Supplemental Note 1: PubMed/Embase Search Strategy

#1 Latent Autoimmune Diabetes in Adults [Mesh] OR "Diabetes Mellitus, Type 1 "[Mesh] OR "diabetes mellitus, type 1/prevention and control"[MeSH Terms] 81438 records

#2 ((((prevent* [Title/Abstract] OR delay [Title/Abstract] OR immunomod* [Title/Abstract] OR immune therapy [Title/Abstract] OR "disease modifying therapy" [Title/Abstract] OR Antibodies, Monoclonal, Humanized / therapeutic use* [Title/Abstract] OR C-peptide* [Title/Abstract]) OR ("autoantibodies/analysis"[MeSH Terms]))

1922455 records

#3 (randomized controlled trial[Publication Type] OR randomized controlled trial[Title/Abstract]) OR (random*[Title/Abstract] OR rct[Title/Abstract] OR randomized[Title/Abstract]) 1422392 records

#4 #1 AND #2 13273 records

#5 #4 AND #3 1169 records

Filters: Human, English, 1996-present 880 records

Study ID	n	Intervention	Multi- center	Blinding	Primary Outcome(s)	Age range (years)	Positive ?
Ergun-Longmire 2004 ¹	197	1 mg po insulin vs. 10 mg po insulin vs. placebo x 6-36 mo	Yes	Double	β Cell function	5-60	No
Enander 2018 ²	54	48-72 hrs IV insulin vs. usual care	Yes	None	Not specified	2-17.99	No
Chaillous 2000 (Diabète Insuline Orale) ³	131	 2.5 mg po human biogenetic insulin daily vs. Yes Double β Cell func 7.5 mg po insulin vs. placebo x 12 mo 		β Cell function	7-40	No	
Pozzilli 2000 ⁴ (IMDIAB VII)	80	mg daily po insulin x 12 mo vs. placebo Yes Double HbA1c; Insulin dose; 6 β Cell function		6-22	No		
Crinò 2004 ⁵ (IMDIAB IX)	64	25 mg/kg/d nicotinamide + 15 mg/kg/d Yes Not Stated β Cell function vitamin E vs. 25 mg/kg/d nicotinamide x 2 yrs		4-18	No		
Pitocco 2006 ⁶ (IMDIAB XI)	70	Calcitriol vs. Nicotinamide	Yes	None	β Cell function	6-22	No
Pozzilli 1997 ⁷ (IMDIAB IV)	84	15 mg/kg vitamin E vs. 25 mg/kg nicotinamide x 1 yr	Yes	Double	β Cell function	5-35	No
Coutant 1998 8	63	2.5mg/d linomide vs. placebo x 12 mo	No	Double	Not specified	10-20	n/a
Allen 1999 ⁹	94	23106 colony forming units TICE BCG intradermal injection x 1 vs. placebo	Yes	Double	Incidence of remission	5-18	No
Keymeulen 2005 ¹⁰	80	0.22 IU/kg/day ChAglyCD3 (otelixizumab) IV x 6 days vs. placebo	Yes	Double	β Cell function	12-39	Yes
• Keymeulen 2010 ¹¹ (follow-up)	• 73						Yes
Demeester 2015 ¹² (precision)	• 80						
Sherry 2011 ¹³	516	14 d full dose, 14 d low dose, or 6 d full dose	Yes	Double	HbA1c; Insulin dose	12-39	No
(Protégé)		IV teplizumab vs. placebo at wk 0 and wk 26					
 Hagopian 2013 ¹⁴ (follow-up) 	• 462	24 mo follow-up			β Cell function		Yes
Herold 2013 ¹⁵	63	14 d IV teplizumab vs. placebo	Yes	Double	β Cell function	12-39	Yes

Supplementary Table 1. Studies in individuals with new or recent onset T1D (<1 year since diagnosis)

Herold 2013 ¹⁶	83	14 d IV teplizumab, with repeat at 1 yr vs.	Yes	None; Lab	β Cell function	8-35	Yes
(AbATE)		placebo		blinded	•		
 Long 2016 ¹⁷ 	• 74						
(precision)							
 Long 2017 ¹⁸ 	• 41						
(precision)							
Aronson 2014 ¹⁹	272	8 d IV otelixizumab (3.1 mg) vs. placebo,	Yes	Double	β Cell function	12-45	No
(DEFEND-1)		outcome at 12 months					
Ambery 2014 ²⁰	179	8 d course IV otelixizumab (3.1 mg) vs.	Yes	Double	β Cell function	12-45	No
(DEFEND-2)		placebo					
Pescovitz 2009 ²¹	87	IV rituximab days 1, 8, 15, and 22 vs. placebo	Yes	Double	β Cell function	8-45	Yes
 Pescovitz 2014 ²² 	• 77				β Cell function at 24		• No
(follow-up)					months		
 Herold 2011 ²³ 	• 78						
(precision)							
 Linsley 2019 ²⁴ 	• 54						
(precision)							
Ortqvist 2004 ²⁵	56	5-7.5 mg/kg/d po diazoxide vs. placebo x 24	Yes	Double	β Cell function	7-17	Yes
		mo					
Walter 2009 ²⁶	188	0.1 mg sc inj of altered peptide ligand NBI- 6024 at baseline, wk 2 and 4, and then qmo vs. placebo x 24 mo	Yes	Double	β Cell function	12-35	No
Rother 2009 ²⁷	128	5,000 units/d or 30,0000 units/d po human recombinant IFN-alpha vs. placebo x 1 vr	Yes	Double	β Cell function	3-25	Yes
Gottlieb 2010 ²⁸	126	600mg/m2/d po mycophenolate mofetil (MMF) x 2 yrs, vs. MMF+1m/kg IV Daclizumab x 2, vs. placebo	Yes	Double	β Cell function	8-45	No
Wherrett 2011 ²⁹	145	20µg sc inj GAD-alum x 3 vs. GAD-alum x 2 /alum x 1 vs. alum x 3	Yes	Double	β Cell function	3-45	No
Ludvigsson 2012 ³⁰	334	20ug sc inj GAD-alum x 4,vs. 20ug sc GAD-	Yes	Double	β Cell function	10-20	No
		alum x 2/placebo x 2 vs. placebo x 4					
Ludvigsson 2020 ³¹	64	450 d Vit. D + 90 d Ibuprofen + 20 μg sc inj	Yes	Double	Not specified	10-17.99	No
(DIABGAD)		GAD-alum x 2, vs. 40 µg GAD-alum, vs. Vit					
		D +placebo+20 µg GAD-alum, vs. placebo					

Ludvigsson 2021 32	109	4mg GAD-alum intralymphatic injection	Yes	Double	β Cell function	6-45	No
(DIAGNODE-2)		monthly x 3 + oral vitamin D (2,000 IE daily					
		for 120 days) vs. placebo					
Orban 2011 ³³	112	10 mg/kg IV abatacept x 27 over two years	Yes	Double	β Cell function	6-45	Yes
		vs. placebo					
• Orban 2014 ³⁴	• 112	 36 mo extended f/u (1 yr post tx cessation) 					
(follow-up)							
 Orban 2014 ³⁵ 	• 87						
(precision)							
• Cabrera 2018 ³⁶	• 74						
(precision)							
 Linsley 2019 ³⁷ 	• 105						
(precision)							
 Eichmann 2020 ³⁸ 	• 59						
(precision)							
Martin 2011 ³⁹	89	80 mg/d atorvastatin vs. placebo x 18 mo	Yes	Double	β Cell function	18-39	No
(DIATOR)							
• Strom 2012 ⁴⁰	• 89						
(precision)							
Moran 2013 41	69	2mg/kg sc injection monthly canakinumab x	Yes	Double	β Cell function	6-45	No
		12 mo vs. placebo					
Moran 2013 41	69	100 mg daily sc inj anakinra x 9 months vs.	Yes	Double	β Cell function	6-45	No
(AIDA)		placebo					
Gitelman 2013 42	58	6.5 mg/kg IV ATG vs. placebo	Yes	Double	β Cell function	12-35	No
(START)				blinded			
a 1 a a a a a a a a a a				after 3 mo			
• Gitelman 2016 43	• 58	24-mo follow up					NO
(follow-up)	0.1			0. 1		0.45	
Ataie-Jafari 2013 **	61	0.25mcg- 0.5 mcg/d po Alfacalcidol vs.	Yes	Single	B Cell function;	8-15	Yes
	75		N 1		Insulin dose	4.40	V
Nafei 2017	75	2000IU/day Vit. D3 vs. usual care	NO	None	Not specified	4-12	Yes
Buckingham 2013	68	Hybrid closed loop using the Medtronic	Yes	Outcomes	Not specified	6-<46	No
46		MiniMed system for 72-96 hrs vs. usual care		masked			
Griffin 2014 47	68	50-100 mg po sitagliptin + 30-60 mg po	Yes	Double	β Cell function	11-36	No
(REPAIR-T1D)		ansoprazole x12 months vs. placebo					

