-
lite. Stem length remained almost constant for 48 h (Fig. IA)
and eventually began to increase, but at a reduced rate (1.1 mm/
h after 72 h) compared to the controls (2.2 mm/h).
The #4 of the x stems remained high throughout the experi-

ment, but the 0,6 of the 1/8x stems decreased rapidly after
transplanting to the l/8x vermiculite (Fig. 1B). During the first
24 h, p, decreased to -6.5 bars in the elongating and mature
tissue and -8.0 bars in the dividing tissue. After reaching the
lowest 4,, a recovery of 2 or 3 bars began in all of the tissues.
Meyer and Boyer (23) and Cavalieri and Boyer (7) found similar
decreases in 14A of various regions of the stem, and solutes
accumulated in the stem tissues. A similar accumulation should
have occurred in the present experiments because the conditions
were identical. Therefore, turgor should have been high in the
elongating tissues.

Ifturgor was high, the water content ofthe tissues should have
remained high as A decreased. To test this idea, the fresh weight
ofstem tissue from seedlings selected for uniform stem diameters
was measured. The fresh weight per unit length did not decrease
upon transplanting to l/8x vermiculite (Fig. 2). Likewise, the
fresh weight of the x stem tissue remained constant except in
the dividing region where the fresh weight increased after 48 h
(Fig. 2A). The increase in fresh weight of the lx dividing region
was correlated with an increase in its 0w (cf. Figs. lB and 2A).
The similarity in fresh weights of the lx and 1/8x tissues
confirmed the turgor maintenance in these stems and allowed us
to conveniently express the data in succeeding experiments on a
fresh weight basis.
The exposure of the seedlings to the drier vermiculite resulted

in much shorter stems than in controls by the end of the
experiment. Because this lag in development could in itselfcause
differences in stem characteristics, it was necessary to compare
seedlings on both a developmental scale (stem length) and a time
scale (hours after transplant). It is important to note that in the
developmental comparisons, no corrections were necessary for
fresh weight differences because only lx tissue younger than 48
h (Figs. 1 and 2) was included and the fresh weight of this tissue
was the same as in the l/8x tissue. The time comparison
included older tissue, however, and a correction for fresh weight
was necessary in the dividing region.
The total protein in the cytoplasm decreased with age in all
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FIG. 1. Growth (A) and water potential (B) of stems of soybean

seedlings transplanted to lx or 1/8x vermiculite. Water potential data
in (B) are representative of three replicate experiments.

the stem tissues (Fig. 3), but the decrease was delayed in the
1/8x stems (Fig. 3A-C). When this comparison was made on a
developmental scale, the differences largely disappeared in the
statistical variability between treatments (Figs. 3D-F). In con-
trast, the protein contents of cell wall extracts were considerably
higher in l/8x seedlings than in lx seedlings regardless of
whether the data were expressed on a time (Fig. 4A-C) or stem
length basis (Fig. 4D-F).

Protein Separation. When proteins in the cell wall extracts
were separated, a 28 kD protein was apparent and accumulated
at low i. (Fig. 5). The increase was greatest in dividing region
and could be obser-ied after 24 h (Fig. 5A). The 28-kD protein
became the major extractable protein in the dividing region at
low 0,6w. In the elongating region, a similar accumulation oc-
curred, but was delayed for 48 to 72 h (Fig. 5B). In the mature
region, the 28lkD protein was only a minor band even 96 h after
transplanting into 1/8x vermiculite, and accumulation was slight
(Fig. 5C).

In contrast, a 70 kD protein became more abundant as the
stem tissue matured (Fig. 5A-C) and was a major extractable
protein in the mature tissue (Fig. 5C). The protein appeared to
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FIG. 2. Effects of transplanting on the fresh weight/unit length of
dividing (A), elongating (B), and mature (C) tissue segments from stems
ofsoybean seedlings. The regions indicated on the representative seedling
(left) are those sampled in all of the succeeding experiments. Note that
the dividing (5 mm) and elongating (15 mm) regions were always
harvested relative to the cotyledons as indicated in the diagram; thus
only the mature region increased in length throughout the experiment.

decrease in the cell walls of 1/8x stems compared to controls
(Fig. 5), although the effect was small.
These changes in wall protein were not caused by differences

in stem development because they were also apparent when
comparisons were made on a length basis. Figure 6 shows that
the stem tissues contained approximately equal amounts of the
28 kD protein at a 28 mm stem length but the level became
greatly elevated in l/8x stems after they had elongated to 68
mm. The increase was greatest in the dividing region (Fig. 6B)
and became progressively less in the elongating (Fig. 6D) and
mature regions (Fig. 6F). The 70 kD protein contrasted with this
behavior. The progressive increases in the elongating (Fig. 6C)
and mature tissues (Fig. 6E) were accompanied by a slight
suppression of the relative amount of this protein in the l/8x
stems compared to the controls.

