Characteristic		Institution		
	DF/BWCC	URMC	SCI	Total
Number of subjects	105	74	110	289
Men (n, %)	44(42%)	42(57%)	68(62%)	154(53%)
Age (median, IQR), years	64(58-71)	67(59-72)	69(63-75)	67(59-73)
Race (n, %)				
White	79(75%)	67(91%)	83(75%)	229(79%)
Black	1(1%)	3(4%)	1(1%)	5(2%)
Asian	1(1%)	1(1%)	22(20%)	24(8%)
Other	24(23%)	3(4%)	2(4%)	31(11%)
pT stage (n, %)				
T1-T2	86(82%)	48(65%)	83(75%)	217(75%)
T3-T4	19(18%)	26(35%)	27(25%)	72(25%)
pN stage (n, %)				
NO	31(29%)	17(23%)	37(34%)	85(30%)
N1	44(42%)	27(36%)	37(34%)	108(37%)
N2	30(29%)	30(41%)	36(32%)	96(33%)
Tumor grade (n, %)				
Well/Moderately differentiated	55(52%)	38(51%)	73(66%)	166(57%)
Poorly differentiated / Undifferentiated	48(46%)	35(47%)	34(31%)	117(41%)
Unknown	2(2%)	1(2%)	3(3%)	6(2%)
Lymphovascular invasion (n, %)				
Negative	45(43%)	26(35%)	54(49%)	125(43%)
Positive	51(49%)	46(62%)	37(34%)	134(47%)
Unknown	9(8%)	2(3%)	19(17%)	30(10%)
Resection margin status (n, %)				
RO	40(38%)	40(54%)	63(57%)	143(49%)
R1	63(60%)	34(46%)	44(40%)	141(49%)
R2	2(2%)	0(0)	2(2%)	4(1%)
Rx (not evaluable)	0(0)	0(0)	1(1%)	1(<1%)
Adjuvant systemic chemotherapy (n, %)				
No	29(28%)	20(27%)	34(31%)	83(29%)
Yes	72(68%)	49(66%)	58(53%)	179(62%)
Unknown	4(4%)	5(7%)	18(16%)	27(9%)
Adjuvant radiation therapy (n, %)				
No	44(42%)	43(58%)	61(56%)	148(51%)
Yes	57(54%)	26(35%)	31(28%)	114(40%)
Unknown	4(4%)	5(7%)	18(16%)	27(9%)

Supplementary Table.T1. Characteristics of primary resection study population

Supplementary Table.T1. Characteristics of primary resection cohort population. The primary resection cohort comprised 289 primary resection specimens with full clinicopathologic annotation as detailed in the table. DF/BWCC: Dana-Farber/Brigham and Women's Cancer Centre, URMC: University of Rochester Medical Centre, SCI: Stanford Cancer Institute.

Supplementary Table.T2. Types of adjuvant therapy received by patients in the primary resection cohort.

Adjuvant chemotherapy	N (%) cases (total N=289)
No adjuvant chemotherapy	83 (28.7%)
Gemcitabine	153 (52.9%)
Gemcitabine combination	19 (6.5%)
5-FU/LV or capecitabine	2 (0.7%)
FOLFOX	1 (0.4%)
FOLFIRINOX	1 (0.4%)
Unknown	29 (10%)
Other	1 (0.4%)

Supplementary Table.T2. Types of adjuvant therapy received by patients in the primary resection cohort.

Characteristic	Total
Number of subjects	37
Men (n, %)	16 (43.2%)
Age (median, IQR), years	65 (61-65)
Race (n, %)	
White	35 (94.6%)
Black	0
Asian	0
Other	1 (2.7%)
Unknown	1 (2.7%)
pT stage (n, %)	
T1-T2	7 (18.9%)
Т3-Т4	8 (21.6%)
Тх	2 (5.4%)
Unknown	20 (54%)
pN stage (n, %)	
NO	6 (16.2%)
N1	7 (18.9%)
N2	1 (2.7%)
Nx	3 (8.1%)
Unknown	20 (54%)
Tumor grade (n, %)	
Well/Moderately differentiated	13 (35.2%)
Moderately differentiated / Poorly differentiated	3 (8.1%)
Poorly differentiated / Undifferentiated	8 (21.6%)
Unknown	13 (35.1%)
Lymphovascular invasion (n, %)	
Negative	12 (32.4%)
Positive	22 (59.5%)
Unknown	3 (8.1%)