Pozzilli 2020 ⁴⁸	67	Albiglutide sc injection 30 -50 mg weekly x 52 wks vs. placebo	Yes	Double	β Cell function	18-30	No
Haller 2018 ⁴⁹	89	2.5 mg/kg IV ATG vs. ATG + 6mg sc inj pegylated GCSF q2wks x 6 vs. placebo	Yes	Double	β Cell function	12-45	Yes
 Haller 2019 ⁵⁰ (follow-up) 	• 89	• 24 mo extended f/u					Yes
Lebenthal 2019 51	70	60 mg/kg IV Alpha-1 Antitrypsin (Glassia) x 22 (52 wks), vs. 120 mg/kg x 22 vs. placebo	Yes	Double	β Cell function	8-25	No
Quattrin 2020 ⁵² (T1GER)	84	Golimumab 0, 2 wk induction then q2wk maintenance inj vs. placebo x 52 wks	Yes	Double	β Cell function	6-21	Yes
vonHerrath 2021 53	308	12 mg/kg monoclonal anti-IL-21 antibody q6 weeks vs. daily liraglutide sc inj vs. anti-IL-21 + liraglutide vs. placebo x 54 wks	Yes	Double	β Cell function	18-45	Yes
Lagarde 2021 ⁵⁴	76	90 or 180 mg/kg IV human-derived alpha1- proteinase inhibitor wkly x 13 wks vs. 26 wks vs. placebo	Yes	Partial blinding	β Cell function	6-35	No
Kumar 2021 55	96	3 mo high dose po multi-strain probiotic vs. placebo	No	Double	HbA1c	2-12	Yes
Groele 2021 ⁵⁶	96	10^9 colony-forming units/day po L. rhamnosus GG and B. lactis Bb12 vs. placebo x 6 mo	n/a	Double	β Cell function	8-17	No
Gitelman 2021 ⁵⁷	67	400 mg po daily imatinib mesylate x 26 weeks vs. placebo	Yes	Double	β Cell function	18-45	Yes
Greenbaum 2021 ⁵⁸ (EXTEND)	³ 163	8 mg/kg IV Tocilizumab monthly x 7 vs. placebo	Yes	Double	β Cell function	6-17	No
Diggins 2021 (T1DAL) ⁵⁹	26/49	15 mg alefacept IM qwk x 12; 12 wk off, qwk x 12 vs. placebo	Yes	Double	β Cell function	12-35	No
Christie 2002 ⁶⁰ (Precision)	97/188	Cyclosporin vs. placebo x12 mo	Yes	Double	n/a	10-35	n/a

Follow-up or precision studies describing a randomized trial that is already included in the table are listed as bulleted subheadings. Po – per oral/orally, IV – intravenous, IMDIAB –nicotinamide in recent-onset IDDM study, HbA1c - hemoglobin A1c, TICE BCG – Tice Bacillus Calmette-Guerin, ChAglyCD3 – Otelexizumab, AbATE - Autoimmunity-Blocking Antibody for Tolerance trial, DEFEND -Durable Response Therapy Evaluation for Early or New-Onset Type 1 Diabetes, Sc – subcutaneous, Inj – injection, Qmo – every month, MMF – Mycophenolate Mofetil, GAD-Alum – Glutamic acid decarboxylase – alum, , f/u – follow-up, tx – treatment, DIATOR – Diabetes Intervention with Atorvastatin, AIDA – Anti-Interleukin-1 in Diabetes Action, START - Study of Antithymocyte Globulin for Treatment of New-onset T1DM, ATG – Antithymocyte Globulin, GCSF - Granulocyte Colony-Stimulating Factor, Q2wks – every 2 weeks

T1GER - SIMPONI to Arrest β -cell Loss in Type 1 Diabetes, Q6 – every 6, n/a – not applicable, EXTEND - Tocilizumab (TCZ) in New-onset Type 1 Diabetes, T1DAL - Inducing Remission in Type 1 Diabetes With Alefacept, IM – intramuscular, Qwk – every week

Study ID	n	Intervention	C-peptide AUC Analysis	Results (p value vs. control) (units in nmol/L or
_				pmol/mL unless stated)
Enander ²	54	IV insulin vs. usual	Mean ± SD of 2 hr MMTT AUC	Usual Care: 23.9 ± 40.6 nmol/L*min
2018		care		IV insulin: 18.26 ± 16.45 (ns)
Sherry 2011	516	14 d full dose x 2, 14 d	1 yr median (IQR) change from	Placebo: -0.14 (-0.30, 0.02) nmol/L*min
¹³ (Protégé)*		low dose x 2, or 6 d full	baseline in 4 hr MMTT AUC	14 d full dose: -0.06 (-0.25, 0.12), p =0.0486;
		dose x 2 IV teplizumab		14 d low dose: -0.13 (-0.33, 0.01);
		vs. placebo		6 d full dose: -0.08 (-0.31, 0.11)
Hagopian	516		2 yr mean change from baseline	Placebo:-0.191;
2013 ¹⁴ (f/u)*			in 4-hr MMTT AUC adjusted for	14 d full dose: -0.136, p=0.027;
			age group and baseline value	14 d low dose: -0.198, p=0.968;
				6 d full dose: -0.174, p=0.312
Herold	63	IV teplizumab vs.	12 mo mean (95% CI) 4 hr MMTT	Placebo: 0.37 (0.32, 0.42);
2013* ¹⁵		placebo	AUC	Teplizumab: 0.45 (0.40, 0.51), p=0.03
Herold 2013	83	IV teplizumab, with	24 mo mean (95% CI) change in 4	Placebo: -0.46 (-0.57, -0.35);
¹⁶ (AbATE)*		repeat course at 1 yr	hr MMTT In(AUC + 1) adjusted for	Teplizumab: -0.28 (-0.36,-0.20), p=0.002
		vs. placebo	baseline value	
Aronson 2014	272	IV otelixizumab vs.	12 mo change in 2 hr MMTT AUC	Placebo: -0.2 ± 0.037;
(DEFEND-1)		placebo		Otelixizumab: 0.025 ± 0.025 p=0.58
19				
Ambery 2014	179	IV otelixizumab vs.	Difference in 12 mo change in 2	–0.09 (95% CI –0.17 to 0; P = 0.051)
(DEFEND-		placebo	hr MMTT adjusted for age,	
2) ²⁰			continent, and baseline value	
Pescovitz	87	IV rituximab vs.	12 mo mean (95% CI) 2 hr MMTT	Placebo: 0.47 (0.39, 0.55)
²¹ 2009*		placebo	log _e ([mean AUC]+1) adjusted for	Rituximab: 0.56 (0.50, 0.63), p=0.009
			age and sex.	
			Ũ	
Pescovitz	77		24 mo mean (95% CI) 2 hr MMTT	Placebo: 0.336 (0.245, 0.433)
2014 ²² (F/u)			loge([mean AUC]+1) adjusted for	Rituximab: 0.398(0.326, 0.473), p=0.15
			age and sex	
Walter 2009 ²⁶	188	NBI-6024 vs. placebo	24 mo mean + SD 2 hr MMTT	Placebo: 50 ± 45 pmol x min/ml:
	100			$NBI_{6024} \cdot 57 + 71 \cdot n=0.5$

Supplementary Table 2. Metabolic outcomes from studies in individuals with new or recent onset T1D.

