Supplemental Appendix

Neuregulin-1ß improves uremic cardiomyopathy and renal dysfunction in rats

Márta Sárközy MD PhD^{a,b}, Simon Watzinger MSc^c, Zsuzsanna Z.A. Kovács MD PhD^{a,b}, Eylem Acar BSc^c, Fanni Márványkövi MD^{a,b}, Gergő Szűcs MD PhD^{a,b}, Gülsüm Yilmaz Lauber BSc^c, Zsolt Galla PharmD PhD^d, Andrea Siska MSc^e, Imre Földesi PharmD PhD^e, Attila Fintha MD PhD^f, András Kriston MSc^{g,h,i}, Ferenc Kovács MSc^{g,h,i}, Péter Horváth MSc PhD^{g,h,i}, Bence Kővári MD PhD^j, Gábor Cserni MD PhD DSc^j, Tibor Krenács MSc PhD DSc^f, Petra Lujza Szabó MSc PhD^c, Gábor Tamás Szabó MD PhD^c, Péter Monostori PharmD PhD^d, Karin Zins MD PhD^k, Dietmar Abraham MD PhD DSc^k, Tamás Csont MD PhD^{a,b}, Peter Pokreisz MSc PhD^c, Bruno K Podesser MD PhD DSc^c, Attila Kiss MSc PhD^{e#}

^aMEDICS Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary

^bInterdisciplinary Center of Excellence, University of Szeged, H-6720 Szeged, Hungary

^cLudwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, A-1090, Austria

^dMetabolic and Newborn Screening Laboratory, Department of Pediatrics, Albert Szent-Györgyi Medical School, University of Szeged, H-6720, Hungary

^eDepartment of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, H-6720, Hungary

^fDepartment of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, H-1085, Hungary

^gSynthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, Szeged H-6726, Hungary

^hSingle-Cell Technologies Ltd, Szeged, H-6726, Hungary

ⁱInstitute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland

^jDepartment of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged H-6720, Hungary ^kCenter for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria

[#]Corresponding author: Dr. Attila Kiss, e-mail: <u>attila.kiss@meduniwien.ac.at</u>; Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Währinger Gürtel 18-20, A-1090, Austria, Tel: 43 660 243 0903, Fax: 43 (0)1 40400 52290

Table of content

2
4
5
6
7
8
3
9
10
11
12
13
14

Supplemental Methods

Immunostainings for CD68-positive macrophages and type I collagen

Deparaffinized cardiac tissue sections were immunostained to detect CD68-positive macrophages and type I collagen (COL1). Briefly, dewaxed slides were incubated with monoclonal mouse anti-CD68 antibodies (1:100, ED1, Abcam, Cambridge, MA, USA), then sequentially detected with biotinylated goat anti-mouse secondary antibody (Vector Laboratories, Burlingame, CA, USA) and horseradish peroxidase (HRP) conjugated streptavidin (Dako, Glostrup, Denmark), and finally visualized using 3,3'-diaminobenzidine/hydrogen peroxidase chromogen substrate kit (DAB; Vector Laboratories, Burlingame, CA, USA).²³ Images were captured by a Nikon Eclipse 80i (Tokyo, Japan) microscope. Type 1 collagen (COL1) was detected using a Ventana Benchmark Ultra automated immunostainer (Roche Diagnostics, Tucson, AR, USA). After antigen retrieval was done in a high pH CC1 buffer for 40 min, and incubation with anti-human type-I collagen IgG (1:1000, #PA5- 95137, ThermoFisher/Invitrogen, Waltham, MA, USA) for 60 min, the detection was performed using the Ultraview system for 40 min and visualized with DAB/hydrogen peroxide kit.19 Immunostained slides were counterstained with hematoxylin, dehydrated, mounted using DPX (Merck, Darmstadt, Germany), and digitalized with a Pannoramic 250 scanner (3DHistech, Budapest, Hungary).