Supplementary Table.T3. Characteristics of metastatic biopsy study population

Supplementary Table.T3. Characteristics of metastatic biopsy study population. The metastatic biopsy cohort comprised 37 metastatic biopsy specimens. 24 cases had matched fresh frozen metastatic biopsies of which 14 had bulk RNA sequencing and 10 had single-cell RNA sequencing data available. All 37 cases had full clincopathological annotation as detailed in the table.

Characteristic	Total
Number of subjects	77
Men (n, %)	50 (65%)
Age (median, IQR), years	67 (60-75)
Race (n, %)	
White	66 (85.7%)
Black	0
Asian	5 (6.5%)
Other	1 (1.3%)
Unknown	5 (6.5%)
pT stage (n, %)	
T1-T2	24 (31.2%)
ТЗ-Т4	23 (29.8%)
Тх	2 (2.6%)
Unknown	28 (36.4%)
pN stage (n, %)	
NO	19 (24.7%)
N1	20 (26%)
N2	3 (3.9%)
Nx	7 (9%)
Unknown	28 (36.4%)
Tumor grade (n, %)	
Well/Moderately differentiated	25 (32.5%)
Moderately differentiated / Poorly differentiated	8 (10.4%)
Poorly differentiated / Undifferentiated	15 (19.5%)
Unknown	29 (37.7%)
Lymphovascular invasion (n, %)	
Negative	19 (24.7%)
Positive	56 (72.7%)
Unknown	2 (2.6%)
Organoid passage number at assessment (n, %)	
1-5	13 (16.9%)
6-10	18 (23.4%)
11-15	24 (31.2%)
>15	22 (28.5%)
Patient tissue site of origin for organoid culture (n, %)	
Ascites fluid	13 (16.9%)
Liver	31 (40.2%)
Omentum	4 (5.2%)
Pancreas	28 (36.4%)
Retroperitoneal lymph node	1 (1.3%)
Prior systemic treatment before patient tissue collection (n, %)	
Yes	44 (57.1%)
No	33 (42.9%)

Supplementary Table.T4. Characteristics of patient derived organoid study population.

Supplementary Table.T4. Characteristics of patient derived organoid study population. The patient derived organoid cohort comprised 77 cases with clinciopathological annotation as detailed.

Marker	Subtype classification in protein panel	Summary	Reference
		Clinical trial for inhibitor IMAB362 in combination with CAPOX for CLDN18.2 positive patients by IHC	Clinical trial: NCT03653507
		CLDN18 immunohistochemstry used as biomarker in Zolbetuximab trial targeting CLDN18.2 positive cells in combination with Gemcitabine	Türeci, Özlem, Mitnacht-kraus, R., Wöll, S. & Yamada, T. Characterization of zolbetuximab in pancreatic cancer models. Oncoimmunology 8 , 1–10 (2019)
Claudin 18.2 (CLDN18.2)	Classical	CLDN18.2 RNA upregulated in classical subtype	Lomberk, G. <i>et al.</i> Distinct epigenetic landscapes underlie the pathobiology of pancreatic cancer subtypes. <i>Nat. Commun.</i> 9 , 1978 (2018).
		CLDN18 RNA differentially expressed in pancreatic cancer	Karanjawala, Z. E. <i>et al.</i> New markers of pancreatic cancer identified through differential gene expression analyses: claudin 18 and annexin A8. <i>Afile///C/Users/hlw18/Downloads/nihms105560</i> (1).pdfmerican J. Surg. Pathol. 32 , 188–196 (2008)
		Upregulated in classical subtypes	Collisson, E. A. <i>et al.</i> Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. <i>Nat. Med.</i> 17 , 500–503 (2011).
Trafailfactor d		Identified as top 5 most differentially expressed genes between classical and basal-like cells from tumor samples by scRNA-seq	Zhou, D. C. <i>et al.</i> Spatial drivers and pre-cancer populations collaborate with the microenvironment in untreated and chemoresistant pancreatic cancer. <i>bioRxiv</i> 2021.01.13.426413 (2021) doi:10.1101/2021.01.13.426413.
(TFF1)	Classical	Included in 50-gene set to determine classical subtype	Moffitt, R. A. <i>et al.</i> Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. <i>Nat. Genet.</i> 47 , 1168–1178 (2015).
		Increased gene expression in L1 subtype which corresponds with Collisson and Moffitt classical subtype	Zhao, L., Zhao, H. & Yan, H. Gene expression profiling of 1200 pancreatic ductal adenocarcinoma reveals novel subtypes. <i>BMC</i> <i>Cancer</i> 18 , 603 (2018).
		Upregulated in progenitor subtype	Bailey, P. <i>et al.</i> Genomic analyses identify molecular subtypes of pancreatic cancer. <i>Nature</i> 531 , 47–52 (2016).
GATA-binding factor 6 (GATA6)	Classical	Distinguishes classical subtype	Kane, G. M. <i>et al.</i> GATA6 Expression Distinguishes Classical and Basal-like Subtypes in Advanced Pancreatic Cancer. <i>Clin. Cancer Res.</i> 26 , 4901 LP – 4910 (2020).
		Biomarker of response	Clinical trial NCT04472910