Rother 2009* ²⁷	128	Human recombinant interferon-α(hrIFN- α) vs. placebo	Mean ± SD % 2 hr MMTT AUC loss from 0-12 months	Placebo: 56±29 %; 5000 units hrIFN-α: 29±54, p=0.017; 30,000 units hrIFN-α: 48±35, p=0.599
Gottlieb 2010	126	Mycophenolate mofetil (MMF), vs. MMF+ Daclizumab (DZB), vs. placebo	2 yr geometric mean (95%Cl) 2 hr MMTT AUC	Placebo: 0.27 (0.18 ,0.37); MMF: 0.25 (0.14 , 0.37) p=0.41; MMF +DZB: 0.28 (0.19 , 0.37) p=0.47
Wherrett 2011 ²⁹	145	GAD-alum x 3 vs. GAD-alum x2/ alum x 1 vs. alum x 3	Ratio (95% CI) of population mean from first 2 hr AUC of 4 hr MMTT adjusted for age, sex, and baseline C-peptide	GAD-alum ×3: 0.998 (0.779, 1.22), p = 0.98; GAD-alum ×2/alum ×1: 0.926 (0.720, 1.13), p = 0.50)
Ludvigsson 2012 ³⁰	334	GAD-alum x 4,vs. GAD-alum x 2 placebo x 2 vs. placebo	15 mo. mean estimated treatment ratio (95%CI) of change in 2 hr MMTT C-peptide AUC.	GAD x 4: 1.18 (0.955 - 1.458) p=0.13; GADx2/Placebo x 2: 1.149 (0.929 - 1.421), p=0.2
Ludvigsson 2021 (DIAGNODE- 2) ³²	109	Intralymphatic GAD- alum + vitamin D (vs. placebo	Mean (95%CI) treatment effect ratio from 2 hr MMTT AUC	1.091 (0.845-1.408); p=0.5009
Orban 2011* ³³	112	Abatacept vs. placebo	2 year geometric mean (95%CI) of 2 hr MMTT AUC adjusted for age, sex, and baseline value	Placebo: 0.266 (0.171, 0.368) Abatacept: 0·375 (0.290, 0.465) (p=0.0029)
Orban 2014 ³⁴ (f/u)*	112		36 mo population mean (95%CI) MMTT 2-h AUC, adjusted for age, sex, and baseline value	Placebo: 0.141 (0.071,0.215); Abatacept: 0.217 (0.168,0.268), p=0.046
Moran 2013 ⁴¹	69	Canakinumab vs. placebo	12 mo mean (95%CI) difference in 2 hr MMTT AUC vs. placebo	0.01 (-0.11 to 0.14), p=0.86)
Moran 2013 ⁴¹ (AIDA)	69	Anakinra vs. placebo	9 mo mean (95%CI) difference in 2 hr MMTT AUC vs. placebo	0.02 (-0.09 to 0.15), p=0.71
Gitelman 2013 ⁴² (START)	58	ATG vs. placebo	12 mo mean change (95%CI) in 2 hr MMTT AUC	Placebo: −0.239 (−0.361,−0.118) ATG: −0.195 (−0.292, −0.098), p=0.591
Gitelman ⁴³ 2016 (f/u)	58		24 mo change in the mean (95% CI) 2 hr C-peptide AUC from 4 hr MMTT, adjusted for baseline value	Placebo: -0.32 (-0.473,0.174); ATG: -0.27 (-0.373,0.171), p=0.38

Buckingham 201346	68	Hybrid closed loop (HCL) vs_usual care	Geometric mean (95%CI) 2 hr	Usual care: 0.52 (0.32,0.75); HCL: 0.43 (0.34.0.52) p=0.49
Griffin 2014 (REPAIR- T1D) ⁴⁷	68	Sitagliptin + lansoprazole vs. placebo	12 mo mean change (95%CI) in 2 hr MMTT AUC	Placebo: -253 (-383,-123) ; Sitagliptin+Lansoprazole: -229 (-316,-142), p=0.77
Pozzilli 2020 ⁴⁸	67	Albiglutide sc injection 30 -50 mg weekly x 52 wks vs. placebo	52 wk Difference in least squares means (95%CI) vs placebo for change in 2 hr MMTT AUC	0.04 (−0.13, 0.20) , p=0.6505
Haller 2018 ^{*49}	89	Low-dose ATG vs. ATG + GCSF vs. placebo	12 mo geometric-like means (95%CI) 2 hr AUC of 4 hr MMTT adjusted for for sex, age, and baseline value.	Placebo: 0.406 (0.324, 0.494) ATG: 0.646 (0.547, 0.750), p = 0.0003 ATG/GCSF: 0.528 (0.435, 0.627), p = 0.031)
Haller 2019 (f/u)* ⁵⁰	89		24 mo geometric-like means (95%CI) 2 hr AUC of 4 hr MMTT adjusted for for sex, age, and baseline value.	Placebo: 0.253 (0.177, 0.334) ATG: 0.5 (0.412, 0.594) p=0<0.001 ATG+GCSF: 0.36 (0.281, 0.445)p=0.032
Lebenthal 2019 ⁵¹	70	60 mg/kg IV Alpha-1 Antitrypsin (A1AT) x vs. 120 mg/kg x 22 vs. placebo	52 wk change in 2 hr MMTT AUC	Placebo: -0.34 60mg/kg A1AT:- 0.55 p=0.677 120mg/kg A1AT:- 0.29 p=0.822
Quattrin 2020 (T1GER)* ⁵²	84	Golimumab vs. placebo	Mean ± SD 52 wk 4 hr MMTT AUC	Placebo: 0.43±0.39; Golimumab: 0.64±0.42; p<0.001
vonHerrath 2021* ⁵³	308	Anti-IL-21 vs. liraglutide vs. combination vs. placebo	54 wk estimated mean (95%CI) treatment ratio based on change in 4 hr MMTT AUC	IL-21: 1.23 (0.97–1.57), p=0.093 Liraglutide: 1.12 (0.87–1.42), p=0.38 Combination: 1.48 (1.16–1.89), p=0.0017
Groele 2021 ⁵⁶	96	L. rhamnosus GG and B. lactis Bb12 vs. placebo	6 mo median (IQR) 2 hr MMTT AUC	Placebo: 3.30 (2.14; 4.56) ng/mL Treatment: 3.38 (2.24; 4.52), p=0.993
Gitelman 2021 ^{*57}	67	Imatinib mesylate x 26 weeks vs. placebo	Mean difference (90% CI) 2 hr AUC from 4 hr MMTT adjusted for sex, baseline age, and baseline value	0.095 (–0.003 to 0.191), p=0.048
Greenbaum 2021 ⁵⁸ (EXTEND)	81 pedia tric	Tocilizumab vs. placebo	Wk 52 mean (95% CI) change in 2 hr MMTT AUC	Placebo: 0.391 (0.47,0.31) Tocilizumab: 0.33 (0.39,0.28), p=0.277

*Studies with significant differences between a treatment group and placebo.