SiRNA interference with ErbB3

SiRNA interference with ErbB3 was applied to clarify the receptor's role in response to TGF- β and rhNRG-1 β stimuli in HVCFs. Lyophilized siRNA for ErbB3 was diluted under aseptic conditions to a final concentration of 5 nmol in 5x siRNA buffer (Dharmacon). To evaluate the ideal concentrations of both siRNA and transfection agent (Dharmacon), trial experiments with 6 groups of different concentrations were performed using the fluorescent control siRNA (Supplementary Table 6). The most efficient mixture with the highest fluorescence consisting of 2 µl transfection agent and 5 µl siRNA was used in each well in 24-well plates. 480 µl of antibiotic-free growth medium were added and again mixed carefully. If mediators were applied, they were added to this antibiotic-free growth medium. The final solution was then added to the respective well and incubated for 24 hours.

	,		
Acel	rat	CCCGGCAACTTTTCTGCTGAC	GATGTTGGTGTGTGCGCC
Acta2	rat	ACCATCGGGAATGAACGCTT	CTGTCAGCAATGCCTGGGTA
Agtrl	rat	TGCCTCCTCGCCAATGATTC	CCAGACGTCCTGTCACTCG
Col 1	rat	TGTTTGGGTCATTTCCACATGC	AGCACAAAGCAGTTTTTCCCC
Col 3	rat	GGCTGAGTTTTATGACGGGC	GAGCGAGAAGTAGCCAGCTC
Erbb2	rat	TCAGATTGCCAAGGGGATG	AACCGGCGTCTGAGAATAG
Erbb3	rat	CGAGATGGGCAACTCTCAGGC	AGGTTACCCATGACCACCTCACAC
Erbb4	rat	GGAATATTTGGTCCCCAGGCTTC	GAGGAGGGCTGTGTCCAATTTCA
Gapdh	rat	GACAGTCAGCCGCATCTTCT	GCGCCCAATACGACCAAATC
Il6	rat	TGAACTCCTTCTCCACAAGCG	TGGAATCTTCTCCTGGGGGGTA
Mmp2	rat	AATGCCATCCCCGATAACC	TCCAAACTTCACGCTCTTCAG
Mmp9	rat	AACCAATCTCACCGACAGGC	CACCACCAACACACCCCTAA
Acta2	human	GCAGCTCCAGCTATGTGTGAAG	TTGTCCCATTCCCACCATCACC
Coll	human	AGTCGAGGGCCAAGACGAAG	ACAACACCTTGCCGTTGTCG
Col3	human	GTGGACGTTGGCCCTGTTTG	TGTCGGTCACTTGCACTGGT
Erbb3	human	GGCAACTCTCAGGCAGGTAA	CTGAGACCGTGCCCATACC
Loxl	human	ACCTCATTATCACCTTCCCC	TGTCTGTCTGTCTGTCTGTC
Gapdh	mouse	ACTCCCACTCTTCCACCTTC	TCTTGCTCAGTGTCCTTGC
Nox2	mouse	CGGAGGGGGCTATTCAATGCT	CACTGGCTGTACCAAAGGGT
Nox4	mouse	TTTAGCATTCCCTGCAGCCTC	AAAGGTTCATCTTGCCGCCCA
Nppa	mouse	GGTACTGGGTCCATTCCTGAG	GACCTCATCTTCTACCGGCAT
Nppb	mouse	GGGAGAACACGGCATCATTG	TCCCAGAGGATAGGAGTGACC
Tnf	mouse	CCACGTCGTAGCAAACCACC	GTACAACCCATCGGCTGGCA

