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A Illustration of Prior Model

We illustrate the effect of using both the multiplicative gamma process shrinkage prior
on A, which encourages increasing shrinkage with each factor, and the Indian Buffet
Process (IBP) prior on A, which encourages sparsity in the number of active factors,
using a toy example. In particular, we simulate A and 4 under their priors in a setting
with 60 features and 4 studies, similar to Scenarios 1 and 2 of the simulation studies.
We consider two sets of hyperparameter values for each of A and A. For A, we consider
(o, B) = (3,1), which encourages a smaller number of factors, and (a, §) = (6, 1), which
encourages a larger number of factors. For A, we consider ao = 3.1, which encourages
a slower rate of increasing shrinkage, and as = 4.1, which encourages a faster rate of
increasing shrinkage; in both cases, we consider a; = 2.1,b1 = 1,b0 =1, and v = 3.

Figure 1 plots the Frobenius norms of the columns of the loadings matrix produced
under each combination of hyperparameter values. The norm of column 7 is computed
using the ith column of A if A indicates that this is an active factor, and otherwise is
set to 0. These results show that increasing the degree of sparsity in the IBP prior on
A (in this case, when a = 3) yields a faster rate of increasing shrinkage. The properties
of these two priors enhance one another: the IBP prior increases the effective rate of
shrinkage, which in turn encourages greater amounts of signal in a smaller number of
factors.
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Figure 1: Frobenius norms of factor loadings when A and A are generated under their
priors, using two sets of hyperparameter values each.

B Gibbs Sampling Algorithm for Posterior Inference
The Gibbs sampling algorithm for posterior inference with our model is as follows:

1. We follow Knowles and Ghahramani (2007) to update each entry of A. For s
ranging from 1 to S, for k ranging from S + 1 to K, set Az = 1 with probability
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my,—s denotes the sum of column £ of A, subtracting the current value of Agy.
Further, A* has the kth diagonal element of A equal to 0 (i.e. Ay = 0). New
elements of l;; are sampled for each i, s as needed if Ay, = 1 (see step 4 for more
details).

. Again as in Knowles and Ghahramani (2007) and as discussed by Doshi-Velez et al.
(2009), we use a Metropolis-Hastings step to allow new factors to be added. For s
ranging from 1 to S, to sample the number of new factors kyeyw for study s, sample
knew ~ Pois (5%&) and the corresponding new eclements wnew, Onew, and lg new

from their respective priors outlined in the previous section. Then accept all these
samples with probability min(1,r), for  equal to
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This is equivalent to the ratio of the likelihoods with and without the proposed

factors, with the new elements of A marginalized out. Here, we define Ap new as
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. To update the loadings matrix elements and the associated parameters in the next 4
steps, we follow the main ideas of Bhattacharya and Dunson (2011) and the multi-
study extension from De Vito et al. (2021). For p ranging from 1 to P, sample the
transpose of the pth row of the factor loadings matrix
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where [l is the ng x K matrix of latent factors across samples for study s, g’ is
the ns x 1 vector of values for feature p across samples for study s, and D, L=

diag(wp17i, . . ., WpK TK )



4. For s ranging from 1 to S, 7 ranging from 1 to ng, sample

Lis ~ N{(Ix + AAAT O TAA) AN ),
(Ix + A,LATEIAA)T
This samples a K x 1 vector regardless of how many factors are shared by study
s. If the kth factor is not shared by the study, then the kth diagonal element of
A will be 0; as a result, this sampling step effectively draws the corresponding

element of l;5 from the prior, and that element of l;; will not affect the likelihood
due to multiplication by A,.

5. For p ranging from 1 to P, for k ranging from 1 to K, sample
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6. Sample 61 ~ I <a1 + %, 1+ %Zgzl 7',51) Zle wpkA]%k), where 7']51) represents %

7. For [ ranging from 2 to K, sample
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8. For s ranging from 1 to S, for p ranging from 1 to P, sample
Ve ~ (aw + by + = Z A,,Aslis)2> :

For the extension of Tetris where we assume the study labels z; for each sample are
not known, we add an additional step to the above algorithm. In particular, we define
L;s equal to the density of x; under A/ (O,AASAT + U,). Then z is sampled from a
categorical distribution with the probability of belonging to each study s proportional to
Lis.



