Title

IFN_γ-Stat1 axis drives aging-associated loss of intestinal tissue homeostasis and regeneration

SUPPLEMENTARY INFORMATION

Supplementary information contains 7 Supplementary Figures, 2 Supplementary Tables and 4 Supplementary Data files.

Figure S1. Mouse intestinal crypts show transcriptional alterations during aging.

a) Point plot of the Euclidean sample-to-sample distance in the RNA-seq datasets as in Figure 1a. Error bars represent the SD. *P* value was calculated by t test. m = months. n = 4 mice per group were analyzed.
b) Bar chart showing the number of DEGs in aging intestinal crypts measured by RNA-seq as in Figure 1a. m = months.

c) Venn diagram of the DEGs found in the RNA-seq of the intestinal crypts (young versus old animals). *P* value was calculated by hypergeometric distribution test.

d) Left panel: Hierarchical clustering and heatmap of the gene overlap correlation of the top 120 GO pathways found enriched in intestinal crypts during aging. The clustering revealed four main clusters of pathways that can be used for subdividing the pathways according to the main GO category (signaling, metabolism, inflammation and another mixed category composed of stress response, and epigenetics related pathways). Right panel: Bar chart showing the -log10 enrichment p value (x-axis) and activation Z-score (color coded) of the GO pathways.

e) Box plot of the geneset enrichment analysis of the antigen presentation pathway in mouse intestinal crypts from specified ages and in both genders.

f) RT-qPCR validation of the indicated gene expression levels in young (2 months) and old (>20 months) female (F) and male (M) mice. At least n = 3 mice per group were analyzed. Error bars represent the SD. *P* value was calculated by Welch's one-tail t test. * = p < 0.05; ** = p < 0.01.

С

d

Male

а

b

Figure S2. Aged mouse intestinal crypts show gender-specific transcriptional alterations.

a) Scatter plot of delta Z-scores (old minus young Z-scores mean) from the geneset enrichment analysis of the GO pathways found significantly enriched both in the Lgr5^{hi} cells and whole crypt cells. r = Pearson correlation coefficient.

b) Bar chart showing the percentage of GO pathways in each of the indicated main GO categories. Immunosystem and inflammation related pathways are those most commonly regulated between different genders.
c) Representative FACS plots showing percentages of the MHCII⁺ cells within the Olfm4⁺ cells isolated from the intestine of young (upper panel) and old (lower panel) mice.

d) Box plot of geneset enrichment analysis of the marker datasets of the indicated different intestinal secretory cell populations within the Lgr5^{hi} intestinal stem cells purified from female (F) and male (M), young (Y) and old (O) mice. *P* value was calculated by Wilcoxon paired test.

Top 5 most expressed cluster markers

PC1

PC2

0

f

Old

а

Figure S3. Major Histocompatibility Complex class II (MHCII) is strongly overexpressed during aging in the whole intestinal crypts.

a) Heatmap of the expression of the top 5 markers of each of the 10 clusters identified in the scRNA-seq analysis.

b) Scatter plot of PC1 and PC2 values of the single cell RNA-seq (scRNA-seq) dataset (both the young and the old RNA-seq merged). White-to-red color code represents the expression value of the indicated markers representative of the specified cellular cluster.

c) Line-plot of the cell population density of each of the indicated clusters along the PC1 (upper panel) or PC2 (lower panel) measured by the scRNA-seq experiment.

d) Line-plot of the average Z-score distribution of the indicated geneset markers along the PC1 (left panel) or PC2 (right panel) measured by the scRNA-seq experiment. Z-score is calculated by gene base scaling the count data.

e) Scatter plot of PC1 and PC2 values of the single cell RNA-seq (scRNA-seq) dataset (both the young and the old RNA-seq merged). White-to-red color code represents the expression value of the two indicated markers representative of the antigen presentation pathway.

f) Box plot of the geneset enrichment analysis of the antigen presentation pathway in the specified cell populations from young (Y) or old (O) mouse intestinal crypts.

 g) Bar chart indicating the percentage of cells in young or old animals belonging to the indicated clusters in the scRNA-seq. Aging increases the secretory progenitor cluster (cl.3) and reduces stem and TA cells (cl.1-2).

h) Representative FACS plots (upper panels) and relative quantification (bottom panel) showing percentages of the Lrg5⁺ cells in the intestine of mice at the indicated ages. $n \ge 5$ mice per group were analyzed. Error bars represent the SD. *P* value was calculated by Wilcoxon paired test.

i) Line-plot of the cell population density of the Lgr5-expressing cells (Lgr5⁺) along the PC2 axis measured by the scRNA-seq experiment.