Supplemental Table 1 Primer sequences used for RT-qPCR

Parameter (unit)	week 4			week 10		
r arameter (unit)	Sham	CKD	CKD+rhNRG-1β	Sham	CKD	CKD+rhNRG-1β
Urine volume (mL)	27±1.9	36±3.1	31±2.7	29±4.2	31±3	34±3.6
Serum carbamide (mmol/L)	5.6±0.2	15±1.4*	13±0.5*	7.2±0.36	18±3.4*	14±1.1*
Serum creatinine (µmol/L)	30±1.8	67±4.6*	57±1.6*#	25±1.3	78±11* ^{\$}	47±5.4* [#]
Urine creatinine (mmol/L)	4844±258	3467±353*	4177±313	5655±603	4649±495 ^{\$}	4790±548
Urine protein (mg/dL)	77±8	131±27	110±15	61±10	371±90* ^{\$}	191±44
Creatinine clearance (mL/min)	2.94±0.14	1.28±0.11*	1.51±0.04*	$4.04{\pm}0.2^{\$}$	1.46±0.24*	2.5±0.44*
Serum total cholesterol (mmol/L)	$1.49{\pm}0.04$	2.21±0.16*	1.95±0.08*	1.31±0.08	2.60±0.29* ^{\$}	1.90±0.06*
Serum HDL-cholesterol (mmol/L)	1±0.04	1.59±0.13*	1.38±0.07*	$0.88{\pm}0.05$	1.73±0.2*	1.28±0.04*
Serum LDL-cholesterol (mmol/L)	0.33±0.03	$0.47 \pm 0.04*$	0.39±0.04	0.32±0.06	$0.69 \pm 0.09 *$	$0.47{\pm}0.04^{\#}$
Serum triglyceride (mmol/L)	0.93±0.14	0.73±0.1	0.92±0.16	0.54 ± 0.04	0.89±0.12*	0.76±0.07

Supplemental Table 2 The effect of NRG-1 treatment on serum and urine parameters at week 4 and the endpoint.

Values are presented as mean±SEM, *p < 0.05 vs. sham-operated group and #p < 0.05 vs. CKD group (n=7-10, one-way ANOVA, Holm-Sidak *post hoc* test), *p<0.05 vs. week 4 value in the same group (n=7-10, Repeated-measures two-way ANOVA, Holm-Sidak *post hoc* test). Creatinine clearance was calculated according to the standard formula (urine creatinine concentration $[\mu M] \times$ urine volume for 24 h [mL])/(serum creatinine concentration $[\mu M] \times 24 \times 60$ min). Sham: sham-operated group, CKD: chronic kidney disease group, CKD+rhNRG-1 β : recombinant human neuregulin-1 β -treated chronic kidney disease group. Supplemental Table 3 Left ventricular morphological and functional parameters assessed by transthoracic echocardiography at week 2, before the NRG-1 β treatment.

Domenation (unit)	week 2			
Parameter (unit)	Sham	CKD	CKD+rhNRG-1β	
Anterior wall thickness - systolic (mm)	3.03±0.13	3.20±0.09	$3.22{\pm}0.05$	
Anterior wall thickness - diastolic (mm)	1.69±0.09	1.83±0.06	$1.89{\pm}0.05$	
Inferior wall thickness - systolic (mm)	2.89±0.13	3.22±0.08	3.18±0.13	
Inferior wall thickness - diastolic (mm)	1.73±0.06	$1.82{\pm}0.04$	$1.66{\pm}0.04$	
Posterior wall thickness - systolic (mm)	3.14±0.17	3.36±0.09	3.4±0.11	
Posterior wall thickness - diastolic (mm)	1.71 ± 0.06	1.85 ± 0.06	1.88±0.09	
Septal wall thickness - systolic (mm)	3.19±0.11	3.29±0.11	3.25±0.03	
Septal wall thickness - diastolic (mm)	$1.78{\pm}0.07$	$2{\pm}0.08$	1.9±0.04	
Left ventricular end-diastolic diameter (mm) (cross-sectional)	7.23±0.12	6.81±0.12	6.65±0.19	
Left ventricular end-systolic diameter (mm) (cross-sectional)	3.72±0.20	2.88±0.14	2.59±0.18	
Heart rate (beats/min)	379±10	398±6	392±14	
Ejection fraction (%)	55±3	60±3	61±3	
E-velocity (m/s)	$1.07{\pm}0.05$	$1.02{\pm}0.04$	$1.08{\pm}0.05$	
E'-velocity (m/s)	0.04±0.003	0.04±0.002	0.04±0.003	
E/E'	29±2.41	25.92±1.46	28.28±2.41	

Values are presented as mean \pm SEM, *p < 0.05 vs. sham-operated group, and #p < 0.05 vs. CKD group (n=7-10, one-way ANOVA, Holm-Sidak *post hoc* test). Sham: sham-operated group, CKD: chronic kidney disease group, CKD+rhNRG-1 β : recombinant human neuregulin-1 β -treated chronic kidney disease group.

