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Supplemental Methods 

Overall design of CTG 

The Hi-C contact map depicts a proximity network G(V,E), where the vertices 
V={v1,v2,…vn} denote the non-overlapping genomic regions and the edges E = {ei,j} 
denote the contact strength between pairwise connected genomic regions. Similar to 
diffusion-based methods for network denoising (1, 2), a Markov prosses (3) is used to 
describe the diffusion process on this network. 𝐷!,! = ∑ 𝑒!,#$

#%& , is the element of the 

diagonal degree matrix D for the network. The vector 𝑃!
(&) = {𝑃!,&

(&), 𝑃!,)
(&), . . . 𝑃!,$

(&)} is 

the conditional transition probability transiting from vertex vi to V={v1,v2,…vn} in one 

single step. Likewise, 𝑃!
(*) = {𝑃!,&

(*), 𝑃!,)
(*), . . . 𝑃!,$

(*)}  is the conditional transition 

probability in k steps and 𝑃!,#
(*) = ∑ 𝑃!,+

(*,&)𝑃+,#
(*,&)$

+%& . With increasing k, the transition 

probability from vi to vj gradually integrates neighbor information and expand the 
inclusion of edges, since vi and vj may not be connected in one step but they can be 
connected in some finite steps as the network G is a connected graph. Taking k=2 and 

𝑃!,#
()) = ∑ 𝑃!,+

(&)𝑃+,#
(&)$

+%& as an example, when the two pairs of vertices (vi and vp, vj and vp) 

are pairwise neighbors, which means 𝑃!,+
(&) ≠ 0 and 𝑃+,#

(&) ≠ 0, vp contributes to 𝑃!,#
()). 

𝑃!
(*)  converges to an invariant distribution for connected graph and the difference 

between 𝑃!
(*,&) and 𝑃!

(*) decreases.  

It is thus appropriate to use the integrated information on {𝑃!
(&), 𝑃!

()), . . . 𝑃!
(*)}  to 

describe the diffusion manner of vertex vi within some given number of k steps, which 

can be infinite. In practice, we found that 𝑃!
(*) converges rapidly and therefore used 

the exponential decay to fit the convergence. 𝑆!
(*)   is defined as the weighted 

summation of 𝑃!
(-)
（1 ≤ 𝑡 ≤ 𝑘）: 

𝑆!
(*) =1 exp(−𝛼𝑡) 𝑃!

(-)
*

-	%	&
 

When k reaches infinity, 𝑆!
(*)converges to Si (Supplementary note). As the weighted 

summation of 𝑃!
(-), Si naturally integrates neighbor information of the connected graph 

and therefore alleviates in a physics-based manner the problems caused by the Hi-C 
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data sparsity. On the other hand, the exponential decay ensures that the integration does 

not eliminate the distinction of each vertex, taking the rapid convergence of 𝑃!
(*) into 

consideration. 
The physical succession of the genomic structure suggests that the proximal genomic 
regions should share similar diffusion manners. The similarity between pairwise 
vertices vi and vj is quantified by L1 distance between Si and Sj. L1 distance is used as 
a measure since it mitigates the impact of outliers caused by distance matrices of higher-
order terms. A CTG distance matrix is then constructed based on the Hi-C contact map.  

Proof 1 

Eigenvalues Λ of the P are within the range of [-1,1]. 

For any eigenvector X of P:  
𝑃𝑋	 = 	𝜆𝑋 

The maximum element of X is denoted as 𝑥/01, and the minimum element of X is 
denoted as 𝑥/!$. As the row summation of P is normalized to 1, and P is positive, 

𝑥/!$ ≤ 𝜆𝑥/!$ ≤ 𝑥/01 
𝑥/!$ ≤ 𝜆𝑥/01 ≤ 𝑥/01 

Therefore, 
−1 ≤ 𝜆𝑥/01 ≤ 1 

 
Proof 2 
When n approaches infinity, the transition propensity matrix M(n) is convergent. 
P is diagonalizable:  

𝑃(𝑣⃗&, 𝑣⃗), … , 𝑣⃗/) = (𝜆&𝑣⃗&, 𝜆)𝑣⃗), … , 𝜆/𝑣⃗/) = (𝑣⃗&, 𝑣⃗), … , 𝑣⃗/) @
𝜆& ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆/

D 

𝑃(&) = 𝑈,&𝛬𝑈 
P(k) can be written as:  

𝑃(*) = 𝑃* = 𝑈,&Λ𝑈	 
S(n) is the weighted summation of P(k):  
𝑆	($) =	∑ exp(−𝛼𝑘)	𝑈,&Λ*$

*%& 𝑈 = ∑ 𝑈,&[exp(−𝛼𝑘)	Λ*]$
*%& 𝑈  

According to the associative law of multiplication:  

𝑆	($) =	𝑈,&1[exp(−𝛼𝑘)	Λ*]
$

*%&

𝑈 = 𝑈,&[1exp(−𝛼𝑘)	Λ*]
$

*%&

𝑈 

When n approaches infinity, we have 

𝑆	 = 	𝑈,&[ lim
$→∞

1exp
$

*%&

(−𝛼𝑘)Λ*]𝑈 
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In the above equation, exp(−𝛼𝑘)	Λ* is a geometric progression, and 

lim
$→∞

	exp(−𝛼𝑘)	Λ* 	→ 	0 

Therefore, the summation over exp(−𝛼𝑘)Λ*is convergent when 
ρ(𝑃) < exp(𝑎), ρ(𝑃) = max|𝜆!| 

As ρ(𝑃) < 1 and exp(𝑎) > exp(0) > 1: 

lim
$→∞

1exp(−𝛼𝑘)	Λ*
$

*%&

= 	Λ [exp(𝛼)𝐼 − Λ],& 

𝐼 denotes the identity matrix. 
S is then also convergent and  

𝑆		 = 𝑈,& Λ [exp(𝛼)𝐼 − Λ],&𝑈 
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PCR Program

STEP   TEMP  TIME
Pre-extension  72°C  5 minutes
Initial Denaturation 98°C  30 seconds
10 Cycles  98°C  10 seconds
   65°C  30 seconds
   72°C  90 seconds
Final Extension 72°C  2 minutes
Hold   4°C  ∞