IV – intravenous, MMTT – mixed meal tolerance test, AUC – Area Under the Curve, f/u – follow-up, AbATE - Autoimmunity-Blocking Antibody for Tolerance trial, DEFEND - Durable Response Therapy Evaluation for Early or New-Onset Type 1 Diabetes, HrIFN- α – Human recombinant interferon-alpha, MMF – Mycophenolate mofetil, DZB – Daclizumab, GAD-Alum – Glutamic acid decarboxylase – alum, AIDA – Anti-Interleukin-1 in Diabetes Action, START - Study of Antithymocyte Globulin for Treatment of New-onset T1DM, HCL – Hybrid close Loop, Sc – subcutaneous , ATG – Antithymocyte Globulin, GCSF - Granulocyte Colony-Stimulating Factor, A1AT – Alpha-1 Antitrypsin , T1GER - SIMPONI to Arrest β-cell Loss in Type 1 Diabetes, EXTEND - Tocilizumab (TCZ) in New-onset Type 1 Diabetes

Study ID	Pre- specifie	Sub- aroup	Multiple comp.	Features used to define subgroups	Smallest sample	Outcome	Summary
	d?	#	corrected ?		size		
Prevention	1					•	
Knip 2018 ⁶¹	Both	5	No	Age; Sex; Family History of T1D; Specific HLA genotype; Study site/geographic location	2	Time to T1D	No relationships with tx response to extensively hydrolyzed casein formula identified
Näntö- Salonen 2008 ⁶²	Not stated	4	No	Age; Aab #; Specific Aab; β cell function measure	29	Time to T1D	No relationships with intranasal insulin tx response identified
Gale 2004 ⁶³	Pre- specified	5	No	Age; Sex; Aab #; Dysglycemia/AGT; β cell function measure	11	Time to T1D	No relationships with nicotinamide tx response identified
Skyler 2002 ⁶⁴	Pre- specified	2	No	Dysglycemia/AGT	67	Time to T1D	No relationships with parenteral tx response identified
Skyler 2005 ⁶⁵	Not stated	1	n/a	Specific Aab	130	Time to T1D	Among participants with higher IAA titer, oral insulin tx associated with reduced risk of progression.
Vehik 2011 ⁶⁶		1	n/a	Specific Aab	130	Time to T1D	In 75% of original participants with median 9.1 yrs f/u, participants with higher IAA titer maintained tx effect until cessation of therapy, when effect dissipated.
Krischer 2017 ⁶⁷	Pre- specified	3	No	Aab #; Specific Aab; β cell function measure	55	Time to T1D	IAA+ Participants with ICA+ or GADA and IA2A+ with low FPIR with significant tx response to oral insulin. No significant response in high FPIR group or if ICA+ and GADA or IA2A+.
Elding Larsson 2018 ⁶⁸	Pre- specified	3	No	Sex; Aab #; Dysglycemia/AGT	7	Time to T1D	No relationships with GAD sc inj tx response identified
Herold 2019 ⁶⁹	Pre- specified	12	No	Age; Sex; BMI; Specific HLA genotype; Specific	8	Time to T1D	Significant effect of teplizumab vs placebo if: female, BMI >median, GADA+ positive or mIAA+, ICA-, ZnT8A-, or IA2A-, DR3-,

Supplementary Table 3. Papers with Precision Analyses

				Aab; β cell function			DR4+, glucose> median, C-peptide AUC<
				measure; glucose			median.
Prevention Precision							
Butty 2008 ⁷⁰	Post-hoc	6	No	Specific HLA genotype, other genetic risk feature	5	Time to T1D	Enhanced effect of oral insulin in those with 1 but not 2 alleles for INS-23A SNP.
Sosenko 2020 ⁷¹	Post-hoc	:1	n/a	Diabetes progression risk score (DPTRS)	37	C-peptide measure; Time to T1D	For those with DPTRS >=6.75 oral insulin showed significant effect in DPT-1 and in combined data from TN and DPT-1 oral insulin studies.
New Onset			-				
Greenbaum 2021 ⁵⁸	Both	2	No	Age; genetic risk feature	5	C-peptide measure	No relationships with tocilizumab tx response identified
Wherrett 2011 ²⁹	Both	9	No	Age; Sex; Specific HLA genotype; Specific Aab; β cell function measure; HbA1c	not stated	C-peptide measure	No relationships with GAD sc x treattment response identified
Pescovitz 2009 ²¹	Not stated	7	No	Age; Sex; Specific HLA genotype; Aab #; β cell function measure; Insulin dose/regimen; HbA1c	11	C-peptide measure	No relationships with rituximab tx response identified
Martin 2011 ³⁹	Not stated	7	No	Age; BMI; Aab #; β cell function measure; Study site/geographic location	n/a	C-peptide measure	No relationships with atorvastatin tx response identified
Lebenthal 2019 ⁵¹	Both	2	No	Age; β cell function measure	1 (6% of 20 in placebo group for responde r analysis)	C-peptide measure; HbA1c; insulin dose	No relationships with Alpha-1 Antitrypsin tx response identified
Griffin 2014 ⁴⁷	Pre- specified	5	No	Age; Sex; β cell function measure; Insulin dose or regimen; HbA1c	n/a	C-peptide measure	No relationships with Sitagliptin + lansoprazole tx response identified

Gottlieb 2010 ²⁸	Not stated	6	No	Age; Sex; Aab #;; β cell function measure; Insulin dose/regimen; HbA1c	10	C-peptide measure	No relationships with Mycophenolate mofetil (MMF) +/- Daclizumab (DZB) tx response identified
Chaillous 2000 ³	Not stated	2	No	Age; Measure of β cell function	n/a	C-peptide measure	No relationships with oral human biogenetic insulin tx response identified
Buckingham 2013 ⁴⁶	Not stated	5	No	Age; Sex; β cell function measure; HbA1c; DKA at dx	4	C-peptide measure	No relationships with hybrid closed loop tx response identified
Aronson 2014 ¹⁹	Pre- specified	10	No	Age; Sex; BMI; Aab #; Specific Aab; β cell function measure; Study site/geographic location; Insulin dose or regimen; HbA1c	n/a	C-peptide measure	No relationships with Otelixizumab tx response identified
Rother 2009 ²⁷	Post-hoc	:1	n/a	Age	41	C-peptide measure	No relationships with oral interferon alpha tx response identified
Pozzilli 2000⁴	Not stated	1	n/a	Age		C-peptide measure; time to Aab+	No relationships with oral insulin tx response identified
Sherry 2011 ¹³	Pre- specified	3	No	Age; Study site/geographic location; Duration of dx	31	HbA1c	For 14-day full dose teplizumab, % participants with A1c <7% and lower insulin doses higher in 8-11 year olds, US participants, and participants randomized within 6 wks of dx
Hagopian 2013 ⁷²	Pre- specified	6	No	Age; β cell function measure; Insulin dose/regimen; HbA1c; Study site/geographic location; Duration of dx	31	C-peptide measure	For 14-day full dose teplizumab, 2-yr adjusted mean change in C-peptide AUC showed tx effect in participants in US, randomized in 6 wks from dx, or with baseline A1c<7.5%, insulin dose<0.4 u/kg/day, C-peptide >0.65 or >0.2, or if in the 8-17 yr old age category
Orban 2011 ³³	Pre- specified	7	No	Age; Sex; Specific HLA genotype; β cell function measure; Insulin	n/a	C-peptide measure	DR3+ participants with better ratio of abatacept tx effect while nonwhite participants with worse ratio of tx effect.