Supplementary Table.T5. Summary of protein subtype markers

		Biomarker of response	Clinical trial NCT04469556						
		GATA6 highly expressed in classical tumors	Collisson, E. A. <i>et al.</i> Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. <i>Nat. Med.</i> 17 , 500–503 (2011).						
		Associated with squamous basal PDAC and	Bailey, P. et al. Genomic analyses identify molecular subtypes of						
		hypermethylated in progenitor subtype	pancreatic cancer. Nature 531, 47–52 (2016).						
S100 calcium binding protein A2	Basal	Increased expression in basal subtype	Moffitt, R. A. <i>et al.</i> Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. <i>Nat. Genet.</i> 47 , 1168–1178 (2015).						
(S100A2)		Increased expression in quasi-mesenchymal subtype	Collisson, E. A. <i>et al.</i> Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. <i>Nat. Med.</i> 17 , 500–503 (2011).						
		Most lethal molecular subtype	Roa-Peña, L. <i>et al.</i> Keratin 17 identifies the most lethal molecular subtype of pancreatic cancer. <i>Sci. Rep.</i> 9 , 11239 (2019).						
Keratin 17	Decel	Increased gene expression in L2 subtype which corresponds with Moffitt basal subtype and Collisson quasi-mesenchymal subtype	Zhao, L., Zhao, H. & Yan, H. Gene expression profiling of 1200 pancreatic ductal adenocarcinoma reveals novel subtypes. <i>BMC Cancer</i> 18 , 603 (2018).						
(KRT17)	BdSdl	KRT17 expressing PDAC correlates with resistance to Gemcitabine and 5-FU	Pan, CH. <i>et al.</i> An unbiased high-throughput drug screen reveals a potential therapeutic vulnerability in the most lethal molecular subtype of pancreatic cancer. <i>Mol. Oncol.</i> 14 , 1800–1816 (2020).						
		Correlation of response to chemotherapy and resistance	Clinical trial NCT04469556						
Keratin 5	Decel	KRT5 associated with squamous cell lineage	Somerville, T. D. D. <i>et al.</i> TP63-Mediated Enhancer Reprogramming Drives the Squamous Subtype of Pancreatic Ductal Adenocarcinoma. <i>Cell Rep.</i> 25 , 1741-1755.e7 (2018).						
(KRT5)	Basai	GATA6-silenced cells express KRT5	Martinelli, P. <i>et al.</i> GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. <i>Gut</i> 66 , 1665 LP – 1676 (2017)						

Supplementary Table.T5. **Summary of subtype markers selected for subtype determination.** The subtype markers selected for the multiplex immunofluorescence assay are highlighted in the table and were selected based upon their importance across multiple studies for determining tumor subtypes, biological underpinning of the specific subtypes and relevance as biomarkers in clinical trials.

Supplementary Table.T6. Summary of primary antibodies and Opal fluorophores used in the the multiplex immunofluorescence assay.

