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Quantum process tomography of measurement operators

An arbitrary quantum operator in a two-dimensional Hilbert space can be characterized by a

process matrix χ in the relation of O(ρ) = Σ4
m,n=1χm,nEmρE

†
n, where ρ is an input state,

and O(ρ) is the output state. As the basis operations, we choose Ek = {I, σx, σy, σz}. Us-

ing quantum process tomography (with the maximum likelihood estimation method (41)), we

reconstruct the process matrix χ for each experimentally implemented operation.

Fig. S1 and S2 show the quantum process tomography results of weak measurement and

reversal measurement, respectively. Fig. S3 shows the result of weak and reversal measure-

ments when used together. We compare an experimentally implemented operation with a target

quantum operator by calculating fidelity and purity, which are placed at the bottom of each

figure.

Properties of the quantum state after weak measurement or
after weak and reversal measurements

Fig. S4 shows the properties of the quantum state after weak measurement, and Fig. S5 shows

the properties of the quantum state after weak and reversal measurements.

Improving reversibility by applying multiple reversal measure-
ments

We discuss a method to enhance the reversibility by applying additional reversal measurements

in the cases of unsuccessful recovery. Without loss of generality, we can start by considering

the recovery of the weak measurement M̂ (k)

+|{p(1)
k

,s⃗k}
for +1 outcome, where k = A,B, and p

(1)
k

and s⃗k represent the measurement strength and direction, respectively. The successful recovery 

by a single application of the reversal measurement (as described in the main text) leads to



the overall operation of R̂
(k)

+|{p(1)
k

,s⃗k}
M̂

(k)

+|{p(1)
k

,s⃗k}
=
√
r
(1)
k Î , where Î is the identity operation

indicating the successful recovery, and r
(1)
k is the associated recovery probability. On the other

hand, the unsuccessful recovery gives rise to the overall operation of R̂(k)

−|{p(1)
k

,s⃗k}
M̂

(k)

+|{p(1)
k

,s⃗k}
.

This unsuccessful case can be further recovered by applying an additional reversal measure-

ment R̂(k)

+|{p(2)
k

,s⃗k}
, resulting in R̂

(k)

+|{p(2)
k

,s⃗k}
R̂

(k)

−|{p(1)
k

,s⃗k}
M̂

(k)

+|{p(1)
k

,s⃗k}
=
√
r
(2)
k Î by choosing a proper

strength of p(2)k . By generalizing this method, we obtain the overall operation of the successful

recovery after applying n reversal measurements:

R̂
(k)

+|{p(n)
k

,s⃗k}

(
n−1∏
i=1

R̂
(k)

−|{p(i)
k

,s⃗k}

)
M̂

(k)

+|{p(1)
k

,s⃗k}
=
√
r
(n)
k Î , (S1)

where the proper choice of p(n)k and the recovery probability r
(n)
k are given by

p
(n)
k = 1− 2

1 +
(
1+pk
1−pk

)2n−1

r
(n)
k =

pk
2

csch
(
2n−1 ln

(
1 + pk
1− pk

))
(S2)

with pk := p
(1)
k . For the weak measurement M̂ (k)

−|{p(1)
k

,s⃗k}
for −1 outcome, the same result

of r
(n)
k is obtained. Then, the total reversibility R(N) of a photon pair by multiple reversal

measurements applied up to N times for each of Alice and Bob is

R(N) =
N∑

n=1

2r
(n)
A

N∑
m=1

2r
(m)
B

=
∏

k=A,B

pk

{
coth

(
2−1 ln

(
1 + pk
1− pk

))
− coth

(
2N−1 ln

(
1 + pk
1− pk

))}
. (S3)

The reversibility by a single reversal measurement is R(1) = (1 − p2A)(1 − p2B)/4 (agreeing

with the main text), and the maximum reversibility is R(∞) = (1 − pA)(1 − pB), obtained by 

the infinite number of reversal measurements.