				dose/regimen; HbA1c; race			
Orban 2014 ³⁴	Pre- specified	8	Yes	Age; Sex; Race; β cell function measure; Insulin dose/regimen; HbA1c; Specific HLA genotype;	3	C-peptide measure	Significant impact of white race and DR3+ status to improve 3-yr C-peptide AUC ratio of tx effect for abatacept vs. placebo, although race effect may be spurious due to small sample size (n=3 in placebo group).
Moran 2013 ^{41*}	Pre- specified	9	No	Age; Sex; BMI; Specific HLA genotype; β cell function measure; Insulin dose or regimen; ethnicity, T1D duration	11	C-peptide measure	Participants with lower tertile of baseline C peptide in the canakinumab-treated group had significantly lower C-peptide concentrations at 1 year
Moran 2013 ⁴¹	Pre- specified	9	No	Age; Sex; BMI; Specific HLA genotype; β cell function measure; Insulin dose/regimen; ethnicity, diabetes duration	11	C-peptide measure	No relationships with anakinra tx response identified
Ludvigsson 2012 ³⁰	Pre- specified	13	No	Age; Sex; BMI; Specific HLA genotype; Specific Aab #;; β cell function measure; Study site/geographic location; Insulin dose or regimen; HbA1c; country, days since dx, pubertal stage	n/a	C-peptide measure	Participants who were male (all regimens), had baseline daily insulin dose of 0.398-0.605 IU/kg (all regimens), from non-Nordic European countries (4-dose regimen), or had baseline Tanner pubertal stage of 2 or 3 (4 dose regimen) had higher and significant estimated tx ratios
Herold 2013	Post-hoc	2	No	Age; HbA1c	7	C-peptide measure	Improved teplizumab tx response in participants who were younger and baseline A1c< 6.5%.
Herold 2013	Post-hoc	20	No	Age; Sex; BMI; Specific Aab #; β cell function measure; Immune cell phenotype; Insulin dose/regimen; HbA1c	18	C-peptide measure	Clinical responders to teplizumab with lower baseline A1c and insulin use; Baseline CCR4+ naive CCR6+ naive CCR4+ memory CD4+ T cells, CCR4+ naive or IFN-g+ CD8+ T cells higher in

							nonresponders; Baseline effector memory and CD38+ terminally differentiated CD8+ T cells lower in nonresponders.
Gitelman 2021 ⁵⁷	Post-hoc		No	Age; β cell function measure	n/a	C-peptide measure	Lower baseline Cpeptide AUC associated with better response to imatinib mesylate
Pozzilli ⁷ 1997	Post-hoc	1	n/a	Age	15	C-peptide measure; HbA1c; insulin dose	The insulin dose required to reach the same metabolic control (based on HbA1c) in participants <15 yrs was higher in Vit E- treated vs. nicotinamide-treated participants.
Ludvigsson 2021 ³²	Pre- specified	1	n/a	Specific HLA genotype	19	C-peptide measure	HLA DR3-DQ2+ participants showed greater tx effect of GAD-alum intralymphatic inj + oral vitamin D.
Keymeulen 2005 ¹⁰	Not stated	1	n/a	β cell function measure	16	C-peptide measure	Increase in insulin dose over follow up did not occur among participants treated with ChAglyCD3 with higher baseline glucose- clamp C-peptide release (≥P50)
Gitelman 2013 ⁴²	Post-hoc	1	n/a	Age	8	C-peptide measure	No relationships with high dose ATG tx response identified.
Gitelman 2016 ⁴³	Post-hoc	1	n/a	Age	20	C-peptide measure; HbA1c; insulin dose	Older age group (22-35 years) had more "responders: based on C-peptide AUC and showed significant impact of high dose ATG on C-peptide vs. placebo.
Ergun- Longmire 2004 ¹	Not stated	1	n/a	Age	n/a	C-peptide measure	Significant benefit of 1 mg and 10mg of oral insulin among subjects >=20 yrs. In patients diagnosed before 20 yrs, 1 mg dose was ineffective, and 10 mg dose accelerated C-peptide loss.
Crinò 2004⁵	Not stated	1	n/a	Age	23	C-peptide measure; HbA1c; insulin dose	For <9 yrs: at 6 months the nicotinamide (NA) +vitamin E group showed significantly higher C-peptide. For >9 yrs: NA alone showed higher C-peptide at 6 months and 9 months.
Coutant 1998 ⁸	Post-hoc	1	n/a	β cell function measure	40	C-peptide measure;	Linomide tx associated with higher C- peptide in group with >0.1 pmol/L baseline C-peptide.

						HbA1c;	
Ataie-Jafari 2013 ⁴⁴	Not stated	1	n/a	Sex	7	C-peptide measure; daily insulin dose	Males treated with alfacalcidol had improved fasting C-peptide and lower insulin doses by end of study vs. no improvement in females.
Allen 1999 ⁹	Post-hoc	:1	n/a subgroup	Age	34	C-peptide measure	Fasting and stimulated C-peptide lower at all time points in <10 yr group; rate of stimulated C-peptide loss more rapid in <10 yr gr
vonHerrath 2021 ⁵³	Pre- specified	1	n/a	β cell function measure	27	C-peptide measure	Participants with baseline C-peptide > 0.6 nmol/L showed no effect of combination tx with anti-IL-21 and liraglutide.
Walter 2009	Not stated	3	No	Age; Sex; ethnicity	n/a	C-peptide measure	No relationships with NBI-6024 tx response identified.
Keymeulen 2010 ¹¹	Post-hoc	2	Yes	Age; β cell function measure	9	C-peptide measure; HbA1c; insulin dose	ChAglyCD3-treated subgroup with initial C-peptide release ≥50th percentile needed lower insulin doses than the corresponding placebo subgroup, but no difference in <50th percentile group; In younger subgroup tx decreased insulin doses and metabolic control vs. placebo at months 24, 36 and 48; In the older subgroup, effect on mean insulin doses only significant and only at 24 months.
New-onset Precision							
Christie 2002 ⁶⁰	Not stated	5	No	Specific Aab #;	23 for ia2a but numbers not listed for other aabs	C-peptide measure; insulin independenc e; time in remission	 Insulin doses lower, stimulated C- peptide was higher, remission rates increased and rate of recurrence lower in cyclosporin treated IA-2A negative group Cyclosporin tx decreased insulin dose and had a positive effect on stimulated C- peptide in GAD+IA-2A+, GAD-IA-2A-, and

							GAD+IA-2A+ groups, but had minimal effect on the GAD- IA-2A+ group.
Linsley 2019	Not stated	tested many gene module s	No	Immune cell phenotype; Other: Gene expression modules reflecting immunotypes based on whole blood RNA sequencing	n/a	C-peptide measure	A transient increase in activated B cells, reprogrammed costimulatory ligand gene expression, and reduced inhibition of anti- insulin antibodies immunotype was associated with resistance to abatacept tx; responders to drug were more likely to be older than median age.
Strom 2012	Not stated	8	No	Age; Sex; BMI; β cell function measure; Immune cell phenotype; Insulin dose or regimen; Total cholesterol and CRP	n/a	C-peptide measure	Lower BMI and higher fasting baseline C- peptide associated with higher median C- peptide in placebo group but not atorvastatin group; Higher CRP in atorvastatin group but not placebo group associated with higher median C-peptide.
Herold 2011 ²³	Not stated	12	No	Immune cell phenotype	19	C-peptide measure	CD3+ and CD4+ cell counts were significantly higher in responders to rituximab. Nonresponders showed no change in proliferative responses to diabetes associated, islet-specific, and neuronal autoantigens over 12 mo.
Demeester 2015 ¹²	Not stated	7	No	Age; Specific Aab #; β cell function measure	9	C-peptide measure;	Better otelixizumab response associated with higher titers of mIAA: In the placebo group, patients with higher IAA x C- peptide levels showed rapid loss of functional β cell mass not observed in otelixizumab group.
Cabrera 2018 ³⁶	Not stated	many transcri pts analyze d	Yes	Immune cell phenotype	13	C-peptide measure	Higher baseline inflammatory index in placebo associated with worse C-peptide trajectory but this relationship not present in abatacept tx group, suggesting that higher baseline innate inflammation was associated with better tx response.
Long 2016	Not stated	Many immune	No	Immune cell phenotype	22	C-peptide measure	A CD8+ T cell population accumulated in teplizumab responders that phenotypically resembled exhausted T cells: expressed

