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Supplementary Figures

Supplementary Figure 1. GO Enrichment Analysis of late changes in the proteome of
clogger-expressing cells. (A-B) Enrichment of GO terms of the “molecular function”
category of proteins upregulated (log, fold change larger than 0.5 with adjusted p value of at
most 0.05) in cells expressing b,-DHFR compared to cytosolic DHFR after 4.5 h (A) or 9 h

(B) of induction with 0.5% galactose. Proteomics data from (Boos et al., 2019).



Supplementary Figure 2. Detection of UPR®® induction with mass spectrometry and
RT-gPCR. (A) Protein levels in clogger-expressing versus control cells after different times
of induction were measured by quantitative mass spectrometry (Boos et al., 2019).
Highlighted are proteins which are reported UPR® targets (Schmidt et al., 2019). Data from
n=3 independent biological replicates are shown. The data for 18 h are the same as shown in
Figure 1E. (B) The change in translational efficiency after 4.5 h clogger expression was
calculated for all genes measured in both the RNA-seq(Boos et al., 2019) and Ribo-Seq on
clogger-expressing cells by dividing the translatome fold change by the transcriptome fold
change. (C) Schematic depiction of the primer-probe combinations used to quantify total
HAC1 as well as spliced HAC1' mRNA levels via RT-qPCR. (D) Wild type, Airel and Ahacl
cells were grown in presence or absence of 1 pug/ml tunicamycin and HAC1 and HAC1' levels
were analyzed with the primer-probe assay shown in C. As expected, HAC1' levels increased
in wild type cells treated with tunicamycin, but no HAC1' was detected in cells lacking HAC1

or IRE1, confirming the specificity of the RT-gPCR assay.



Supplementary Figure 3. Clogger-induced growth defects are not due to elevated cell
death. (A-B) Cell viability of wild type, Airel and Ahacl cultures expressing either cytosolic
DHFR or b2-DHFR was assessed with propidium iodide (PI) staining, subsequent flow
cytometry and quantification of the fraction of PI negative cells. Cells in which no ectopic
gene was expressed, that were not stained with P1 or that were killed by incubation at 70°C

for 30 min served as controls (A). Clogger expression does not result in cell death (B).



Supplementary Figure 4. Cytosolic peroxide levels are not elevated upon clogger
expression or in UPRFR-deficient cells. (A) The roGFP2-Tsa2ACr probe reacts with
peroxides, which ultimately results in the formation of an intramolecular disulfide bond
between two cysteine residues adjacent to the GFP chromophore. This changes the excitation
spectrum of roGFP2, which can be measured and used as a proxy for probe oxidation (see
Methods for details). (B-C) Wild type and Ahacl cells that express either cytosolic or b,-
DHFR (induced for 4.5 h), as well as the roGFP2-Tsa2ACg (constitutively expressed) in the
cytosol (B) or in mitochondria (C, Su9- roGFP2-Tsa2ACg) were analyzed in a fluorescence
plate reader. Fluorescence of roGFP2 was followed for 4 min before H,O, was added at final
concentration of 0, 10, 50 or 100 uM. Responses to the treatment were monitored for 1 h (B)
or 1.5 h (C). Probe oxidation (OxD) was calculated from fluorescence intensities obtained by
excitation at 405 nm and 490 nm (see Methods for details). (D) For the data shown in b, the 0
MM H,0, baseline was subtracted from the H,O,-challenged samples and differences in

probe oxidation after H,O, addition was analyzed.



Supplementary Figure 5. Mitochondrial morphology changes precede ER localization of
Oxal. (A) The mitochondrial inner membrane protein Oxal was genomically tagged with
ymNeonGreen, the ER marker Sec63 was tagged with ymScarletl. Confocal fluorescence
microscopy was performed after 4.5 h of expression of either b,-DHFR or cytosolic DHFR.
When the clogger was induced, a fraction of Oxal-ymNeonGreen colocalized with Sec63-
ymScarletl. Scale bar, 5 um. (B) Cells expressing Oxal-GFP™ and Oxal-GFP*? and either
cytosolic DHFR or b,-DHFR were imaged at indicated times after clogger induction with a
fluorescence microscope. Clogger-induced changes in mitochondrial morphology were

observed 1 hour after induction (yellow arrows), ER localization after 3 hours (red arrows).