In the cytoplasmic fraction, we detected a 28 kD protein but
not a 70 kD protein. This raised the possibility that the 28 kD
protein in the cell wall was a contaminant from the cytoplasm.
We tested whether the association of the 28 kD protein with the
wall was the result of fortuitous binding during the extraction
procedure (10) by adding excess 28 kD protein to the grinding
medium during the homogenization of the tissue. Table I shows
that the 28 kD protein did not increase in the cell wall fraction
(Table 1). There is no doubt some cytoplasmic contamination
of the cell wall extract, since heavily overloading the gels with
the cell wall extract showed minor banding corresponding with
the cytoplasmic banding patterns. However, the results of Table
I together with the low level of contamination by other cyto-
plasmic proteins indicated that the 28 kD protein is normally

associated with the cell wall.
Amino Acid Composition of the 28 kD and 70 kD Cell Wall

Proteins. Table II shows that the 28 kD and 70 kD proteins were
composed of significant amounts of all the protein amino acids
except hydroxyproline, which was absent, and methionine, which
was present in low amounts (about 2 residues per protein mole-
cule). Tryptophan and cystine/cysteine were not determined.
The composition of the 28 kD protein differed somewhat from
that of the 70 kD protein. The 28 kD protein had less aspartate/
asparagine, serine, glycine, threonine, and alanine than the 70
kD protein but more glutamate/glutamine, tyrosine, and lysine.

DISCUSSION
The treatments used in these experiments caused the rates of

stem growth to differ widely. Consequently, the effects of low st4
could have been simply to delay stem development, and the
protein differences could have resulted from the different devel-
opmental states of the tissues. On the other hand, the protein
differences could have resulted from 4/,K-induced alterations in
cell metabolism that would be visible at the same degree of
development. It was necessary to separate these effects by consid-
ering seedling responses at comparable times and at comparable
stem development. We used stem length to indicate the stage of
development because the anatomy of the elongating tissue was
similar in the control and low 4K6 treatments (22). Thus, devel-
opmental differences were associated mostly with the amount of
mature tissue, which was measurable in terms of stem length.
The results show that salt extractable proteins accumulated in

the cell walls of soybean stems at low 0/4 regardless of whether
the comparisons were made at the same time or at the same
length. This indicates that 0/K-induced differences in cell metab-
olism were involved in the accumulation. In the cytoplasm, on
the other hand, there was an effect only if comparisons were
made at the same time. In this case, the differences are attribut-
able to the delay in stem development and not to specifically
altered metabolism. Consequently, the accumulation of wall
proteins was specific for the walls and was not an indirect result
of an overall accumulation of protein in the cell.
The accumulation was not the same for all wall proteins.

When constant amounts of protein were separated on gels so
that comparisons could be made on a relative basis, a 28 kD
protein increased dramatically in the dividing and elongating
regions. Low 0/K brought about the increase regardless ofwhether
the comparison was made on a time or length basis, again
indicating that wall metabolism had been altered by these con-
ditions. As a result, the 28 kD protein became the major wall
protein on the gels from the dividing region. The lack of a
significant accumulation in the mature tissue suggests that the
28 kD wall protein may have been involved in new wall devel-
opment.

In contrast, the 70 kD protein was scarcely present in the
dividing region but was the major protein extractable from the
mature walls. It showed slightly less relative abundance at low
'/K. This effect is consistent with an involvement of the 70 kD
protein in cell maturation, the rate of which was slowed under
these conditions (23).
These responses to low 4K could not be attributed to wounding

(1, 12), because the experiments were conducted with intact
seedlings. External osmotica were not used and thus the protein
changes could not have resulted from indirect effects of high
concentrations ofexogenous solute. The roots were exposed only
to a limited water supply and the effects were transmitted inter-
nally to the stem in a fashion likely to occur under natural
conditions.

It is important to consider how these changes might occur in
an intact plant. Changes in the protein of the walls could reflect
altered amounts of wall enzymes. The amino acid composition

f
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FIG. 3. Content of protein in the cytoplasm of
dividing (A), elongating (B) and mature (C) regions
ofsoybean stems at various times after transplanting
to lx or l/8x vermiculite. The same data compared
on the basis ofstem length are shown for the dividing
(D), elongating (E) and mature (F) regions. The
1/8x (corr) values shown in (A) were calculated
from the 1/8x data on the basis of the x (control)
fresh weights (Fig. 2A). No correction was necessary
for the analogous measurement in (D) (see text).
Three segments were ground for each extraction.
Data represent means ± SD of three replicates.
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compared on the basis of stem length are shown for
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of both the 28 kD and 70 kD protein is similar to that of many
enzymes and had no extremes often associated with structural
proteins. Cell wall loosening may involve cell wall hydrolases,
which change in activity as growth changes (10, 15, 17, 19, 20).
Such a role is possible for the 28 kD protein in particular although
the molecular mass as determined by SDS-PAGE does not