Figure S4. Intestinal cell composition changes during aging.

0.4-

a) Representative pictures of anti-Chga staining in young and old intestinal crypts. Scale bar, 20 µm. The dotted lines indicate the crypt structure.

b) The bar chart shows the average number of cells positive for Chga in young and old intestinal crypts. n = 5 mice per group were analyzed. Error bars represent the SD. *P* value was calculated by Welch's t test. c) Box plot of geneset enrichment analysis of the indicated gene datasets in freshly isolated intestinal crypts and intestinal organoids. P value was calculated by Wilcoxon non-paired test.

Figure S5. Aging lamina propria immune cells show compositional changes towards more proinflammatory condition.

a) t-SNE projection of all immune cells from young and old mice presenting nine different clusters, identified via shared nearest neighbor modularity optimization-based clustering algorithm, followed by merging of similar clusters.

b) Heatmap of the expression of the top 5 markers of each of the nine clusters identified in the scRNA-seq analysis.

c) Bar chart indicating the percentage of cells in young or old animals belonging to the indicated clusters in the scRNA-seq. Error bars represent the SE. *P* value was calculated by non-paired t test.

d) Gating strategy of FACS analysis for immune cell populations in freshly isolated cells from intestinal lamina propria.

Figure S6. *In vitro* treatment of intestinal organoids with IFN γ could mimic aging induced changes in intestinal crypt cells.

a) Normalized RNA counts for Kit gene in different clusters of scRNA-seq from intestinal crypt cells.

b) Percentage (y axis) of cKit⁺ cells within each identified cluster (color legend).

c) Similar number of organoids were treated with different concentrations of IFN γ and after 5 days absolute cell number was quantified for each well. Each dot represents one mouse.

d) The bar chart shows the percentage of Olfm4⁺ cells from intestinal organoids treated with IFN γ after 24h. n = 7 mice per group were analyzed. Error bars represent the SD. *P* value was calculated by Welch's t test. e) Experimental scheme of long-term IFN γ treatment of intestinal organoids and FACS analysis of organoids stimulated with two concentrations of IFN γ for 21 days to assess viable cells, Lgr5⁺ cells, MHCII⁺ cells and cKit⁺ cells. n = 4 mice per group were analyzed. Error bars represent the SD. *P* value was calculated by Welch's t test.

f) Bar chart indicating the percentage of cells belonging to the indicated clusters in the scRNA-seq from organoids after IFN γ treatment for 24 hours with 2ng/ml dose. Error bars represent the SD. *P* value was calculated by non-paired t test.

g) Heatmap of the expression level (scaled by gene in the row) of the MHCII genes in the different clusters found in the scRNA-seq of *in vitro* treated intestinal organoids with 2 ng/ml IFN γ for 24h.

h) Hierarchical clustering and heatmap of the expression level of all the genes in the whole Antigen Presentation pathway in the different clusters found in the scRNA-seq of *in vitro* treated intestinal organoids with 2 ng/ml IFN γ for 24h.

Figure S7. IFNγ regulates intestinal homeostasis.

a) qRT-PCR analysis of stem cell markers (Olfm4, Ascl2 and Lgr5) and of secretory cell markers (Muc2, Lyz1, and Dclk1) in intestinal crypts of mice of the indicated conditions. n = 4 mice per group were analyzed. Error bars represent the SD. P value was calculated by Welch's t test.

b,c) FACS apoptosis assay using Annexin V staining of cells from organoids treated as indicated. b) representative FACS profile. c) quantification of cells in the 4 gates. n = 4 mice per group were analyzed. Organoids treated with IFN_Y (2 ng/ml) with or without Ruxolitinib (Rux) for 3 days. Error bars represent the SD. P value was calculated by Welch's t test.

d) FACS analysis of BrdU⁺ cells in the indicated conditions. n = 4 mice per group were analyzed. Organoids treated with IFN_{γ} (2 ng/ml) with or without Ruxolitinib (Rux) for 3 days. Error bars represent the SD. P value was calculated by Welch's t test.

e) qRT-PCR analysis of stem cell markers (Olfm4, Ascl2 and Lgr5) and of secretory cell markers (Muc2, Lyz1, and Dclk1) in intestinal organoids treated as indicated. IFN γ used at 0.2ng/ml and Ruxolitinib at 10 μ M. n = 4 mice per group were analyzed. Error bars represent the SD. P value was calculated by Welch's t test.

f) qRT-PCR analysis of MHCII genes, stem and secretory cell marker genes expression in intestinal organoids treated as indicated. IFN γ used at 0.2 ng/ml and Baricitinib at 2 μ M. n = 4 mice per group were analyzed. Error bars represent the SD. P value was calculated by Welch's t test.