In Fig. S6A, we compare the maximum reversibility R(∞) and the reversibility by a single

reversal measurement R(1). Note that approaching the maximum reversibility R(∞) does not



in fact require a large number of reversal measurements. For example, Fig. S6B demonstrates

that only two reversal measurements are already good for the Bell nonlocality test, and similarly,

five reversal measurements for the steering test.



A

B

C

D

p = 1

Fidelity = 0.996, Purity = 0.997Fidelity = 0.990, Purity = 0.985Fidelity = 0.997, Purity = 0.997

Fidelity = 0.946, Purity = 0.925Fidelity = 0.951, Purity = 0.919Fidelity = 0.950, Purity = 0.921

Fidelity = 0.998, Purity = 0.999Fidelity = 0.998, Purity = 0.998Fidelity = 0.998, Purity = 0.996

Fidelity = 0.975, Purity = 0.982Fidelity = 0.984, Purity = 0.976Fidelity = 0.982, Purity = 0.975

p = 0.58p = 0

Fig. S1: Quantum process tomography of weak measurements. Alice’s weak measurement
for (A) + output (M̂ (A)

+|{p,z⃗}) and (B) − output (M̂ (A)
−|{p,z⃗}). Bob’s weak measurement for (C) +

output (M̂ (B)
+|{p,z⃗}) and (D) − output (M̂ (B)

−|{p,z⃗}). Measurement strengths are p = 0 (left), p = 0.58
(middle), and p = 1 (right).



Fidelity = 0.996, Purity = 0.997Fidelity = 0.998, Purity = 0.968Fidelity = 0.992, Purity = 0.992
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Fig. S2: Quantum process tomography of reversal measurements. Alice’s reversal measure-
ment (R̂(A)

+|{p,z⃗}), (B) Bob’s reversal measurement (R̂(B)
+|{p,z⃗}). Measurement strengths are p = 0

(left), p = 0.58 (middle), and p = 0.98 (right). Note that p =1 has no reversal measurement
since it corresponds to a projective measurement.

p = 0.98p = 0.58p = 0

Fidelity = 0.997, Purity = 0.997Fidelity = 0.988, Purity = 0.977Fidelity = 0.982, Purity = 0.966

A

B
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Fig. S3: Quantum process tomography of weak and reversal measurements. The results
for (A) Alice’s side (R̂(A)

+|{p,z⃗}M̂
(A)
+|{p,z⃗}) and (B) Bob’s side (R̂(B)

+|{p,z⃗}M̂
(B)
+|{p,z⃗}). Measurement

strengths are p = 0 (left), p = 0.58 (middle), and p = 0.98 (right).
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Ẽ

1

Ẽ
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Fig. S4: Properties of quantum states after weak measurement. Average properties of quan-
tum states after weak measurement are plotted for each measurement direction r⃗A and r⃗B (aver-
age fidelity F̃(r⃗A,r⃗B), average entanglement of formation Ẽ(r⃗A,r⃗B), and average purity P̃(r⃗A,r⃗B)).
The average is mathematically defined as Q̃(r⃗A,r⃗B) =

∑
lA=±1

∑
lB=±1 P (lA, lB|r⃗A, r⃗B) Q [ρm].

The measurement directions are (A) r⃗A = x⃗, r⃗B = x⃗, (B) r⃗A = y⃗, r⃗B = y⃗ (C) r⃗A = z⃗, r⃗B = z⃗,
(D) r⃗A = z⃗, r⃗B = 1√

2
(z⃗ + x⃗), (E) r⃗A = z⃗, r⃗B = 1√

2
(z⃗ − x⃗), (F) r⃗A = x⃗, r⃗B = 1√

2
(z⃗ + x⃗), and

(G) r⃗A = x⃗, r⃗B = 1√
2
(z⃗ − x⃗). Dots and lines are the experimental data and the theory graphs

by the ideal condition, respectively. Error bars, which are smaller than the dot size, denote one
standard deviation.
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Fig. S5: Properties of quantum states after weak and reversal measurements. For weak
measurements M̂

