Supplemental Methods

Overall design of C_TG

The Hi-C contact map depicts a proximity network G(V,E), where the vertices $V = \{v_1, v_2, \dots, v_n\}$ denote the non-overlapping genomic regions and the edges $E = \{e_{i,j}\}$ denote the contact strength between pairwise connected genomic regions. Similar to diffusion-based methods for network denoising (1, 2), a Markov prosses (3) is used to describe the diffusion process on this network. $D_{i,i} = \sum_{j=1}^{n} e_{i,j}$, is the element of the diagonal degree matrix D for the network. The vector $P_i^{(1)} = \{P_{i,1}^{(1)}, P_{i,2}^{(1)}, \dots, P_{i,n}^{(1)}\}$ is the conditional transition probability transiting from vertex v_i to $V = \{v_1, v_2, \dots, v_n\}$ in one single step. Likewise, $P_i^{(k)} = \{P_{i,1}^{(k)}, P_{i,2}^{(k)}, \dots, P_{i,n}^{(k)}\}$ is the conditional transition probability in k steps and $P_{i,j}^{(k)} = \sum_{p=1}^{n} P_{i,p}^{(k-1)} P_{p,j}^{(k-1)}$. With increasing k, the transition probability from v_i to v_j gradually integrates neighbor information and expand the inclusion of edges, since v_i and v_j may not be connected in one step but they can be connected in some finite steps as the network G is a connected graph. Taking k=2 and $P_{i,j}^{(2)} = \sum_{p=1}^{n} P_{i,p}^{(1)} P_{p,j}^{(1)}$ as an example, when the two pairs of vertices (v_i and v_p , v_j and v_p) are pairwise neighbors, which means $P_{i,p}^{(1)} \neq 0$ and $P_{p,j}^{(1)} \neq 0$, v_p contributes to $P_{i,j}^{(2)}$. $P_i^{(k)}$ converges to an invariant distribution for connected graph and the difference between $P_i^{(k-1)}$ and $P_i^{(k)}$ decreases.

It is thus appropriate to use the integrated information on $\{P_i^{(1)}, P_i^{(2)}, \dots, P_i^{(k)}\}$ to describe the diffusion manner of vertex v_i within some given number of k steps, which can be infinite. In practice, we found that $P_i^{(k)}$ converges rapidly and therefore used the exponential decay to fit the convergence. $S_i^{(k)}$ is defined as the weighted summation of $P_i^{(t)}$ $(1 \le t \le k)$:

$$S_i^{(k)} = \sum_{t=1}^k \exp(-\alpha t) P_i^{(t)}$$

When k reaches infinity, $S_i^{(k)}$ converges to S_i (Supplementary note). As the weighted summation of $P_i^{(t)}$, S_i naturally integrates neighbor information of the connected graph and therefore alleviates in a physics-based manner the problems caused by the Hi-C data sparsity. On the other hand, the exponential decay ensures that the integration does not eliminate the distinction of each vertex, taking the rapid convergence of $P_i^{(k)}$ into consideration.

The physical succession of the genomic structure suggests that the proximal genomic regions should share similar diffusion manners. The similarity between pairwise vertices v_i and v_j is quantified by L1 distance between S_i and S_j . L1 distance is used as a measure since it mitigates the impact of outliers caused by distance matrices of higher-order terms. A C_TG distance matrix is then constructed based on the Hi-C contact map.

Proof 1

Eigenvalues Λ of the P are within the range of [-1,1].

For any eigenvector X of P:

$$PX = \lambda X$$

The maximum element of X is denoted as x_{max} , and the minimum element of X is denoted as x_{min} . As the row summation of P is normalized to 1, and P is positive,

$$\begin{array}{l} x_{min} \leq \lambda x_{min} \leq x_{max} \\ x_{min} \leq \lambda x_{max} \leq x_{max} \end{array}$$

Therefore,

$$-1 \leq \lambda x_{max} \leq 1$$

Proof 2

When n approaches infinity, the transition propensity matrix $M^{(n)}$ is convergent. P is diagonalizable:

$$P(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m) = (\lambda_1 \vec{v}_1, \lambda_2 \vec{v}_2, \dots, \lambda_m \vec{v}_m) = (\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m) \begin{bmatrix} \lambda_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_m \end{bmatrix}$$
$$P^{(1)} = U^{-1} \Lambda U$$

P^(k) can be written as:

$$P^{(k)} = P^k = U^{-1} \Lambda U$$

S⁽ⁿ⁾ is the weighted summation of P^(k): $S^{(n)} = \sum_{k=1}^{n} \exp(-\alpha k) U^{-1} \Lambda^{k} U = \sum_{k=1}^{n} U^{-1} [\exp(-\alpha k) \Lambda^{k}] U$

According to the associative law of multiplication:

$$S^{(n)} = U^{-1} \sum_{k=1}^{n} [\exp(-\alpha k) \Lambda^{k}] U = U^{-1} [\sum_{k=1}^{n} \exp(-\alpha k) \Lambda^{k}] U$$

When *n* approaches infinity, we have

$$S = U^{-1} [\lim_{n \to \infty} \sum_{k=1}^{n} \exp(-\alpha k) \Lambda^{k}] U$$

In the above equation, $\exp(-\alpha k) \Lambda^k$ is a geometric progression, and

$$\lim_{n\to\infty}\exp(-\alpha k)\,\Lambda^k\,\to\,0$$

Therefore, the summation over $\exp(-\alpha k)\Lambda^k$ is convergent when

$$\rho(P) < \exp(a), \rho(P) = \max|\lambda_i|$$

As $\rho(P) < 1$ and $\exp(a) > \exp(0) > 1$:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \exp(-\alpha k) \Lambda^{k} = \Lambda [\exp(\alpha)I - \Lambda]^{-1}$$

I denotes the identity matrix.

S is then also convergent and

$$S = U^{-1} \Lambda \left[\exp(\alpha) I - \Lambda \right]^{-1} U$$

- Wang,B., Pourshafeie,A., Zitnik,M., Zhu,J., Bustamante,C.D., Batzoglou,S. and Leskovec,J. (2018) Network enhancement as a general method to denoise weighted biological networks. *Nat. Commun.*, 9.
- Cao, M., Zhang, H., Park, J., Daniels, N.M., Crovella, M.E., Cowen, L.J. and Hescott, B. (2013) Going the Distance for Protein Function Prediction: A New Distance Metric for Protein Interaction Networks. *PLoS One*, 8, e76339.
- 3. Stochastic Processes in Physics and Chemistry (2007) Elsevier.
- Halverson, J.D., Smrek, J., Kremer, K. and Grosberg, A.Y. (2014) From a melt of rings to chromosome territories: The role of topological constraints in genome folding. *Reports Prog. Phys.*, 77.
- Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., *et al.* (2009) Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. *Science*, **326**, 289–293.

PCR Program

TEMP	TIME
72°C	5 minutes
98°C	30 seconds
98°C	10 seconds
65°C	30 seconds
72°C	90 seconds
72°C	2 minutes
4°C	∞
	TEMP 72°C 98°C 98°C 65°C 72°C 72°C 4°C