Domenton (unit)	Week 4			Week 10		
Parameter (unit)	Sham	CKD	CKD+rhNRG-1β	Sham	CKD	CKD+rhNRG-1β
Anterior wall thickness - systolic (mm)	3.06±0.1	3.1±0.05	3.19±0.08	2.94±0.12	3.79±0.2 ^{\$}	3.5±0.11
Anterior wall thickness - diastolic (mm)	1.75 ± 0.07	$1.84{\pm}0.05$	1.79±0.06	1.78 ± 0.08	2.41±0.16*\$	$1.93{\pm}0.08^{\#}$
Inferior wall thickness - systolic (mm)	3.26±0.15	3.51±0.22	3.51±0.15	2.93±0.13	3.77±0.20	3.45±0.14
Inferior wall thickness - diastolic (mm)	$1.89{\pm}0.07$	2.23±0.27	$1.94{\pm}0.08$	1.66±0.07	2.22±0.13*	$1.91{\pm}0.1^{\#}$
Posterior wall thickness - systolic (mm)	3.22±0.15	3.32±0.13	3.4±0,13	3.02±0.06	3.99±0.15* ^{\$}	3.57±0.15
Posterior wall thickness - diastolic (mm)	$1.92{\pm}0.08$	1.92±0.08	1.85±0.08	1.77±0.05	2.33±0.14* ^{\$}	2.08±0.08
Septal wall thickness - systolic (mm)	3.44±0.14	3.32±0.10	3.41±0.09	3.33±0.07	4.03±0.15* ^{\$}	3.62±0.13
Septal wall thickness - diastolic (mm)	1.94±0.11	$1.88{\pm}0.08$	1.9±0.08	1.89±0.04	2.40±0.11* ^{\$}	2.12±0.08 ^{#\$}
Left ventricular end-diastolic diameter (mm) (cross sectional)	7.09±0.31	6.59±0.22	7.02±0.20	7.51±0.18	6.50±0.18*	7.15±0.18 [#]
Left ventricular end-systolic diameter (mm) (cross sectional)	3.30±0.31	2.96±0.24	3.09±0.28	4.11±0.21	2.64±0.23	3.06±0.27
Heart rate (1/min)	390±12	391±8	379±9	358±19 ^{\$}	370±10 ^{\$}	368±14
Ejection fraction (%)	61±2	58±4	58±2	53±1 ^{\$}	56±2	54±1
E-velocity (m/s)	1.01±0.06	$1.04{\pm}0.04$	1.05±0.04	0.88±0.07	0.99±0.03	0.93±0.02
E'-velocity (m/s)	0.05±0.003	0.04 ± 0.001	0.04±0.003	0.050±0.0024	0.033±0.0016*\$	0.041±0.0030 [#]
E/E'	22.70±1.75	26.38±1.82	26.85±1.89	18.14±1.77	29.08±1.70*	23.56±1.95

Supplemental Table 4 Left ventricular morphological and functional parameters assessed by transthoracic echocardiography at week 4 and the endpoint.

Values are presented as mean±SEM, *p<0.05 vs. sham-operated group and #p<0.05 vs. CKD group (n=7-10, one-way ANOVA, Holm-Sidak *post hoc* test), ^{\$}p<0.05 vs. week 4 value in the same group (n=7-10, Repeated-measures two-way ANOVA, Holm-Sidak *post hoc* test). Sham: sham-operated group, CKD: chronic kidney disease group, CKD+rhNRG-1 β : recombinant human neuregulin-1 β -treated chronic kidney disease group.

Doromotor (unit)	Groups			
Farameter (unit)	Sham	CKD	CKD+rhNRG-1β	
Body weight (g)	446±17	444±9	452±6	
Tibia length (cm)	4.2±0.03	4.3±0.04	4.3±0.03	
Left ventricular weight (mg)	934±30	1037±32*	926±18 [#]	
Left kidney weight (mg)	1491±72	1669±97	1720±103*	
Lung weight (mg)	1676±88	1768±44	1740±49	

Supplemental Table 5 Body weight, tibia length, and organ weights at week 10

Values are presented as mean \pm SEM, *p < 0.05 vs. sham-operated group, and #p < 0.05 vs. CKD group (n=7-10, one-way ANOVA, Holm-Sidak *post hoc* test). Sham: sham-operated group, CKD: chronic kidney disease group, CKD+rhNRG-1 β : recombinant human neuregulin-1 β -treated chronic kidney disease group. Supplemental Table 6 Groups to evaluate ideal transfection mix and description of the siRNA transfection.