			Manufacturer,	Antibody		Manufacturer,		Antigen retrieval	
Purpose	Marker	Clone	catalogue	dilution	Fluorophore	Catalogue	Fluorophore dilution	prior to primary	
			number	unution		number		antibody	
Classical subtype marker	Cldn18.2	EPR19202-244	Abcam, 241330	1:700	Opal 570	FP1488001KT	1:300	ER1	
Classical subtype marker	GATA6	D61E4	CST, 5851	1:400	Opal 540	FP1494001KT	1:300	ER1	
Classical subtype marker	TFF1	EPR3972	Abcam, 92377	1:1500	Opal 690	FP1497001KT	1:200	ER1	
Basal subtype marker	Keratin-17	F3	ThermoFisher,	1.75	Onal 520	FP1487001KT	1.300	FR2	
basal subtype market	Keratiii-17	LJ	MA513539	1.75	0001 320	11140700101	1.500	LIVZ	
Basal subtype marker	Keratin-5	EP1601Y	Abcam, 52635	1:500	Opal 480	FP1500001KT	1:300	ER1	
Basal subtype marker	S100a2	EPR5392	Abcam, 109494	1:2500	Opal 650	FP1496001KT	1:1000	ER1	
Enitbolial marker	CKDAN	AE1/AE3	Dako, M3515;	1:50	Opal 620		1.200	ED1	
Epithelial marker	CKPAN	C11	CST, 4545	1:500	Opai 620	FP1495001K1	1.500	EKT	

Supplementary Table.T6. Summary of primary antibodies and Opal fluorophores used in subtyping assay. Details of primary antibody dilutions and Opal fluorophore pairings.

Supplementary Table.T7. List of ancillary reagents used in the multiplex immunofluorescence assay.

Reagent	Manufacturer, catalogue number
Xylene	Fisher Scientific, X3P1GAL
Ethanol	Fisher Scientific, HC-800-1GAL
BOND Epitope Retrieval Solution 1	Leica Biosystems, AR9961
BOND Epitope Retrieval Solution 2	Leica Biosystems, AR9640
Antibody diluent/block	Akoya Biosciences, ARD1001EA
Secondary Opal polymer HRP Ms + Rb	Akoya Biosceicnes, ARH1001EA
1x Plus Automation Amplification Diluent	Akoya Biosciences, FP1609
Spectral DAPI	Akoya Biosciences, FP1490
ProLong Gold Antifade Mountant	Fisher Scientific, P36930

Supplementary Table.T7. List of reagents used in the multiplex immunofluorescence assay. Details of all reagents used for multiplex immuofluorescence assay on the Leica BOND RX Research Stainer (Leica Biosystems, Buffalo, IL).

Subtype marker	Z-scored fluorescence mean marker
	intensity threshold for cell positivity
	(raw mean intensity range)
CLDN18.2	2 (0.4-0.85)
TFF1	1.5 (4.8-6.3)
GATA6	1 (1.2-2.8)
KRT17	0.5 (0.6-1.4)
KRT5	0.5 (0.25-0.89)
S100A2	2 (2-5.8)

Supplementary Table.T8. Single marker z-scored mean intensity positive thresholds.

Supplementary Table.T8. Single marker immunofluorescence gating parameters. Raw mean intensities for each marker were normalized per TMA to account for potential variability in staining performance based upon tissue institute of origin. Following normalization, z-scored fluorescence marker intensity 'gates' were determined to classify cells as positive or negative for each single marker.

Supplementary Table.T9. Cell subtype marker combinations and subtypes

							(Cell	sul	oty	pe		
Marker			E	Basa	al					Cla	All marker negative		
KRT17													
KRT5													
S100A2													
CLDN18.2													
GATA6													
TFF1													

	Cell subtype																												
Marker	Co-expressor																												
KRT17																													
KRT5																													
S100A2																													
CLDN18.2																													
GATA6																													
TFF1																													

Supplementary Table.T9. Cell subtype marker combinations and subtypes. A combinatorial approach to cell subtype determination was devised. Each cell was assessed for expression of each of the 6 markers in the subtyping mIF panel. Basal cell subtype was determined by expression of any of the 3 basal markers (KRT17, KRT5, S100A2), classical by any of the 3 classical markers (GATA6, CLDN18.2, TFF1) and co-expressor subtype by any combination of both basal and classical marker expression within a cell.