		module s					high levels of the transcription factor EOMES, and multiple inhibitory receptors, including TIGIT and KLRG1.
Long 2017 ¹⁸	Not stated	4	Yes	Teplizumab anti-drug antibody (ADA) positivity	5	C-peptide measure; modulation o immune cell phenotype	Only 1/7 teplizumab ADA+ individuals was a clinical responder at 13 mo; ADA+ fsubjects failed to show CD3 modulation on both CD4+ and CD8+ T cells at the time of the 2nd course. However, after 2nd course, magnitude of CD3 modulation was similar between ADA+ and ADA – groups.
Diggins 2021 ⁵⁹	Not stated	7	Yes	Immune cell phenotype changes in association with treatment response	6	C-peptide measure	Greater C-peptide preservation by alefacept linked to RNAseq module of CD8+ Tcell activation- and exhaustion- associated genes. Flow cytometry data showed 2 hypoproliferative CD8+ memory cell phenotypes associated with tx response, expressing exhaustion- associated markers TIGIT and KLRG1.
Linsley 2019	Not stated	5	Yes	Immune cell phenotype	n/a	C-peptide measure	Whole blood RNA-seq analysis with flow cytometry f/u testing showed that a transient increase in multiple T cell populations was associated with decreased pharmacodynamic activity of rituximab, increased proliferative response to islet antigens, and rapid C- peptide loss.
Orban 2014	Pre- specifiec	12	Yes.	Immune cell phenotype	n/a	C-peptide measure; Changes in immune cell subset frequencies	Placebo-treated participants with an increase in central memor CD4 T cells showed subsequent C-peptide decline, but this effect was abrogated by abatacept tx. Abatacept tx resulted in slower C-peptide loss in association with central memory CD4 T cell contraction and naïve CD4 T cell expansion.

Eichmann	Not	many	No.	Immune cell phenotype	n/a	C-peptide	No relationship with abatacept tx
2020 ³⁸	stated	subsets				measure	response identified

*Moran 2013 paper includes analyses from 2 trials

Bolding indicates paper classification: prevention, precision prevention, new onset, or precision new onset

Abbreviations: tx- treatment; dx- diagnosis; BMI body mass index; Aab- islet autoantibody; ZnT8- zinc transporter 8 autoantibody; GADA- glutamic acid decarboxylase autantibody; IAA- insulin autoantibody; ICA- islet cell autoantibody; IA2A- islet antigen 2 autoantibody

T1D – type 1 diabetes, HLA - Human Leukocyte Antigens, Tx – treatment, Aab – autoantibody, AGT – Abnormal glucose tolerance, n/a – not applicable, IAA – Insulin autoantibody, f/u – follow-up, ICA – Islet cell autoantibody, GADA – glutamic acid decarboxylase antibody, IA2A – insulinoma-associated protein 2 autoantibody, FPIR – first phase insulin response, Sc – subcutaneous, Inj – injection, BMI – body mass index, ZnT8A - zinc transporter-8 antibody, AUC – area under the curve, SNP – single nucleotide polymorphism, DPTRS – Diabetes Prevention Trial-Type 1 Risk Score, DPT-1 – Diabetes Prevention Trial-Type 1, TN – TrialNet, HbA1c – hemoglobin A1c, GAD Glutamic Acid Decarboxylase, MMF – Mycophenolate Mofetil, DZB – Daclizumab, DKA – Diabetes Ketoacidosis, Dx – diagnosis, ChAglyCD3 – Otelexizumab, ATG - Antithymocyte Globulin, NA – Nicotinamide, Gr – group, CRP – C-reactive protein, ADA – anti-drug antibody

Supplemental References

- 1 Ergun-Longmire, B. *et al.* Oral insulin therapy to prevent progression of immunemediated (type 1) diabetes. *Ann N Y Acad Sci* **1029**, 260-277 (2004). <u>https://doi.org:10.1196/annals.1309.057</u>
- Enander, R. *et al.* Beta cell function after intensive subcutaneous insulin therapy or intravenous insulin infusion at onset of type 1 diabetes in children without ketoacidosis. *Pediatric diabetes* 19, 1079-1085 (2018).
 https://doi.org:10.1111/pedi.12657
- 3 Chaillous, L. *et al.* Oral insulin administration and residual beta-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial. Diabète Insuline Orale group. *Lancet* **356**, 545-549 (2000). <u>https://doi.org:10.1016/s0140-6736(00)02579-4</u>
- 4 Pozzilli, P. *et al.* No effect of oral insulin on residual beta-cell function in recentonset type I diabetes (the IMDIAB VII). IMDIAB Group. *Diabetologia* **43**, 1000-1004 (2000). <u>https://doi.org:10.1007/s001250051482</u>
- 5 Crinò, A. *et al.* A randomized trial of nicotinamide and vitamin E in children with recent onset type 1 diabetes (IMDIAB IX). *Eur J Endocrinol* **150**, 719-724 (2004). https://doi.org:10.1530/eje.0.1500719
- Pitocco, D. *et al.* The effects of calcitriol and nicotinamide on residual pancreatic beta-cell function in patients with recent-onset Type 1 diabetes (IMDIAB XI).
 Diabet Med 23, 920-923 (2006). <u>https://doi.org:10.1111/j.1464-</u>
 <u>5491.2006.01921.x</u>
- 7 Pozzilli, P. *et al.* Vitamin E and nicotinamide have similar effects in maintaining residual beta cell function in recent onset insulin-dependent diabetes (the IMDIAB IV study). *Eur J Endocrinol* **137**, 234-239 (1997). https://doi.org:10.1530/eje.0.1370234
- 8 Coutant, R. *et al.* Low dose linomide in Type I juvenile diabetes of recent onset: a randomised placebo-controlled double blind trial. *Diabetologia* **41**, 1040-1046 (1998). <u>https://doi.org:10.1007/s001250051028</u>
- Allen, H. F. *et al.* Effect of Bacillus Calmette-Guerin vaccination on new-onset type 1 diabetes. A randomized clinical study. *Diabetes Care* 22, 1703-1707 (1999). <u>https://doi.org:10.2337/diacare.22.10.1703</u>
- 10 Keymeulen, B. *et al.* Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. *N Engl J Med* **352**, 2598-2608 (2005). <u>https://doi.org:10.1056/NEJMoa043980</u>
- 11 Keymeulen, B. *et al.* Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. *Diabetologia* **53**, 614-623 (2010). https://doi.org:10.1007/s00125-009-1644-9
- 12 Demeester, S. *et al.* Preexisting insulin autoantibodies predict efficacy of otelixizumab in preserving residual β-cell function in recent-onset type 1 diabetes. *Diabetes Care* **38**, 644-651 (2015). <u>https://doi.org:10.2337/dc14-1575</u>
- 13 Sherry, N. *et al.* Teplizumab for treatment of type 1 diabetes (Protégé study): 1year results from a randomised, placebo-controlled trial. *Lancet* **378**, 487-497 (2011). <u>https://doi.org:10.1016/s0140-6736(11)60931-8</u>