1	3	1
2	3	2
3	3	3
4	5	1
5	5	2
6	5	3

Supplemental Figure 1 Experimental setup. Blood: blood sampling, BP: blood pressure recording, CKD: chronic kidney disease, Echo: echocardiography, d: day, ELISA: enzyme-linked immunosorbent assay, LV: left ventricle, Metab. cage: metabolic cage, Op: operation, rhNRG-1β: recombinant human neuregulin-1β, RT-qPCR: reverse transcription-quantitative polymerase chain reaction.

Supplemental Figure 2 CKD substantially increased the renal expression of collagen. Representative images of collagen type 1 (COL1)-immunostained kidney samples (magnification 30x, scale bar: 50 μm). Sham: sham-operated group, CKD: chronic kidney disease group, CKD+rhNRG-1β: recombinant human neuregulin-1β-treated chronic kidney disease group.

Fig. S3

Supplemental Figure 3 The effects of rhNRG-1 β on the renal angiotensin-converting enzyme-1 (ACE1) activity in chronic kidney disease (CKD) after 10 weeks. Data are expressed as mean±SEM, n=8-10 replicates/group; one-way ANOVA, Tukey post hoc test. Sham: sham-operated group, CKD: chronic kidney disease group, CKD+rhNRG-1 β : recombinant human neuregulin-1 β -treated chronic kidney disease group.

Supplemental Figure 4 Immunohistochemical assessment have shown a reduced number of CD-68 positive macrophages in the cardiac tissue of CKD-rats following rhNRG-1β treatment. Representative images of CD68-positive macrophages (brown-stained cells) in left ventricular tissue section (objectives 20x and 40x, scale bar: 100 and 50 µm, respectively). Sham: sham-operated group, CKD: chronic kidney disease group, CKD+rhNRG-1β: recombinant human neuregulin-1β-treated chronic kidney disease group.

Fig. S5

Supplemental Figure 5 The effects of rhNRG-1 β on mRNA expressions of ErbB2-4 receptors in the kidney (A-C) and left ventricular samples (D-E). mRNA expressions of (A and D) *ErbB2*: human epidermal growth factor receptor (HER) 2; (B and E) *ErbB3*: human epidermal growth factor receptor (HER) 3; (C and F) and *ErbB4*: human epidermal growth factor receptor (HER) 4. Data are expressed as mean±SEM.; n=4-8, *p<0.05, one-way ANOVA, Tukey *post hoc* test. Sham: sham-operated group, CKD: chronic kidney disease group, CKD+rhNRG-1 β : recombinant human neuregulin-1 β -treated chronic kidney disease group.

Fig. S6

А

Supplemental Figure 6 Specific siRNA-based interaction with ErbB3 receptor transcripts counteracted the NRG1 β -mediated suppression of TGF- β -induced collagen expression in human ventricular cardiac fibroblasts. (A) Representative images of siRNA transfection in human ventricular cardiac fibroblasts. Cells

were treated with 3 μ L (Group 1-3) or 5 μ L of siRNA (5 nmol/L) in combination with 1 μ L (Group 1 and 4), 2 μ L (Group 2 and 5), or 3 μ L (Group 3 and 6) of transfection reagents. (B) The effect of siRNA-ErbB3 with/without TGF- β or/and rhNRG-1 β on Col 1 and Col 3 mRNA expression in human ventricular cardiac fibroblasts. Data are expressed as mean±SEM, n=4-8 replicates/group; *p<0.05, **p<0.01, and ***p<0.01, one-way ANOVA, Tukey post hoc test. Col 1: collagen 1; Col 3: collagen; rhNRG-1 β : recombinant human neuregulin-1 β ; TGF- β : Transforming growth factor-beta; siRNA-ErbB3: Small interfering RNA-ErbB3.