C Computational Timing

In Table 1, we summarize the mean computational times for the main three steps of our
approach using ten runs for at least one setting from each simulation scenario. All runs
were carried out on a cluster computing node with one core. Specifically, these run times
are carried out on a high-performance computing server managed and supported by the
Dana-Farber Cancer Institute with 25 nodes, each with 385 Gb of memory and 40 cores

per socket.
. Step 1 Step 2 Step 3 Total
Scenario | 5| P ns | K (Mean Hours) | (Mean Hours) | (Mean Hours) | (Mean Hours)
1 60 10 10 0.24 1.71 0.05 2.00
2 4 | 60 10 9 0.25 1.90 0.06 2.21
3 16 | 60 10 20 1.84 9.46 0.23 11.53
4 3 | 370 | 34-50 | 8 1.76 0.15 0.25 2.16
4 6 | 370 | 11-32 | 11 7.84 3.71 0.52 12.07

Table 1: Mean computational runtimes for running the sampler (Step 1), computing the
point estimate of A (Step 2), and running the sampler conditional on this value (Step
3) based on ten runs for each listed setting. We describe the number of studies S, the
number of features P, the number of samples per study ns (the range is provided when
ns varies), and the ground-truth number of factors K.




D Additional Simulation Results
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Figure 2: RV coefficients for the full loading matrix covariance across varying sparsity,

data dimension, and number of partially shared factors.
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Figure 4: RV coefficients for study-specific covariances across varying sparsities and
numbers of partially shared factors in the p = ng setting.
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Figure 5: RV coefficients for study-specific covariances across varying sparsities and
numbers of partially shared factors in the p <« n, setting.
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Figure 6: Number of factors shared by each pair of studies ¢ and j, indicated by (4, ),
and the number of total factors belonging to study i, indicated by i, for the p = ng
simulations in Scenario 2. Estimated values are in black (with jitter, for visual clarity)
and ground-truth values are in red.
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Figure 7: Number of factors shared by each pair of studies i and j, indicated by (4, 7),
and the number of total factors belonging to study i, indicated by ¢, for the p < ng
simulations in Scenario 2. Estimated values are in black (with jitter, for visual clarity)
and ground-truth values are in red.
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Figure 8: RV coefficients for the full (left) and common (right) loading covariances for
the Scenario 3 simulation, which has 16 studies, across a range of sparsities and number
of partially shared factors.
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Figure 9: Number of factors shared by each pair of studies ¢ and j, indicated by (4, 7)

and the number of total factors belonging to study ¢, indicated by i, for the Scenario 3
simulations with no shared factors and 80% sparsity. Estimated values are in black (with

jitter, for visual clarity) and ground-truth values are in red.
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Figure 10: Number of factors shared by each pair of studies 7 and j, indicated by (4, 7),
and the number of total factors belonging to study ¢, indicated by i, for the Scenario 3
simulations with no shared factors and 50% sparsity. Estimated values are in black (with
jitter, for visual clarity) and ground-truth values are in red.
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Figure 11: Number of factors shared by each pair of studies 7 and j, indicated by (i, j),
and the number of total factors belonging to study ¢, indicated by i, for the Scenario 3
simulations with no shared factors and 20% sparsity. Estimated values are in black (with
jitter, for visual clarity) and ground-truth values are in red.
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Figure 12: Number of factors shared by each pair of studies 7 and j, indicated by (4, j),
and the number of total factors belonging to study ¢, indicated by i, for the Scenario 3
simulations with one shared factor and 80% sparsity. Estimated values are in black (with
jitter, for visual clarity) and ground-truth values are in red.
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Figure 13: Number of factors shared by each pair of studies 7 and j, indicated by (i, ),
and the number of total factors belonging to study ¢, indicated by i, for the Scenario 3
simulations with one shared factor and 50% sparsity. Estimated values are in black (with
jitter, for visual clarity) and ground-truth values are in red.
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Figure 14: Number of factors shared by each pair of studies ¢ and j, indicated by (4, )

and the number of total factors belonging to study ¢, indicated by i, for the Scenario 3
simulations with one shared factor and 20% sparsity. Estimated values are in black (with

jitter, for visual clarity) and ground-truth values are in red.
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Figure 15: RV coefficients for study-specific covariances for the Scenario 3 simulation in
the setting with one partially shared factor, across varying sparsities.
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Figure 16: RV coefficients for study-specific covariances for the Scenario 3 simulation in

the setting with no partially shared factors, across varying sparsities.
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E Zero-Factor Cases

As described in the main text, there were five simulation runs resulting in Tetris identi-
fying a solution with zero factors in most or all of the studies. We examine these runs
here and analyze each with a likelihood ratio test to assess the extent to which these re-
alizations of the simulated datasets could be plausibly explained with a noise-only model
instead of the full factor model. Here, we consider the full factor model to be the actual
data-generating distribution

