
HoCoRT: Host contamination removal tool

Ignas Rumbavicius, Trine B. Rounge, Torbjørn Rognes

Supplementary material

8 Supplementary figures

Fig. S1. HoCoRT performance on simulated oral microbiome datasets. Box plots of HoCoRT runtime in seconds (top) and classification accuracy (bottom) using several different classification modules and parameters on (A) HiSeq (yellow, left), MiSeq (cyan, right) and (B) Nanopore data (red). Table S2 contains additional results, including those for BioBloom (on Nanopore data), BBMap, BBSplit, Bowtie2 with the "un-conc" option, and BWA-MEM2, which were excluded from this figure due to outliers.

Supplementary tables

Table S1. Software. The software packages used or mentioned are listed with version numbers and references.

Software	Version	References
ATLAS		[2]
BBDuk	39.01	[4, 5]
ВВМар	39.01	[4, 5]
BBSplit	39.01	[4, 5]
BioBloom Tools	2.3.5	[11]
BioConda	23.1.0	[10]
BLAST	2.13.0	[23]
Bowtie2	2.4.5	[7]
BWA-SW		[6]
BWA-MEM2	2.2.1	[12]
CLARK		[21]
CONSULT		[20]
DeconSeq	0.4.3	[8]
GenCoF		[9]
HISAT2	2.2.1	[13]
HoCoRT	1.2.2	[24]
InSiliconSeq	1.5.4	[18]
Kraken2	2.1.2	[14]
MiniMap2	2.24	[15]
NanoSim	3.0.0	[19]
Samtools	1.16.1	[16]
Seal	39.01	[4, 5]
SnakeMake	7.19.1	[22]
Sunbeam		[3]

Table S2. Detailed HoCoRT performance on simulated oral microbiome datasets. The average runtime (in seconds), accuracy, precision, and sensitivity of the classification are shown for each pipeline and for each data type. The best (blue) and worst (red) performing pipelines are indicated for each performance metric and data type.

Pipeline	Runtime	Accuracy	Precision	Sensitivity
	Paired-end HiSeq			
Seal	289.5	0.9987	0.9975	1.0000
BBDuk	228.2	0.9976	0.9952	1.0000
BBSplit	1489.1	0.9991	0.9982	1.0000
BioBloom	60.0	0.9992	0.9990	0.9994
Bowtie2_end-to-end	495.4	0.9994	0.9988	1.0000
Bowtie2_local	739.4	0.9989	0.9977	1.0000
Bowtie2_end-to-end_un_conc	571.3	0.6809	0.9993	0.362
Bowtie2_local_un_conc	814.7	0.7300	0.9988	0.4606
HISAT2	104.4	0.9994	0.9990	0.9998
Kraken2	47.5	0.9954	0.9980	0.9927
BBMap_default	9351.0	0.9991	0.9982	1.0000
BBMap_fast	1062.5	0.9992	0.9985	0.9999
BWA_MEM2	461.9	0.9858	0.9725	1.0000
Kraken2Bowtie2	68.1	0.9990	0.9980	1.0000
Kraken2HISAT2	79.9	0.9990	0.9980	1.0000
Minimap2_illumina	149.1	0.9988	0.9977	1.0000
Kraken2Minimap2_illumina	70.9	0.9988	0.9976	1.0000
	Paired-end MiSeq			
Seal	374.8	0.9983	0.9967	1.0000
BBDuk	273.0	0.9958	0.9916	1.0000
BBSplit	4046.9	0.9993	0.9985	1.0000
BioBloom	116.9	0.9979	0.9990	0.9968
Bowtie2_end-to-end	2540.8	0.9994	0.9989	0.9999
Bowtie2_local	6887.7	0.9988	0.9975	1.0000
Bowtie2_end-to-end_un_conc	2534.2	0.5230	0.9997	0.0460
Bowtie2_local_un_conc	7015.4	0.6122	0.9986	0.2247
HISAT2	267.9	0.9946	0.9991	0.990
Kraken2	89.4	0.9966	0.9973	0.9959
BBMap_default	84978.6	0.9989	0.9985	0.9992
BBMap_fast	3435.6	0.9973	0.9989	0.995
BWA_MEM2	2142.9	0.9718	0.9471	1.000
Kraken2Bowtie2	142.3	0.9986	0.9973	1.0000
Kraken2HISAT2	163.6	0.9986	0.9973	0.999
Minimap2_illumina	518.5	0.9985	0.9970	1.0000
Kraken2Minimap2_illumina	149.1	0.9984	0.9967	1.0000
	Single-end Nanopore)		
BioBloom	152.1	0.5007	1.0000	0.001
Minimap2_nanopore	265.3	0.7512	1.0000	0.502
KrakenMinimap2_nanopore	250.7	0.7957	0.9996	0.5910
Kraken2	153.9	0.6993	0.9995	0.398

Table S3. Comparison of the performance of DeconSeq and HoCoRT using Bowtie2 in end-to-end mode on single-ended HiSeq and MiSeq reads. The average runtime (in seconds), accuracy, precision, and sensitivity are shown for each tool. The best (blue) and worst (red) performing tool is indicated for each performance metric.

Tool and pipeline	Runtime	Accuracy	Precision	Sensitivity	
Single-end HiSeq					
Bowtie2_end-to-end	49.8	0.99947	0.94934	0.99992	
DeconSeq	1677.2	0.99869	0.88432	0.99994	
Single-end MiSeq					
Bowtie2_end-to-end	88.7	0.99960	0.96194	0.99974	
DeconSeq	4384.2	0.99824	0.85028	1.00000	

Table S4. Evaluation on real microbiome datasets. The number of potentially contaminating human reads identified in two real microbiome datasets sequenced using Illumina HiSeq (SRR18498477) and Nanopore (SRR9847864) technology are shown. The HoCoRT pipelines using Bowtie2 and Minimap2 were employed, as well as BLAST. The fraction of predicted human reads are indicated in parentheses as percentages of all the original reads.

Accession	SRR18498477	SRR9847864
Sequencing	Illumina HiSeq	Nanopore
Original reads	46 273 568	9 741 166
HoCoRT Bowtie2 (of original)	9 704 (0.021%)	-
HoCoRT Minimap2 (of original)	12 252 (0.026%)	3 288 (0.033%)
BLAST (E < 1·10 ⁻¹⁰) (of original)	10 970 (0.024%)	154 (0.0016%)