(A)
+|{p,r⃗A} and M̂

(B)
+|{p,r⃗B}, we apply the corresponding reversal measurements

R̂
(A)
+|{p,r⃗A} and R̂

(B)
+|{p,r⃗B}, respectively. The properties of each resulting state is plotted (F : fi-

entanglement of formation, : purity). The measurement directions are (A) r⃗ = x⃗,delity, E : P A

r⃗B = x⃗, (B) r⃗A = y⃗, r⃗B = y⃗, (C) r⃗A = z⃗, r⃗B = z⃗, (D) r⃗A = z⃗, r⃗B = √1
2 (z⃗ + x⃗), (E) r⃗A = z⃗,

r⃗B = √1
2 (z⃗ − x⃗), (F) r⃗A = x⃗, r⃗B = √1

2 (z⃗ + x⃗), and (G) r⃗A = x⃗, r⃗B = √1
2 (z⃗ − x⃗). Dots and

lines are the experimental data and the theory graphs by the ideal condition, respectively. Error
bars denote one standard deviation.
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Fig. S6: Improving reversibility by multiple reversal measurements. (A) The blue line
represents the reversibility by the infinite number of reversal measurements, R(∞) = (1− p)2,
and the black line represents the reversibility by a single reversal measurement, R(1) = (1 −
p2)2/4. We use the same measurement strength pA = pB = p. (B) Reversibility as a function
of the number N of reversal measurements employed, R(N). Only few applications of reversal
measurements (dot) already give reversibility that approaches the maximum reversibility (dotted
line). The reversibility is calculated for the minimum measurement strength required for the
steering test (pA = pB = 3−1/2, Blue) and for the minimum strength required for the Bell
nonlocality test (pA = pB = 2−1/4, Red).



REFERENCES AND NOTES 

 

1. A. K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991). 

2. W. Zhang, D.-S. Ding, Y.-B. Sheng, L. Zhou, B.-S. Shi, G.-C. Guo, Quantum secure direct communication 

with quantum memory. Phys. Rev. Lett. 118, 220501 (2017). 

3. J.-G. Ren, P. Xu, H.-L. Yong, L. Zhang, S.-K. Liao, J. Yin, W.-Y. Liu, W.-Q. Cai, M. Yang, L. Li, K.-X. 

Yang, X. Han, Y.-Q. Yao, J. Li, H.-Y. Wu, S. Wan, L. Liu, D.-Q. Liu, Y.-W. Kuang, Z.-P. He, P. Shang, 

C. Guo, R.-H. Zheng, K. Tian, Z.-C. Zhu, N.-L. Liu, C.-Y. Lu, R. Shu, Y.-A. Chen, C.-Z. Peng, J.-Y. 

Wang, J.-W. Pan, Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017). 

4. T. Darras, B. E. Asenbeck, G. Guccione, A. Cavaillès, H. Le Jeannic, J. Laurat, A quantum-bit encoding 

converter. Nat. Photon. 17, 165–170 (2023). 

5. X. Guo, C. R. Breum, J. Borregaard, S. Izumi, M. V. Larsen, T. Gehring, M. Christandl, J. S. 

Neergaard-Nielsen, U. L. Andersen, Distributed quantum sensing in a continuous-variable entangled 

network. Nat. Phys. 16, 281–284 (2020). 

6. L.-Z. Liu, Y.-Z. Zhang, Z.-D. Li, R. Zhang, X.-F. Yin, Y.-Y. Fei, L. Li, N.-L. Liu, F. Xu, Y.-A. Chen, 

J.-W. Pan, Distributed quantum phase estimation with entangled photons. Nat. Photon. 15, 137–142 

(2021). 

7. M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-Nielsen, U. L. Andersen, Deterministic multi-mode 

gates on a scalable photonic quantum computing platform. Nat. Phys. 17, 1018–1023 (2021). 