- 14 Hagopian, W. *et al.* Teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protégé trial. *Diabetes* **62**, 3901-3908 (2013). <u>https://doi.org:10.2337/db13-0236</u>
- 15 Herold, K. C. *et al.* Teplizumab treatment may improve C-peptide responses in participants with type 1 diabetes after the new-onset period: a randomised controlled trial. *Diabetologia* **56**, 391-400 (2013). <u>https://doi.org:10.1007/s00125-012-2753-4</u>
- 16 Herold, K. C. *et al.* Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. *Diabetes* **62**, 3766-3774 (2013). <u>https://doi.org:10.2337/db13-0345</u>
- 17 Long, S. A. *et al.* Partial exhaustion of CD8 T cells and clinical response to teplizumab in new-onset type 1 diabetes. *Sci Immunol* **1** (2016). https://doi.org:10.1126/sciimmunol.aai7793
- 18 Long, S. A. *et al.* Remodeling T cell compartments during anti-CD3 immunotherapy of type 1 diabetes. *Cell Immunol* **319**, 3-9 (2017). https://doi.org:10.1016/j.cellimm.2017.07.007
- 19 Aronson, R. *et al.* Low-dose otelixizumab anti-CD3 monoclonal antibody DEFEND-1 study: results of the randomized phase III study in recent-onset human type 1 diabetes. *Diabetes Care* **37**, 2746-2754 (2014). https://doi.org:10.2337/dc13-0327
- 20 Ambery, P. *et al.* Efficacy and safety of low-dose otelixizumab anti-CD3 monoclonal antibody in preserving C-peptide secretion in adolescent type 1 diabetes: DEFEND-2, a randomized, placebo-controlled, double-blind, multicentre study. *Diabet Med* **31**, 399-402 (2014). <u>https://doi.org:10.1111/dme.12361</u>
- 21 Pescovitz, M. D. *et al.* Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. *N Engl J Med* **361**, 2143-2152 (2009). https://doi.org:10.1056/NEJMoa0904452
- 22 Pescovitz, M. D. *et al.* B-lymphocyte depletion with rituximab and β-cell function: two-year results. *Diabetes Care* **37**, 453-459 (2014). <u>https://doi.org:10.2337/dc13-0626</u>
- 23 Herold, K. C. *et al.* Increased T cell proliferative responses to islet antigens identify clinical responders to anti-CD20 monoclonal antibody (rituximab) therapy in type 1 diabetes. *J Immunol* **187**, 1998-2005 (2011). <u>https://doi.org:10.4049/jimmunol.1100539</u>
- 24 Linsley, P. S. *et al.* Elevated T cell levels in peripheral blood predict poor clinical response following rituximab treatment in new-onset type 1 diabetes. *Genes Immun* **20**, 293-307 (2019). <u>https://doi.org:10.1038/s41435-018-0032-1</u>
- 25 Ortqvist, E. *et al.* Temporary preservation of beta-cell function by diazoxide treatment in childhood type 1 diabetes. *Diabetes Care* **27**, 2191-2197 (2004). https://doi.org:10.2337/diacare.27.9.2191
- 26 Walter, M., Philotheou, A., Bonnici, F., Ziegler, A. G. & Jimenez, R. No effect of the altered peptide ligand NBI-6024 on beta-cell residual function and insulin needs in new-onset type 1 diabetes. *Diabetes Care* **32**, 2036-2040 (2009). <u>https://doi.org:10.2337/dc09-0449</u>

- 27 Rother, K. I. *et al.* Effect of ingested interferon-alpha on beta-cell function in children with new-onset type 1 diabetes. *Diabetes Care* **32**, 1250-1255 (2009). <u>https://doi.org:10.2337/dc08-2029</u>
- 28 Gottlieb, P. A. *et al.* Failure to preserve beta-cell function with mycophenolate mofetil and daclizumab combined therapy in patients with new- onset type 1 diabetes. *Diabetes Care* **33**, 826-832 (2010). <u>https://doi.org:10.2337/dc09-1349</u>
- 29 Wherrett, D. K. *et al.* Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. *Lancet* **378**, 319-327 (2011). <u>https://doi.org:10.1016/s0140-6736(11)60895-7</u>
- 30 Ludvigsson, J. *et al.* GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. *N Engl J Med* **366**, 433-442 (2012). https://doi.org:10.1056/NEJMoa1107096
- 31 Ludvigsson, J. *et al.* Combined vitamin D, ibuprofen and glutamic acid decarboxylase-alum treatment in recent onset Type i diabetes: Lessons from the DIABGAD randomized pilot trial. *Future Science OA* **6** (2020). https://doi.org:10.2144/fsoa-2020-0078
- 32 Ludvigsson, J. *et al.* Intralymphatic Glutamic Acid Decarboxylase With Vitamin D Supplementation in Recent-Onset Type 1 Diabetes: A Double-Blind, Randomized, Placebo-Controlled Phase IIb Trial. *Diabetes Care* **44**, 1604-1612 (2021). <u>https://doi.org:10.2337/dc21-0318</u>
- 33 Orban, T. *et al.* Co-stimulation modulation with abatacept in patients with recentonset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. *Lancet* **378**, 412-419 (2011). https://doi.org:10.1016/s0140-6736(11)60886-6
- 34 Orban, T. *et al.* Costimulation modulation with abatacept in patients with recentonset type 1 diabetes: follow-up 1 year after cessation of treatment. *Diabetes Care* **37**, 1069-1075 (2014). <u>https://doi.org:10.2337/dc13-0604</u>
- 35 Orban, T. *et al.* Reduction in CD4 central memory T-cell subset in costimulation modulator abatacept-treated patients with recent-onset type 1 diabetes is associated with slower C-peptide decline. *Diabetes* **63**, 3449-3457 (2014). <u>https://doi.org:10.2337/db14-0047</u>
- 36 Cabrera, S. M. *et al.* Innate immune activity as a predictor of persistent insulin secretion and association with responsiveness to CTLA4-Ig treatment in recent-onset type 1 diabetes. *Diabetologia* 61, 2356-2370 (2018). https://doi.org:10.1007/s00125-018-4708-x
- 37 Linsley, P. S., Greenbaum, C. J., Speake, C., Long, S. A. & Dufort, M. J. B lymphocyte alterations accompany abatacept resistance in new-onset type 1 diabetes. *JCI Insight* 4 (2019). <u>https://doi.org:10.1172/jci.insight.126136</u>
- Eichmann, M. *et al.* Costimulation Blockade Disrupts CD4(+) T Cell Memory Pathways and Uncouples Their Link to Decline in beta-Cell Function in Type 1 Diabetes. *J Immunol* 204, 3129-3138 (2020). https://doi.org:10.4049/jimmunol.1901439
- 39 Martin, S. *et al.* Residual beta cell function in newly diagnosed type 1 diabetes after treatment with atorvastatin: the Randomized DIATOR Trial. *PLoS One* **6**, e17554 (2011). <u>https://doi.org:10.1371/journal.pone.0017554</u>