Supplementary Table.T10. Univariate and multivariable-adjusted Cox regression models for overall survival and disease-free survival according to tumor expression subtype by multiplex immunofluroscence

			Overall Su	urvival			Disease-Free Survival										
Tumor subtype	No. of Median patients (mo) Univariat MR (95% C		Univariate HR (95% CI)	Ρ	Multivariable HR (95% CI) ^a	Р	No. of patients	Median survival (mo)	Univariate HR (95% CI)		Multivariable HR (95% CI)ª	Ρ					
Tumor subtype (2-class)																	
Classical	177	25.9	1.00 (reference)		1.00 (reference)		175	14.3	1.00 (reference)		1.00 (reference)						
Basal	112	16.7	1.62(1.24-2.13)	0.001	1.40(1.04-1.87)	0.02	110	9.9	1.55(1.16-2.07)	0.003	1.52(1.13-2.05)	0.006					
Tumor subtype (3-class)																	
Classical predominant	120	29.5	1.00 (reference)		1.00 (reference)		119	17.6	1.00 (reference)		1.00 (reference)						
Mixed	130	18.4	1.65(1.24-2.21)	0.001	1.50(1.11-2.03)	0.009	128	10.7	1.91(1.40-2.59)	<0.001	1.93(1.40-2.65)	<0.001					
Basal predominant	39	15.7	1.94(1.27-2.96)	0.002	1.27(0.79-2.05)	0.30	38	8.8	1.82(1.14-2.91)	0.01	1.60(0.99-2.60)	0.06					

Supplementary Table.T10. Univariate and multivariable-adjusted Cox regression models for overall survival and disease-free survival according to tumor expression subtype by multiplex immunofluorescence. Cox proportional hazards regression models were applied to two-group and three-group classified tumor subtypes. Using the two-group classification, basal tumors were associated with worse overall survival (OS) and disease-free survival (DFS), compared with classical tumors. Using the three-group classification, mixed tumors were associated with intermediate outcomes with OS between basal-predominant and classical-predominant tumors. ^aCox proportional hazards regression model adjusted for age, sex, pathologic N stage (N0, N1, N2), tumor grade (well/moderately-/poorly-differentiated, unknown), lymphovascular invasion (negative, positive, unknown), receipt of perioperative treatment and resection margin status (R0, R1, R2, unknown). Disease-free survival: n=285; overall survival: n=289.

Supplementary Table.T11. Univariate and multivariable-adjusted cox-regression models for overall survival and disease-free survival according to basal-classical axis score.

	Overall survival				Disease-free survival					
Subtype fraction	No. of patients	Median, IQR (%)	Median survival (mo)	Univariate HR (95% CI)	Multivariable HR (95% CI) ^b	No. of patients	Median, IQR (%)	Median survival (mo)	Univariate HR (95% CI)	Multivariable HR (95% CI) ^b
Basal-classical axis	a									
Quartile 1	71	0.3 (0-1.4)	31.5	1.00 (reference)	1.00 (reference)	70	0.3 (0-1.4)	16.9	1.00 (reference)	1.00 (reference)
Quartile 2	73	7.3 (3.8-11.1)	23.9	1.55 (1.06-2.29)	1.49 (0.99-2.23)	72	7.2 (3.7-10.9)	14.1	1.26 (0.84-1.89)	1.24 (0.81-1.89)
Quartile 3	74	33.0 (25.0-47.3)	16.9	1.87 (1.27-2.75)	1.57 (1.05-2.36)	74	33.0 (25.0-47.3)	10.5	1.83 (1.24-2.71)	1.85 (1.22-2.81)
Quartile 4	71	91.3 (75.9-99.2)	16.7	2.03 (1.38-3.00)	1.60 (1.05-2.44)	69	91.3 (75.9-99.2)	9.8	1.73 (1.14-2.61)	1.70 (1.11-2.60)
P _{trend} ^c				0.002	0.028		-		0.010	0.018