Supplementary Tables:

Primer	Sequence
beta Actin_F	TCTTTGCAGCTCCTTCGTTG
beta Actin_R	ACGATGGAGGGGAATACAGC
H2-Aa_F	AGCCCAACACCCTCATCTGC
H2-Aa_R	ACCGTCTGCGACTGACTTGC
H2-Eb1-F	GCGGAGAGTTGAGCCTACG
H2-Eb1-R	ACCATCTGACTTCAATGTTGCC
H2-Ab1-F	GAGATCCTGGAGCGAACG
H2-Ab1-R	AGGGAGATGACGACATTGG
H2-DMb_F	GTCCTCAGTCTGCACTGTATG
H2-DMb_R	CAGCACCCCAAATTCACAG
CD74_F	GCTCCACCTAAAGAGCCACT
CD74_R	GGGTGACTTGACCCAGTTCC
Olfm4_F	CAGCCACTTTCCAATTTCACTG
Olfm4_R	GCTGGACATACTCCTTCACCTTA
Ascl2_F	AAGCACACCTTGACTGGTACG
Ascl2_R	AAGTGGACGTTTGCACCTTCA
Lgr5_F	CAGGTCAATACCGGAGCGAG
Lgr5_R	GCGAGGCACCATTCAAAGTC
Chga_F	AGAGCAGAGGACCAGGAGCTA
Chga_R	TGAGGGGCAAAGGGGGTAAC
Lyz1_F	ATCGTTGTGAGTTGGCCAGAA
Lyz1_R	AGCAGAGCACTGCAATTGATCC
Muc2_F	TGGATCCTCCACGGCAATCC
Muc2_R	GCTGCCCTGCACTCAATGTC

Table S1. Primers for for Real-time qPCR. Related to Methods.

Dclk1_F	CTGGTAACGGAACTTCTCTGG
Dclk1_R	GTACACTCTGGATGGGAAGCA
Stat1_F	TCACAGTGGTTCGAGCTTCAG
Stat1_R	GCAAACGAGACATCATAGGCA
Wars_F	AAAGCCAGCGAGGATTTTGTG
Wars_R	AGCTCTTTGTCAATTTTGCTGC

Table S2. Table of Material used. Related to Methods and Materials.

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Rabbit monoclonal anti-EpCAM (EPR20533-63)	Abcam	Cat# ab221552
CD326 (EpCAM) Monoclonal Antibody (G8.8), PE-	Thermo Fisher	Cat# 25-5791-80;
Cyanine7, eBioscience™	Scientific	RRID:AB_1724047
Stat1 Antibody	Cell Signaling	Cat# 9172,
	Technology	RRID:AB_2198300
Rabbit Normal igg Control antibody, Unconjugated	Millipore	Cat# 12-370,
		RRID:AB_145841
Rat monoclonal anti-Mouse MHC Class II (I-A) (NIMR-	Thermo Fisher	Cat# 12-5322-81;
4), PE	Scientific	RRID:AB_465930
Alexa Fluor 488 donkey anti-rabbit IgG (H+L)	Thermo Fisher	Cat# A21206;
	Scientific	RRID:AB_2535792
Alexa Fluor 568 goat anti-rat IgG (H+L)	Thermo Fisher	Cat# A11077;
	Scientific	RRID:AB_2534121
Olfm4 (D6Y5A) XP® Rabbit mAb (Mouse Specific) #39141	Cell Signaling	Cat# 39141,
antibody	Technology	RRID:AB_2650511
MUC2 antibody	Abcam	Cat# ab90007,
		RRID:AB_10713220
Rabbit Anti-Chromogranin A Polyclonal Antibody,	Abcam	Cat# ab15160,
Unconjugated		RRID:AB_301704
TruStain FcX(TM) (anti-mouse CD16/32) antibody	BioLegend	Cat# 101319,
		RRID:AB_1574973
FITC anti-mouse CD45 antibody	BioLegend	Cat# 103108,
		RRID:AB_312973
TotalSeq(TM)-A0301 anti-mouse Hashtag 1 antibody	BioLegend	Cat# 155801,
		RRID:AB_2750032
TotalSeq(TM)-A0302 anti-mouse Hashtag 2 antibody	BioLegend	Cat# 155803,
		RRID:AB_2750033
TotalSeq(TM)-A0303 anti-mouse Hashtag 3 antibody	BioLegend	Cat# 155805,
		RRID:AB_2750034

