Basal activity of mGlu2–mGlu3 measured by IP accumulation assay											
W	T/mutanta		Basal activit	ty ^a	n ^c	Ex	Expression ^d				
••	1/mutants		% of WT ^b	•	11	%	% of WT ^b				
	WT		100		23		100				
WT+	LY341495		$38 \pm 3***$:	7		/				
	E604 ^{2.37} W		115 ± 7		7	9	99 ± 13				
	G611 ^{2.44} W		$135 \pm 6*$		7		94 ± 8				
	L615 ^{2.48} W		130 ± 5		8	8	38 ± 10				
	A630 ^{3.27} W		$159 \pm 11**$	*	7	1	100 ± 14				
	T633 ^{3.30} W		$162 \pm 15^{**}$	*	6	(69 ± 11				
mGlu2	L637 ^{3.34} W		$135 \pm 7*$		7		58 ± 6				
monuz	S678 ^{4.31} W		$143 \pm 7*$		7	87					
	A681 ^{4.34} W		$135 \pm 8*$		7	8	39 ± 20				
	L684 ^{4.37} W		$144 \pm 7**$		8		82 ± 8				
	S688 ^{4.41} W		$150 \pm 15*$	*	6	8	33 ± 17				
	V695 ^{4.48} W		109 ± 13		7		78 ± 12				
	V699 ^{4.52} W		153 ± 8***	*	9		82 ± 8				
	F598 ^{1.61} A		$141 \pm 16*$		7		73 ± 9				
	Y616 ^{2.40} A		115 ± 7		7	1	124 ± 9				
	F620 ^{2.44} A		133 ± 10		6	1	27 ± 19				
	$L624^{2.48}W$		$142 \pm 9*$		7	1	26 ± 11				
	$C627^{2.51}W$		$149 \pm 10^{**}$	*	6	1	22 ± 14				
	F631 ^{2.55} A		$139 \pm 11*$		7	14	$42 \pm 11*$				
mGlu3	V639 ^{3.27} W		$150 \pm 13^{**}$	*	5	1	18 ± 14				
liidius	L643 ^{3.31} W		$144 \pm 11*$	*	7	1	27 ± 13				
	L646 ^{3.34} W		$155 \pm 11**$	*	8	1	130 ± 8				
	S650 ^{3.38} W		$138 \pm 4*$		7	1	06 ± 12				
	$V701^{4.45}W$		128 ± 7		8	1	103 ± 15				
	S686 ^{4.30} W		131 ± 13		5	1	14 ± 24				
	F690 ^{4.34} A		$170 \pm 7^{***}$	*	5	1	47 ± 16				
	G694 ^{4.38} W		$163 \pm 9^{***}$	*	7	1	100 ± 11				
		(Glutamate-ind	luced Gi activation of	mGlu2-mGlu3						
WT/mi	utants ^g	EC50 (uM)	EC50	pEC ₅₀	E_{\max}^{f}	n ^c	Expression ^d				
			ratio	mean \pm s.e.m. ^b	% of WT ^b		% of WT ^b				
W	Т	4.4	1	5.36 ± 0.06	100 ± 3	20	100				
mGlu2 ^x -	-mGlu3	17	4	4.76 ± 0.51	$19 \pm 4^{***}$	10	$56 \pm 5*$				
mGlu2-	mGlu3 ^x	4.5	1	5.34 ± 0.02	97 ± 8	8	97 ± 12				
WT+NA	AM563	19	4	4.72 ± 0.21	90 ± 9	4	100 ± 0				
mGlu3+N	12 ^A – NAM563	78	18	4.11 ± 0.53	51 ± 15***	4	58 ± 12				
mGlu2 mGlu3	3C127A	2.5	1	5.61 ± 0.27	81 ± 9	8	125 ± 13				
mGlu2 ^{C121A/I693C} _ mGlu3 ^{C127A/Y743C}		2.8	1	5.56 ± 0.34	$44\pm6^{***}$	10	77 ± 22				
mGlu2 ^{C121A/A726C} - mGlu3 ^{C127A/L709C}		8.7	2	5.06 ± 0.48	$36 \pm 8***$	5	106 ± 11				
mGlu2 ^{C121A/V700C} _ mGlu3 ^{C127A/S735C}		6.2	1	5.21 ± 0.44	$42 \pm 8***$	6 112 ± 17					
mGlu2 ^{C12} mGlu3 ^C	21A/A630C	72	16	4.14 ± 1.04	21 ± 12***	3	65 ± 10				
W	T	13	1	4.90 ± 0.07	100 ± 3	16	100				
mGlu2 ^{YAD}	^{DA} -mGlu3	27	2	4.57 ± 0.20	105 ± 9	5	83 ± 7				
mGlu2-m	Glu3 ^{YADA}	122	10	$3.91 \pm 0.31 **$	$41 \pm 6^{***}$	4	90 ± 8				
mGlu2 ^{YADA} -mGlu3 ^X		26	2	4.59 ± 0.26	$70 \pm 8*$	4	$67 \pm 10^{**}$				