8. L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent, J. F. F. Bulmer, F. M. Miatto, L. 

Neuhaus, L. G. Helt, M. J. Collins, A. E. Lita, T. Gerrits, S. W. Nam, V. D. Vaidya, M. Menotti, I. Dhand, 

Z. Vernon, N. Quesada, J. Lavoie, Quantum computational advantage with a programmable photonic 

processor. Nature 606, 75–81 (2022). 

9. N. Friis, G. Vitagliano, M. Malik, M. Huber, Entanglement certification from theory to experiment. Nat. 

Rev. Phys. 1, 72–87 (2019). 

10. J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, E. Kashefi, Quantum 

certification and benchmarking. Nat. Rev. Phys. 2, 382–390 (2020). 

11. D. F. V. James, P. G. Kwiat, W. J. Munro, A. G. White, Measurement of qubits. Phys. Rev. A 64, 052312 

(2001). 

12. O. Guhne, P. Hyllus, D. Bruß, A. Ekert, M. Lewenstein, C. Macchiavello, A. Sanpera, Detection of 

entanglement with few local measurements. Phys. Rev. A 66, 062305 (2002). 



13. D. J. Saunders, S. J. Jones, H. M. Wiseman, G. J. Pryde, Experimental EPR-steering using Bell-local 

states. Nat. Phys. 6, 845–849 (2010). 

14. L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. 

Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. 

Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. 

Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. 

Mirin, E. Knill, S. W. Nam, Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 

(2015). 

15. M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. 

Steinlechner, J. Kofler, J.-A. Larsson, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. 

Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann, A. Zeilinger, 

Significant-loophole-free test of bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 

(2015). 

16. B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, 

R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. 

Elkouss, S. Wehner, T. H. Taminiau, R. Hanson, Loophole-free Bell inequality violation using electron 

spins separated by 1.3 kilometres. Nature 526, 682–686 (2015). 

17. K. Banaszek, Fidelity balance in quantum operations. Phys. Rev. Lett. 86, 1366–1369 (2001). 

18. H.-T. Lim, Y.-S. Ra, K. H. Hong, S. W. Lee, Y.-H. Kim, Fundamental bounds in measurements for 

estimating quantum states. Phys. Rev. Lett. 113, 020504 (2014). 

19. R. Silva, N. Gisin, Y. Guryanova, S. Popescu, Multiple observers can share the nonlocality of half of an 

entangled pair by using optimal weak measurements. Phys. Rev. Lett. 114, 250401 (2015). 

20. T. C. White, J. Y. Mutus, J. Dressel, J. Kelly, R. Barends, E. Jeffrey, D. Sank, A. Megrant, B. Campbell, 

Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley, P. Roushan, A. 

Vainsencher, J. Wenner, A. N. Korotkov, J. M. Martinis, Preserving entanglement during weak 

measurement demonstrated with a violation of the Bell–Leggett–Garg inequality. npj Quantum Inf. 2, 

15022 (2016). 

21. M.-J. Hu, Z.-Y. Zhou, X.-M. Hu, C.-F. Li, G.-C. Guo, Y.-S. Zhang, Observation of non-locality sharing 

among three observers with one entangled pair via optimal weak measurement. npj Quantum Inf. 4, 63 

(2018). 



22. G. Foletto, L. Calderaro, A. Tavakoli, M. Schiavon, F. Picciariello, A. Cabello, P. Villoresi, G. Vallone, 

Experimental certification of sustained entanglement and nonlocality after sequential measurements. 

Phys. Rev. Appl. 13, 044008 (2020). 

23. Y.-H. Choi, S. Hong, T. Pramanik, H.-T. Lim, Y.-S. Kim, H. Jung, S.-W. Han, S. Moon, Y.-W. Cho, 

Demonstration of simultaneous quantum steering by multiple observers via sequential weak 

measurements. Optica 7, 675–679 (2020). 