X~ MVYN(0,AA;A +Ty)
for each s, and the noise-only model is described by
X5 ~ MVN(0,%7%),

where W% is the matrix consisting only of the diagonal elements of AA;A + ¥,. The
latter corresponds to the model implied by assuming that no columns of A contribute to
study s, and all variance arises from a diagonal noise matrix. We perform the likelihood
ratio test by computing the log-likelihood difference between the two models over all
studies estimated to have zero factors, multiplying this difference by —2 to obtain the
likelihood ratio test statistic, and computing a p-value by comparing this test statistic
to a chi-squared distribution with (S + P)K degrees of freedom where S is the number
of studies estimated to have zero factors.

It should be noted that we use the term “likelihood ratio test” loosely here. To truly
be a likelihood ratio test, we should estimate the maximum likelihood parameters of both
models and then compute the likelihood ratio when conditioning on these parameters.
Instead, we are simply using the ground-truth parameters directly (or in the case of the
noise-only model, a function of the ground-truth parameters). Hence, the chi-squared
distribution is not technically valid as the asymptotic distribution of this test statistic.
Nevertheless, we use this only as a simple measure to illustrate our point of how plausible
it is for the data to be explained with a noise-only model compared to the data-generating,
full-factor model.

Details of the five runs resulting in zero factors for most or all of the studies and their
results in the above test are reported in Table 2. We find that the noise-only model may
explain the realizations of the simulated data reasonably as well as the full factor model
in the majority (three out of five) of the runs.
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Nu;?f;i;;g:;?::lly Dimensionality | Sparsity | Log-Likelihood Ratio | p-value
0 p=ns 0.80 -755 0.00
2 p << ng 0.80 -26 1.00
2 p << ng 0.80 -53 0.89
0 p=ng 0.80 -804 0.00
1 p << ng 0.80 -45 0.49

Table 2: Log-likelihood ratio between a noise-only model and the full factor model, and
the corresponding p-value, for each simulation run that resulted in a zero-factor solution
for most or all of the studies.

F Pathway Abbreviations

Reactome Pathway Name Abbreviated Name
Nonsense Mediated Decay Enhanced by the Exon Junction Complex Nonsense Mediated Decay
Influenza Viral RNA Transcription and Replication Influenza Transcription and Replication
Influenza Life Cycle Influenza Life Cycle
Metabolism of RNA RNA Metabolism
Metabolism of mRNA mRNA Metabolism

3 UTR Mediated Translational Regulation 3 UTR Mediated

Peptide Chain Elongation Peptide Chain Elongation
SRP Dependent Cotranslational Protein Targeting to Membrane SRP Dependent Protein Targeting
Translation Translation

Cytokine Signaling in Immune System Cytokine Signaling
Adaptive Immune System Adaptive Immune System
Immune System Immune System

Interferon Signaling Interferon Signaling
Interferon Gamma Signaling Interferon Gamma Signaling
Costimulation by the CD28 Family CD28 Family Costimulation
PD1 Signaling PD1 Signaling

Generation of Second Messenger Molecules Second Messenger Molecules
Translocation of ZAP 70 to Immunological Synapse ZAP 70 Translocation
Phosphorylation of CD3 and TCR Zeta Chains CD3 and TCR Zeta Chains
Downstream TCR Signaling Downstream TCR Signaling
TCR Signaling TCR Signaling

MHC Class II Antigen Presentation MHC Class IT Antigen

Table 3: Pathway abbreviations used in main text.
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G Additional Data Analysis Results
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Figure 17: Visual summary of sharing pattern (top) and factor loadings (middle) for
the analysis by genotype with BMSFA, and the congruence coefficients between each of
BMSFA'’s factors and each of Tetris’s factors (bottom).
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Figure 18: Factor loadings (top) for the analysis by genotype with PFA, and the congru-
ence cocfficients between each of PFA’s factors and cach of Tetris’s factors (bottom).
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Figure 19: Visual summary of sharing pattern (top) and factor loadings (middle) for the
analysis by genotype and affected status with BMSFA, and the congruence coefficients
between ecach of BMSFA’s factors and ecach of Tetris’s factors (bottom).
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Figure 20: Visual summary of factor loadings (top) for the analysis by genotype and
affected status with PFA, and the congruence coefficients between each of PFA’s factors

and cach of Tetris’s factors (bottom).
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Figure 21: (A) Correspondence between the six-group labels and the modal clustering
estimated by the extension of Tetris. (B) The first two PCs, colored by the six-group
labels.
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