Table S2 IP accumulation and $G_{i}\xspace$ activation assays of wild-type and mutant mGlu heteroand homodimers

mGlu2 ⁹	ADA	r	nd no	ł	I	nd		nd	4	$31 \pm 4^{***}$				
mGlu2 ^x -mGlu3			r	nd no	ł	I	nd		nd	6		$78 \pm 7*$		
mGlu2'	$nGlu2^{X}-mGlu3^{D744N}$ 22					4.66	± 0.24		84 ± 8	4	$76 \pm 7*$			
mGlu2 ⁹	^K –mGlu3 ^{D6}	671G	2	24 17	7 3.	65 ±	0.20***		85 ± 8	4		94 ± 8		
				Glutam	ate-induced (Gi ac	tivation o	f mGlu	2–mGlu4					
			EG	EC EC	50	C50		E_{\max}^{f}	c	E	xpression ^d			
WI		EC50	(µM) rati	o ^d m	ean ∃	s.e.m. ^b		% of WT ^b	- n ^c	0	% of WT ^b			
	WT		6	.3 1	:	5.20 =			100 ± 5	10		100		
mGlu	4	1	1 2	. 4	4.96 ± 0.18			102 ± 9	5		41 ± 6**			
mGlu	12–mGlu4	x	r	nd no	1	nd			nd	5		97 ± 19		
mGlu	WT	x	1	13 1	4	4.88 =			100 ± 2 12 + 4***	17		100 75 ± 0		
mGlu2 ⁰	14 ^X	1	12 3 38 1() 3	4.38 = 3.86 ±			$13 \pm 4 \cdots$ 38 + 5***	7		73 ± 9 82 + 7			
mGlu2 [№]	^{N7358} –mGlu	14 ^x	3	61 28	s 3.	.44 ±	0.47**		$33 \pm 7***$	6	32 ± 7 72 ± 8			
Glutamate/ADX88178-induced Gi activation of mGlu2-mGlu4														
				ADX88178	1				Glu	tamate				
WT	mutante	FC	FC	nEC 60	Ff		FC	FC	nFCso	<i>E</i> mu ^f		Expression ^d		
•• 1/	mutants	(uM)	ratio ^d	$mean + s e m^{b}$	% of WT ^b	n ^c	EC50 (µM)	ratio ^d	$mean + s e m^b$	% of WT ^b	- n ^c	% of WT ^b		
	WT	2.0	1	5.70 ± 0.07	100 ± 3	18	13	1	4.88 ± 0.55	100 ± 2	17	100		
	W5671.39	2.0	nd	0.70 ± 0.07	100±5	5	31	2	4.00 ± 0.00	$55 \pm 10***$	5	27 + 5***		
	0.5701 42x	A liu	11u	11u	10 IIU	5	51	2	4.31 ± 0.44	105 + 5	5	21 ± 3		
	G5/0***	W 4./	2	5.33 ± 0.46	$45 \pm 10^{***}$	5 2	10	1	5.00 ± 0.12	105 ± 5	5	81 ± 7		
mGlu2	1//2 ^{0.49} F	A nd	nd	nd	nd	5	13	1	4.89 ± 0.12	88 ± 5	5	$39 \pm 4^*$		
	1792750	W nd	nd	na 4 70 + 0 74	nd	5	10	1	5.00 ± 0.12	88 ± 5	5	71 ± 8		
	V /96 ^{7,34}	W 16	8	4.79 ± 0.74	38 ± 15***	5	19	1	4.73 ± 0.17	104 ± 8	5	84 ± 8		
	S/9//35/	N 0.99	0.5	6.01 ± 0.19	113 ± 9	5	24	2	4.63 ± 0.13	109 ± 6	5	110 ± 14		
	L800 ^{7,38} /	A nd	nd	nd	nd	4	25	2	4.61 ± 0.20	99 ± 8	4	87±16		