Supplementary Table.T11. Univariate and multivariable-adjusted Cox regression models for overall survival and disease-free survival according to basal-classical axis score. For survival analyses, basal-classical axis score was split into quartiles with the lowest quartile as the referent and Cox proportional hazards regression models were applied. Increasing basal-classical axis score was associated with worse overall survival and disease-free survival. ^a Basal-classical axis score was derived from basal fraction taken as a percentage of total basal and classical cells per tumor. A higher score indicates a greater basal cell fraction while a lower score indicates a greater classical cell fraction within a tumor. Disease-free survival: n=285; overall survival: n=289. ^b Cox proportional hazards regression model adjusted for age, sex, pathologic N stage (N0, N1, N2), tumor grade (well/moderately-/poorly-differentiated, unknown), lymphovascular invasion (negative, positive, unknown), and resection margin status (R0, R1, R2, unknown). ^c *P*_{trend} calculated by the Wald χ2 test.

Supplementary Table.T12. Univariate and multivariable-adjusted Cox regression models for overall survival and disesase-free survival according to co-expressor cell fraction.

	Overall survival				Disease-free survival					
Co-expressor cell fraction ^a	No. of patients	Median, IQR (%)	Median survival (mo)	Univariate HR (95% CI)	Multivariable HR (95% CI) ^b	No. of patients	Median, IQR (%)	Median survival (mo)	Univariate HR (95% CI)	Multivariable HR (95% Cl) ^b
Q1	71	0.2 (0-0.7)	25.8	1.00 (reference)	1.00 (reference)	70	0.2 (0-0.7)	14.4	1.00 (reference)	1.00 (reference)
Q2	73	3.1 (1.9-4.2)	16.7	1.39 (0.96-2.02)	1.31 (0.87-1.96)	72	3.1 (1.9-4.2)	13.3	1.09 (0.73-1.62)	0.86 (0.55-1.33)
Q3	74	10.9 (8.1-14.6)	24.2	1.09 (0.75-1.60)	1.11 (0.73-1.68)	72	10.9 (8.0-14.6)	14.1	1.05 (0.71-1.54)	0.99 (0.65-1.52)
Q4	71	32.1 (24.1-47.7)	21.5	1.37 (0.94-2.00)	1.28 (0.84-1.93)	71	32.1 (24.1-47.7)	13.7	1.14 (0.77-1.69)	1.09 (0.70-1.69)
P _{trend}				0.278	0.485				0.581	0.406

Supplementary Table.T12. Univariate and multivariable-adjusted Cox regression models for overall survival and disease-free survival according to co-expressor cell fraction. For survival analyses using Cox regression, tumors were divided into quartiles based on co-expressor fraction, with the lowest quartile as the referent. ^a Co-expressor cell fraction calculated by dividing the number of co-expressor cells by the sum of basal, classical, and co-expressor cells within a tumor. ^b Cox proportional hazards regression model adjusted for age, sex, pathologic N stage (N0, N1,N2), tumor grade (well/moderately-/poorly-differentiated, unknown), lymphovascular invasion (negative, positive, unknown), receipt of perioperative treatment, resection margin status (R0, R1, R2, unknown) and basal-classical axis score. ^c P_{trend} calculated by the Wald χ 2 test.

		Tumor subtype		
Characteristic	Classical-	Mixed	Basal-	P^{a}
	predominant	(N=130)	predominant	
	(N=120)		(N=39)	
Gender				0.13
Men	58(48%)	70(54%)	26(67%)	
Women	62(52%)	60(46%)	13(33%)	
Age (median, IQR), years	68(61-73)	66(59-71)	66(58-72)	0.46
Race				0.31
White	102(85%)	95(73%)	32(82%)	
Black	2(2%)	3(2%)	0(0)	
Asian	6(5%)	13(10%)	5(13%)	
Other	10(8%)	19(15%)	2(5%)	
pT stage (n, %)				0.08
T1-T2	98(82%)	95(73%)	24(62%)	
Т3-Т4	22(18%)	35(27%)	15(38%)	
pN stage (n, %)				0.26
NO	40(33%)	32(25%)	13(33%)	
N1	48(40%)	48(37%)	12(31%)	
N2	32(27%)	50(38%)	14(36%)	
Tumor grade ^{Δ} (n, %)				0.10
Well/Moderately differentiated	76(65%)	74(58%)	16(41%)	
Poorly differentiated / Undifferentiated	41(35%)	53(42%)	23(59%)	
Lymphovascular invasion $^{\Omega}$ (n, %)				0.13
Negative	60(50%)	49(38%)	16(41%)	
Positive	45(38%)	68(52%)	21(54%)	
Resection margin status (n, %)				0.82
RO	62(52%)	63(48%)	18(46%)	
R1	56(46%)	65(50%)	20(51%)	
R2	1(1%)	2(2%)	1(3%)	
Rx (not evaluable)	1(1%)	0(0)	0(0)	