Supplementary Figure 6. A split-GFP assay to assess the subcellular localization of
mitochondrial precursor proteins. (A) The GFP' fragment was fused to Oxal, Om45,
Mia40 and DId1, and the GFP* reporter was fused to Oxal (mitochondrial inner membrane,
matrix side), Mia40 (mitochondrial inner membrane, IMS side), Sec63 (ER membrane,
cytosolic side) and Ssal (cytosol). (B-D) The split-GFP constructs described in panel a were
co-expressed with b,-DHFR or cytosolic DHFR and fluorescence was measured with a plate
reader after 4.5 h of galactose induction. Under non-stressed conditions (expression of
cytosolic DHFR), the split-GFP signals recapitulated the known localizations of Oxal,
Om45, Mia40 and DId1. Under mitoprotein-induced stress (b,-DHFR expression), Om45-
GFP also evoked a fluorescence signal when combined with Sec63-GFP**® and Ssal-GFP"
19 indicating accumulation at the cytosolic side of the ER membrane. (E) Fluorescence
microscopy of cells expressing Oxal-GFP* and Oxal-GFP*™ (left) or Oxal-GFP' and
Sec63-GFP*™ (right) and either b,-DHFR or cytosolic DHFR after 4.5 h of induction. Scale
bar, 5 um. (F) WT, Adoal0, Ahacl and Ayos9 cells expressing Oxal-GFP' and Sec63-GFP"

19 were cultured with either 0 or 50 pM carbonyl cyanide m-chlorophenylhydrazone (CCCP)

for 16 h and fluorescence was measured.



Supplementary Figure 7. Certain mitochondrial proteins are constitutively synthesized
close to the ER surface. (A) Data from (Fazal et al., 2019) on the subcellular distribution of
MRNA in HEK293T cells. The biotin ligase APEX2 was localized to the ER or mitochondria
and biotinylated mRNAs were purified and sequenced (APEX-Seq). For all mitochondrial
proteins in the dataset, the log, enrichment of mMRNAs at the ER membrane (ERM-APEX2)
and the mitochondrial outer membrane (OMM-APEX2) over the total mMRNAs are shown.
While most mRNAs localize to the mitochondrial membrane, some transcripts are also
enriched near the ER surface. (B) Potential glycosylation sites in the Oxal sequence were
predicted with the NetNGlyc 1.0 Server (Gupta and Brunak, 2002). Underlined motifs are
predicted to be luminal if Oxal was inserted into the ER membrane (Weill et al., 2019a). (C)
Lysates from cells expressing GAL-Oxal-HA and either cytosolic DHFR or b,-DHFR for 4.5
hours were treated with EndoH and analyzed by Western blotting against the HA tag on Oxal
alongside untreated lysates. The EndoH-sensitive band (asterisk) denotes a glycosylated form
of Oxal. p, unmodified precursor form of Oxal, m, mature Oxal.
(D) Quantification of EndoH-sensitive bands from n=3 Western Blots against Oxal-HA in
cells expressing either cytosolic DHFR or b,-DHFR. The fraction of glycosylated Oxal

increases with clogger expression, but is already present under physiological conditions.



Supplementary Figure 8. The UPR®® is required for efficient growth upon metabolic
switches and mitoprotein-induced stress. (A) Maximum growth rate r of the cultures
shown in Figure 5B. (B-C) Maximum capacity k and maximum growth rate r of the cultures
shown in Figure 5E. p values for pairwise comparisons with a significant difference
(p < 0.05) are shown. (D) Schematic depiction of the LexA-ER expression system used to
express HAC1' independently of the clogger. Upon binding of B-estradiol to the estrogen
receptor domain, the transcription factor LexA-ER-AD binds to lexO elements upstream of
the HAC1' ORF and stimulates its transcription. (E) Wild type cells and cells that express
HAC1' from a lexO promoter driven by the p-estradiol-inducible artificial transcription factor
LexA-ER-AD were grown to log phase in lactate medium. Clogger expression was induced
by addition of 0.5% galactose and at the same time, the media were supplemented with the
indicated concentration of p-estradiol. Ectopic expression of low levels of HAC1' did not
result in better growth of clogger-expressing cells. (F) Maximum growth rate r of the cultures

shown in Panel E.



Supplementary Tables

Supplementary Table 1. Yeast strains used in this study.

Supplementary Table 2. Plasmids used in this study.

Supplementary Table 3. Primers used in this study.

Supplementary Table 4. Numerical source data for all experiments.

Supplementary Table 5. Ribosome profiling data.
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Figure 1B Original Data

Supplementary Figure 7C Original Data

The films show two different exposures of the same Western Blot
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