	1771°.487	A 17	8	4.78 ± 0.38	64 ± 14	5	14	1	4.85 ± 0.23	110 ± 11	3	132 ± 34		
	L7/40.517	A 18	5 9	4.75 ± 0.28	83 ± 13	5	17	1	4.76 ± 0.20	$135 \pm 12^*$	3	$15/\pm 5^*$		
	A7750.52	W 2.4	1	5.63 ± 0.56	47 ± 12	5	22	2	4.66 ± 0.22	101 ± 9	4	106 ± 23		
	P//80.55	N 2.6	1	5.59 ± 0.24	70 ± 8	5	32	2	4.50 ± 0.36	90 ± 13	4	64 ± 6		
	W587 ^{1.39}	A 2.2	1	5.66 ± 0.48	$44 \pm 10^{*}$	5	27	2	4.57 ± 0.24	82 ± 8	3	82 ± 40		
	L590 ^{1,42}	A 4.4	2	5.35 ± 0.35	84 ± 14	6	16	1	4.79 ± 0.19	115 ± 9	5	119 ± 21		
	V/9/0.49	A 4.0	2	5.39 ± 0.54	62 ± 16	3	26	2	4.59 ± 0.50	$7/4 \pm 15$	4	57 ± 18		
	1820/30	N 2.3	1	5.64 ± 0.59	49 ± 13*	4	14	1	4.85 ± 0.25	108 ± 12	4	76 ± 4		
	V824 ^{7,34} V	W 6.2	3	5.21 ± 0.67	38 ± 12***	4	20	1	4.71 ± 0.29	91 ± 11	4	74 ± 15		
mGlu4	\$825 ^{7,35}	N 7.8	4	5.11 ± 0.47	$62 \pm 14^*$	6	28	2	4.55 ± 0.11	94 ± 4	4	88 ± 17		
	L8287387	A 2.9	1	5.53 ± 0.28	59 ± 8*	5	17	1	4.78 ± 0.21	122 ± 11	4	103 ± 19		
	1796 ^{0.48}	A 4.0	2	5.39 ± 0.54	37 ± 9***	5	29	2	4.54 ± 0.17	91 ± 7	5	113 ± 20		
	L799 ^{0.51}	A 5.5	3	5.26 ± 0.27	78 ± 10	5	16	1	4.78 ± 0.14	102 ± 6	5	107 ± 20		
	A800 ^{0.52}	W nd	nd	nd	nd	4	48	4	4.32 ± 0.25	84 ± 9	3	87 ± 21		
	1802°.54V	V nd	nd	nd	nd	5	32	2	4.49 ± 0.13	112 ± 6	5	$170 \pm 6^{**}$		
P803 ^{6.55} W		N nd	nd	nd	nd	5	21	2	4.68 ± 0.12	92 ± 5	5	101 ± 13		
				PAM	l-induced G _i a	activ	ation of m	nGlu2–	mGlu4					
ADX88178									JNJ-4	0411813				
Muta	nts ^g	EC ₅₀	EC ₅₀	pEC50	E_{\max}^{f}	- n ^c	EC ₅₀	EC ₅₀	pEC ₅₀	E_{\max}^{f}	- n ^c	Expression ^d		
		(µM)	ratio	mean \pm s.e.m. ^b	% of WT ^b		(µM)	ratio	mean \pm s.e.m. ^b	% of WT ^b		% of WT ^b		
W	Т	2.0	1	5.70 ± 0.07	100 ± 3	18	6.1	1	5.22 ± 0.16	100 ± 9	9	100		
mGlu2 ^x -	-mGlu4	2.1	1	5.67 ± 0.19	109 ± 10	7	nd	nd	nd	nd	9	$54 \pm 15*$		
mGlu2-1	mGlu4 ^x	nd	nd	nd	nd	7	5.7	1	5.24 ± 0.25	110 ± 17	9	84 ± 12		
				Glutar	nate/PAM-in	duce	d G _i activ	ation o	f mGlu4					
		CL				VOO	170		N/T	0264770				