Supplementary Table.T13. Tumor subtype and associations with clinicopathological features

Supplementary Table.T13. Tumor expression subtype and associations with clinicopathological features features. Associations between tumor subtype and clinicopathological features were explored using Fisher's exact test (categorical variables) and Wilcoxon rank-sum test (age). ^{*a*}*P* value for Fisher's exact test (categorical variables) and Wilcoxon rank-sum test (age). ^{*b*} Cases with unknown tumor grade were removed from analysis. ^{Ω}30 cases with unknown lymphovascular invasion were removed from this analysis.

	Tumor subtype			
^a Molecular characteristic	Classical-	Mixed	Basal-	^b P
	predominant	(N=130)	predominant	
	(N=120)	N (%)	(N=39)	
	N (%)		N (%)	
KRAS				0.09
Wildtype	12 (11%)	5 (4%)	1 (3%)	
Mutant	101 (89%)	121 (96%)	38 (97%)	
CDKN2A				068
Intact	42 (37%)	40 (32%)	13 (33%)	
Loss	71 (63%)	86 (68%)	26 (67%)	
SMAD4				0.95
Intact	55 (49%)	64 (51%)	20 (51%)	
Loss	58 (51%)	62 (49%)	19 (49%)	
P53				0.16
Wildtype	45 (40%)	42 (33%)	9 (23%)	
Altered	68 (60%)	84 (67%)	30 (77%)	
KRAS Copy number				0.003
Gain	9 (8%)	9 (8%)	10 (28%)	
Normal copy	100 (92%)	101 (92%)	25 (72%)	

Supplementary Table.T14. Tumor expression subtype and association with tumor molecular characteristics

Supplementary Table.T14. Tumor expression subtype and association with tumor molecular characteristics. Molecular annotation for the primary resection cohort was performed for KRAS, CDKN2A, SMAD4 and TP53, the four main driver genes altered in pancreatic ductal adenocarcinoma. *°KRAS* status was determined by next generation sequencing (or pyrosequencing if predefined NGS coverage metrics were not met) and classified as mutant or wild-type. CDKN2A and SMAD4 status was determined by immunohistochemistry and classified as intact or lost. *TP53* status was determined by combining IHC and sequencing data to make an integrated call as wild-type or altered. Immunohistochemistry and sequencing methodologies were described in detail in ⁵. *bP* value for Fisher's exact test.

	Co	٩D	
	Primary (N=289)	Metastatic (N=37)	- P
Subtype fraction			<0.001
Basal %, median (IQR)	12.9(2.1-45.2)	16.0(2.8-60.9)	<0.001
Classical %, median (IQR)	68.9(27.9-92.1)	57.9(6.2-85.3)	<0.001
Co-expressor %, median (IQR)	5.7(1.2-18.1)	11.3(2.1-26.0)	<0.001
Tumor subtype			0.0010
Classical-predominant, N (%)	85 (29%)	7 (19%)	<0.001
Mixed, N (%)	164 (57%)	18 (49%)	<0.001
Basal-predominant, N (%)	40 (14%)	12 (32%)	<0.0001

Supplementary Table.T15. Comparison of subtype fractions between primary and metastatic PDAC

Supplementary Table.T15. Comparison of subtype fractions between primary and metastatic

PDAC. Comparisons were made between primary and metastatic PDAC for subtype fraction and tumor subtype. Significant differences were observed for both. ^{*a*}*P* value for Chi² test and Posthoc Chi² test.