correspond with studied cell wall hydrolases. Wall peroxidases
also change in activity but their molecular masses are larger than
28 kD (1 1) and they are more likely to be prevalent in mature
tissue where secondary wall formation would be occurring.
A structural role for these proteins is also possible. Although

the amino acid compositions of the 28 kD and 70 kD proteins
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distinguish them from proteins like extensin, which is a hydroxy-
proline-rich structural protein, the 70 kD protein accumulates in
the mature cell walls in a fashion similar to extension (6, 19).
Extensin was not detected in the current study because this
protein is not resolvable with standard SDS-PAGE (27).

Table I. Binding of28 kD Protein to the Cell Wall during Extraction
Four elongating regions from control (1X) stems were ground and

treated as in the "Materials and Methods," except 200 ttg of the cell wall
protein (desalted) were added to the "supplemented" treatment at the
time of grinding. Gels for the cytoplasmic fraction were loaded with 25
,gg protein/lane and for the cell wall fraction with 15 gg protein/lane.

Relative Peak Area of 28 kD Band
Treatment

Cytoplasmic protein Cell wall protein
Nonsupplemented 5.6 3.1
Supplemented 6.2 2.5

Table II. Amino Acid Content ofthe 28 kD and 70 kD Proteins
Extractedfrom the Cell Walls ofSoybean Stems

Protein
Amino Acid

28 kD 70 kD
mol%

Asp/Asn 8.2 9.5
Glu/Gln 10.6 7.8
Ser 8.3 9.6
Gly 9.4 13.6
His 2.1 1.1
Arg 4.4 4.2
Thr 6.3 8.7
Ala 8.4 11.3
Pro 5.4 6.3
Tyr 3.9 2.1
Val 6.9 6.4
Met 0.9 0.5
Ile 4.9 4.3
Leu 8.6 7.3
Phe 4.2 3.5
Lys 7.5 4.2
HPro 0.0 0.0

If the 28 kD and 70 kD proteins play a structural role, the salt
extractable fraction may represent a balance between the trans-
port of protein to the wall and the final incorporation into the
wall matrix. The rapid changes in these proteins upon lowering
the 0, could be the result of perturbing such a balance. Because
growth is inhibited at low t41, the accumulation of extractable
proteins in the wall could be the passive result of decreased
incorporation into the wall matrix. The protein, piling up un-
used, would appear as an increasingly strong band on a gel, as
occurred with the 28 kD protein. On the other hand, it is possible
that a specific increase in synthesis or transport of the 28 kD
protein occurred relative to other wall proteins.
The 28 kD protein began to accumulate in the elongating

region only as growth was resuming. At this time, cells in the
dividing region, which already had shown large amounts of this
protein, had moved into the elongating region. This probably
accounts for the lag of accumulation in the elongating region
and could indicate that the 28 kD protein was synthesized
primarily in the dividing region and moved into the elongating
regions as the cells began to recover in growth rate.
The contrasting behavior of the 70 kD protein may have been

associated with its different location in the stem. Because of the
low levels of this protein in the walls of the young cells and its
likely involvement in maturation, the suppression in the increase
of the 70 kD protein at low 0Aw could indicate that the relative
rate of delivery to the wall was less than for the other proteins.
The presence ofthe 28 kD and 70 kD proteins in control tissue

indicates that the differences at low 4'w represent shifts in regu-
lation and not an appearance or disappearance of proteins.
Growth involves a combination of both physical and metabolic

D
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components and, in soybean stems exposed to low iI'w, the initial
inhibitory event appears to be a physical disruption of the ^t4
gradient from the xylem to the outer cortex (3, 24). It is likely
that cell wall extensibility decreases sometime afterward (21, 30),
but turgor often remains high due in part to rapid osmotic
adjustment (7, 22, 23). The modest resumption of growth that
occurred late in the experiment implies that the water potential
gradient was reestablished and the metabolic changes were some-
what reversed. The fact that the recovery ofgrowth did not occur
until the elongating region showed enhanced levels of the 28 kD
protein suggests that the accumulation may have been important
for the growth recovery.
We propose that the 28 kD protein is normally associated with

early wall growth, either in a catalytic or structural role. The
regulation of this protein indicates that early wall metabolism is
modified greatly in seedlings whose growth is modified by low
A,,. The 70 kD protein also shows evidence of regulation but its
association with the mature tissue implies a role in the normal
maturing of the cell walls.
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