24. S. Hong, Y.-S. Kim, Y.-W. Cho, J. Kim, S.-W. Lee, H.-T. Lim, Demonstration of complete information 

trade-off in quantum measurement. Phys. Rev. Lett. 128, 050401 (2022). 

25. J. Zhu, M.-J. Hu, C.-F. Li, G.-C. Guo, Y.-S. Zhang, Einstein-Podolsky-Rosen steering in two-sided 

sequential measurements with one entangled pair. Phys. Rev. A 105, 032211 (2022). 

26. Y.-S. Kim, Y.-W. Cho, Y.-S. Ra, Y.-H. Kim, Reversing the weak quantum measurement for a photonic 

qubit. Opt. Express 17, 11978–11985 (2009). 

27. Y.-S. Kim, J.-C. Lee, O. Kwon, Y.-H. Kim, Protecting entanglement from decoherence using weak 

measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012). 

28. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Bell nonlocality. Rev. Mod. Phys. 86, 419–

478 (2014). 

29. V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T. Franz, R. F. Werner, R. Schnabel, 

Observation of one-way Einstein–Podolsky–Rosen steering. Nat. Photon. 6, 596–599 (2012). 

30. J. Bowles, T. Vértesi, M. T. Quintino, N. Brunner, One-way Einstein-Podolsky-Rosen steering. Phys. 

Rev. Lett. 112, 200402 (2014). 

31. Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, Y. Shih, Experimental entanglement concentration 

and universal Bell-state synthesizer. Phys. Rev. A 67, 010301 (2003). 

32. J. Eisert, F. G. S. L. Brandão, K. M. R. Audenaert, Quantitative entanglement witnesses. New J. Phys. 9, 

46 (2007). 

33. O. Gühne, M. Reimpell, R. F. Werner, Estimating entanglement measures in experiments. Phys. Rev. 

Lett. 98, 110502 (2007). 

34. B. W. Reichardt, F. Unger, U. Vazirani, Classical command of quantum systems. Nature 496, 456–460 

(2013). 

35. P. Bierhorst, E. Knill, S. Glancy, Y. Zhang, A. Mink, S. Jordan, A. Rommal, Y.-K. Liu, B. Christensen, S. 

W. Nam, M. J. Stevens, L. K. Shalm, Experimentally generated randomness certified by the impossibility 

of superluminal signals. Nature 556, 223–226 (2018). 



36. W.-Z. Liu, Y.-Z. Zhang, Y.-Z. Zhen, M.-H. Li, Y. Liu, J. Fan, F. Xu, Q. Zhang, J.-W. Pan, Toward a 

photonic demonstration of device-independent quantum key distribution. Phys. Rev. Lett. 129, 050502 

(2022). 

37. W. Zhang, T. van Leent, K. Redeker, R. Garthoff, R. Schwonnek, F. Fertig, S. Eppelt, W. Rosenfeld, V. 

Scarani, C. C. W. Lim, H. Weinfurter, A device-independent quantum key distribution system for distant 

users. Nature 607, 687–691 (2022). 

38. Y. Pan, J. Zhang, E. Cohen, C.-W. Wu, P.-X. Chen, N. Davidson, Weak-to-strong transition of quantum 

measurement in a trapped-ion system. Nat. Phys. 16, 1206–1210 (2020). 

39. S. M. Lee, H. Kim, M. Cha, H. S. Moon, Polarization-entangled photon-pair source obtained via type-II 

non-collinear SPDC process with PPKTP crystal. Opt. Express 24, 2941–2953 (2016). 

40. Y.-C. Jeong, K.-H. Hong, Y.-H. Kim, Bright source of polarization-entangled photons using a PPKTP 

pumped by a broadband multi-mode diode laser. Opt. Express 24, 1165–1174 (2016). 

41. J. Fiurášek, Z. Hradil, Maximum-likelihood estimation of quantum processes. Phys. Rev. A 63, 020101 

(2001). 


	_
	adi5261_Tomerge
	References