- 40 Strom, A. *et al.* Improved preservation of residual beta cell function by atorvastatin in patients with recent onset type 1 diabetes and high CRP levels (DIATOR trial). *PLoS One* **7**, e33108 (2012). https://doi.org:10.1371/journal.pone.0033108
- 41 Moran, A. *et al.* Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. *Lancet* **381**, 1905-1915 (2013). https://doi.org:10.1016/s0140-6736(13)60023-9
- 42 Gitelman, S. E. *et al.* Antithymocyte globulin treatment for patients with recentonset type 1 diabetes: 12-month results of a randomised, placebo-controlled, phase 2 trial. *Lancet Diabetes Endocrinol* **1**, 306-316 (2013). <u>https://doi.org:10.1016/s2213-8587(13)70065-2</u>
- 43 Gitelman, S. E. *et al.* Antithymocyte globulin therapy for patients with recentonset type 1 diabetes: 2 year results of a randomised trial. *Diabetologia* **59**, 1153-1161 (2016). <u>https://doi.org:10.1007/s00125-016-3917-4</u>
- 44 Ataie-Jafari, A. *et al.* A randomized placebo-controlled trial of alphacalcidol on the preservation of beta cell function in children with recent onset type 1 diabetes. *Clin Nutr* **32**, 911-917 (2013). <u>https://doi.org:10.1016/j.clnu.2013.01.012</u>
- 45 Nafei, L. T., Kadhim, K. A., Said, A. M. & Ghani, S. H. Evaluation the effect of vitamin D3 on glycemic indices on Iraqi children with type 1 DM. *International Journal of Pharmaceutical Sciences Review and Research* **42**, 134-143 (2017).
- 46 Buckingham, B. *et al.* Effectiveness of early intensive therapy on β-cell preservation in type 1 diabetes. *Diabetes Care* **36**, 4030-4035 (2013). https://doi.org:10.2337/dc13-1074
- Griffin, K. J., Thompson, P. A., Gottschalk, M., Kyllo, J. H. & Rabinovitch, A. Combination therapy with sitagliptin and lansoprazole in patients with recent-onset type 1 diabetes (REPAIR-T1D): 12-month results of a multicentre, randomised, placebo-controlled, phase 2 trial. *Lancet Diabetes Endocrinol* 2, 710-718 (2014). <u>https://doi.org:10.1016/s2213-8587(14)70115-9</u>
- 48 Pozzilli, P. *et al.* Randomized 52-week Phase 2 Trial of Albiglutide Versus Placebo in Adult Patients With Newly Diagnosed Type 1 Diabetes. *J Clin Endocrinol Metab* **105** (2020). <u>https://doi.org:10.1210/clinem/dgaa149</u>
- Haller, M. J. *et al.* Low-Dose Anti-Thymocyte Globulin (ATG) Preserves β-Cell Function and Improves HbA(1c) in New-Onset Type 1 Diabetes. *Diabetes Care* 41, 1917-1925 (2018). <u>https://doi.org:10.2337/dc18-0494</u>
- 50 Haller, M. J. *et al.* Low-Dose Anti-Thymocyte Globulin Preserves C-Peptide, Reduces HbA(1c), and Increases Regulatory to Conventional T-Cell Ratios in New-Onset Type 1 Diabetes: Two-Year Clinical Trial Data. *Diabetes* **68**, 1267-1276 (2019). <u>https://doi.org:10.2337/db19-0057</u>
- 51 Lebenthal, Y. *et al.* A Phase II, Double-Blind, Randomized, Placebo-Controlled, Multicenter Study Evaluating the Efficacy and Safety of Alpha-1 Antitrypsin (AAT) (Glassia(®)) in the Treatment of Recent-Onset Type 1 Diabetes. *Int J Mol Sci* **20** (2019). <u>https://doi.org:10.3390/ijms20236032</u>
- 52 Quattrin, T. *et al.* Golimumab and Beta-Cell Function in Youth with New-Onset Type 1 Diabetes. *N Engl J Med* **383**, 2007-2017 (2020). https://doi.org:10.1056/NEJMoa2006136

- 53 von Herrath, M. *et al.* Anti-interleukin-21 antibody and liraglutide for the preservation of β-cell function in adults with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled, phase 2 trial. *Lancet Diabetes Endocrinol* **9**, 212-224 (2021). <u>https://doi.org:10.1016/s2213-8587(21)00019-x</u>
- 54 Lagarde, W. H. *et al.* Human plasma-derived alpha(1) -proteinase inhibitor in patients with new-onset type 1 diabetes mellitus: A randomized, placebocontrolled proof-of-concept study. *Pediatr Diabetes* **22**, 192-201 (2021). <u>https://doi.org:10.1111/pedi.13162</u>
- 55 Kumar, S. *et al.* A high potency multi-strain probiotic improves glycemic control in children with new-onset type 1 diabetes mellitus: A randomized, double-blind, and placebo-controlled pilot study. *Pediatric diabetes* **22**, 1014-1022 (2021). https://doi.org:10.1111/pedi.13244
- 56 Groele, L. *et al.* Lack of effect of Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12 on beta-cell function in children with newly diagnosed type 1 diabetes: a randomised controlled trial. *BMJ Open Diabetes Res Care* **9** (2021). <u>https://doi.org:10.1136/bmjdrc-2020-001523</u>
- 57 Gitelman, S. E. *et al.* Imatinib therapy for patients with recent-onset type 1 diabetes: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. *Lancet Diabetes Endocrinol* **9**, 502-514 (2021). https://doi.org:10.1016/s2213-8587(21)00139-x
- 58 Greenbaum, C. J. *et al.* IL-6 receptor blockade does not slow beta cell loss in new-onset type 1 diabetes. *JCI Insight* **6** (2021). https://doi.org:10.1172/jci.insight.150074
- 59 Diggins, K. E. *et al.* Exhausted-like CD8+ T cell phenotypes linked to C-peptide preservation in alefacept-treated T1D subjects. *JCI Insight* **6** (2021). https://doi.org:10.1172/jci.insight.142680
- 60 Christie, M. R., Mølvig, J., Hawkes, C. J., Carstensen, B. & Mandrup-Poulsen, T. IA-2 antibody-negative status predicts remission and recovery of C-peptide levels in type 1 diabetic patients treated with cyclosporin. *Diabetes Care* **25**, 1192-1197 (2002). <u>https://doi.org:10.2337/diacare.25.7.1192</u>
- 61 Knip, M. *et al.* Effect of Hydrolyzed Infant Formula vs Conventional Formula on Risk of Type 1 Diabetes. *JAMA* **319**, 38 (2018). <u>https://doi.org:10.1001/jama.2017.19826</u>
- 62 Näntö-Salonen, K. *et al.* Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. *Lancet* **372**, 1746-1755 (2008). https://doi.org:10.1016/s0140-6736(08)61309-4
- 63 Gale, E. A., Bingley, P. J., Emmett, C. L. & Collier, T. European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. *Lancet* **363**, 925-931 (2004). https://doi.org:10.1016/s0140-6736(04)15786-3
- 64 Effects of insulin in relatives of patients with type 1 diabetes mellitus. *N Engl J Med* **346**, 1685-1691 (2002). <u>https://doi.org:10.1056/NEJMoa012350</u>
- 65 Skyler, J. S. *et al.* Effects of oral insulin in relatives of patients with type 1 diabetes: The Diabetes Prevention Trial--Type 1. *Diabetes Care* **28**, 1068-1076 (2005). <u>https://doi.org:10.2337/diacare.28.5.1068</u>

- 66 Vehik, K. *et al.* Long-term outcome of individuals treated with oral insulin: diabetes prevention trial-type 1 (DPT-1) oral insulin trial. *Diabetes Care* **34**, 1585-1590 (2011). <u>https://doi.org:10.2337/dc11-0523</u>
- 67 Krischer, J. P., Schatz, D. A., Bundy, B., Skyler, J. S. & Greenbaum, C. J. Effect of Oral Insulin on Prevention of Diabetes in Relatives of Patients With Type 1 Diabetes: A Randomized Clinical Trial. *Jama* **318**, 1891-1902 (2017). https://doi.org:10.1001/jama.2017.17070
- Elding Larsson, H., Lundgren, M., Jonsdottir, B., Cuthbertson, D. & Krischer, J. Safety and efficacy of autoantigen-specific therapy with 2 doses of alumformulated glutamate decarboxylase in children with multiple islet autoantibodies and risk for type 1 diabetes: A randomized clinical trial. *Pediatr Diabetes* **19**, 410-419 (2018). <u>https://doi.org:10.1111/pedi.12611</u>
- 69 Herold, K. C. *et al.* An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes. *New England Journal of Medicine* **381**, 603-613 (2019). <u>https://doi.org:10.1056/nejmoa1902226</u>
- 70 Butty, V., Campbell, C., Mathis, D. & Benoist, C. Impact of diabetes susceptibility loci on progression from pre-diabetes to diabetes in at-risk individuals of the diabetes prevention trial-type 1 (DPT-1). *Diabetes* **57**, 2348-2359 (2008). <u>https://doi.org:10.2337/db07-1736</u>
- 71 Sosenko, J. M. *et al.* Slowed Metabolic Decline After 1 Year of Oral Insulin Treatment Among Individuals at High Risk for Type 1 Diabetes in the Diabetes Prevention Trial-Type 1 (DPT-1) and TrialNet Oral Insulin Prevention Trials. *Diabetes* **69**, 1827-1832 (2020). https://doi.org:10.2337/db20-0166
- 72 Hagopian, W. *et al.* Teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protege trial. *Diabetes* **62**, 3901-3908 (2013). <u>https://doi.org:10.2337/db13-0236</u>