	(Glutamate			ADX88178	3	VU0364770				Expressi-
WT/	EC., EC.,	pEC ₅₀	E_{\max}^{f}	EC., EC.,	pEC ₅₀	E_{\max}^{f}	EC. EC.	pEC50	E_{\max}^{f}	n ^c	on ^d
mutants	(μM) ratio ^d	mean ± s.e.m. ^b	% of WT ^b	(μM) ratio ^d	mean ± s.e.m. ^b	$\%$ of WT^{b}	(μM) ratio ^d	mean ± s.e.m. ^b	% of WT ^b		% of WT ^b

WT	24	1	4.62 ± 0.11	100 ± 4	0.65	1	6.19 ± 0.08	100 ± 3	27	1	4.57 ± 0.13	100 ± 7	7	100
I796 ^{6.48} A	166	7	$3.78\pm0.19*$	80 ± 7	nd	nd	nd	nd	nd	nd	nd	nd	5	115 ± 32
A800 ^{6.52} W	57	2	4.24 ± 0.21	76 ± 7	nd	nd	nd	nd	nd	nd	nd	nd	7	$29\pm6\texttt{*}$
$S825^{7.35}W$	83	3	4.08 ± 0.19	86 ± 8	nd	nd	nd	nd	nd	nd	nd	nd	6	$44\pm4\texttt{*}$

^aThe basal activity was calculated by subtracting the IP production measured in the control ($G\alpha_{qi9}$, EAAT1, and empty PTT5 vector) for the wild-type (WT) heterodimer and all the mutants, and is presented as percent of WT activity.

^bData are shown as mean \pm s.e.m. from at least three independent experiments. nd (not determined) refers to data where a robust concentration response curve could not be established within the concentration range tested. **P*<0.05, ***P*<0.001, ****P*<0.0001 by one-way ANOVA followed by Dunnett's post-test compared to the response of WT.

^cSample size, the number of independent experiments performed in technical duplicate.

^dProtein expression levels of the constructs at the cell surface were determined in parallel by flow cytometry with an anti-Flag antibody (Sigma) and reported as percent compared to the WT from at least three independent measurements performed in duplicate.

^eThe EC_{50} ratio (EC_{50} (mutant)/ EC_{50} (WT)) represents the shift between the WT and mutant curves, and characterizes the effect of the mutations on G_i activation.

^fThe maximal response is reported as a percentage of the maximal effect at the WT.

^gThe 'X' indicates that the G protein coupling of the subunit was blocked by introducing a mutation in ICL3 (mGlu2, F756S; mGlu3, F765S; mGlu4, F781S).