TotalSeq(TM)-A0304 anti-mouse Hashtag 4 antibody	BioLegend	Cat# 155807,
	Ū	RRID:AB_2750035
TotalSeq(TM)-A0305 anti-mouse Hashtag 5 antibody	BioLegend	Cat# 155809,
	Ū	RRID:AB_2750036
TotalSeq(TM)-A0306 anti-mouse Hashtag 6 antibody	BioLegend	Cat# 155811,
	Ū	RRID:AB_2750037
TotalSeq(TM)-A0307 anti-mouse Hashtag 7 antibody	BioLegend	Cat# 155813,
	0	RRID:AB_2750039
TotalSeq(TM)-A0308 anti-mouse Hashtag 8 antibody	BioLegend	Cat# 155815,
		RRID:AB_2750040
TotalSeq(TM)-A0309 anti-mouse Hashtag 9 antibody	BioLegend	Cat# 155817,
	U U	RRID:AB_2750042
TotalSeq(TM)-A0310 anti-mouse Hashtag 10 antibody	BioLegend	Cat# 155819,
	Ū	RRID:AB_2750043
TotalSeq(TM)-A0311 anti-mouse Hashtag 11 antibody	BioLegend	Cat# 155821,
		RRID:AB_2750136
TotalSeq(TM)-A0312 anti-mouse Hashtag 12 antibody	BioLegend	Cat# 155823,
	U U	RRID:AB_2750137
InVivoMab anti-mouse IFNy antibody	Bio X Cell	Cat# BE0055,
		RRID:AB_1107694
InVivoMab rat IgG1 isotype control (anti-HRP) antibody	Bio X Cell	Cat# BE0088,
		RRID:AB_1107775
Qiazol Lysis Reagent	Qiagen	Cat# 79306
TrypLE Express Enzyme	Thermo Fisher Scientific	Cat# 12604021
OCT Q PATH® Mounting Media for Cryotomy	VWR	Cat# 00411243
DNase I grade II, f. bov. pancreas	Sigma-Aldrich	Cat# 10104159001
Y27632	Abcam	Cat# ab120129
DAPI	Sigma-Aldrich	Cat# D9542
Matrigel® Growth Factor Reduced (GFR) Basement	Corning	Cat# 35623
Membrane Matrix		0
Recombinant Murine EGF	Preprotech	Cat# 315-09
Recombinant Murine Noggin	Preprotech	Cat# 250-38
Recombinant Human R-Spondin-1	Preprotech	Cat# 120-38
Recombinant Murine IFN-y	Preprotech	Cat# 315-05
	Sigma-Aldrich	Cat# P1644
Ruxolitinib (INCB018424)	Selleckchem	Cat# S1378
Baricitinib (LY3009104, INCB028050)	Selleckchem	Cat# S2851
Collagenase-D	Merck	Cat# 11088866001
Sonicated Salmon Sperm DNA	Agilent Technologies	Cat# 201190
ZR-Duet™ DNA/RNA MiniPrep Plus Kit	Zymo Research	Cat# D7003
Ribo-Zero™ Gold Kit H/M/R Kit	illumina	Cat# MRZG12324
TruSeq [™] RNA Library Preparation Kit v2	illumina	Cat# RS-122-2001
Chromium [™] Single Cell 3' Library & Gel Bead Kit v2	10X Genomics	Cat# PN-120237
Chromium™ Single Cell A Chip Kit	10X Genomics	Cat# PN-120236
Dynabeads™ MyOne™ Silane	Thermo Fisher	Cat# 37002D
iScript IM cDNA Synthesis Kit	Scientific Bio-Rad Laboratoriac	Cat# 1709901
	DID-ITAU LADUIALUII25	Jai# 1700091

SYBR GreenER™ qPCR SuperMix for iCycler®	Thermo Fisher	Cat# 11761500
Instrument	Scientific	
QIAquick PCR Purification Kit	Qiagen	Cat# 2810
Qubit® dsDNA HS Assay Kit	Thermo Fisher	Cat# Q32854
	Scientific	
Qubit® RNA HS Assay Kit	Thermo Fisher	Cat# Q32855
	Scientific	
Standard Sensitivity RNA Analysis Kit (15nt)	Agilent	Cat# DNF-471-0500
High Sensitivity RNA Analysis Kit (15nt)	Agilent	Cat# DNF-472-0500
Dynabeads [™] Protein G for Immunoprecipitation	Thermo Fisher	Cat# 10003D
	Scientific	
Agencourt AMPure XP	Beckman Coulter	Cat# A63881
Apoptosis detection Kit	BD Bioscience	Cat# 556547
BrdU flow kit	BD Bioscience	Cat# 559619