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Supplementary Figures 

Supplementary Figure 1. GO Enrichment Analysis of late changes in the proteome of 

clogger-expressing cells. (A-B) Enrichment of GO terms of the “molecular function” 

category of proteins upregulated (log2 fold change larger than 0.5 with adjusted p value of at 

most 0.05) in cells expressing b2-DHFR compared to cytosolic DHFR after 4.5 h (A) or 9 h 

(B) of induction with 0.5% galactose. Proteomics data from (Boos et al., 2019). 

  



Supplementary Figure 2. Detection of UPR
ER

 induction with mass spectrometry and 

RT-qPCR. (A) Protein levels in clogger-expressing versus control cells after different times 

of induction were measured by quantitative mass spectrometry (Boos et al., 2019). 

Highlighted are proteins which are reported UPR
ER

 targets (Schmidt et al., 2019). Data from 

n=3 independent biological replicates are shown. The data for 18 h are the same as shown in 

Figure 1E. (B) The change in translational efficiency after 4.5 h clogger expression was 

calculated for all genes measured in both the RNA-seq(Boos et al., 2019) and Ribo-Seq on 

clogger-expressing cells by dividing the translatome fold change by the transcriptome fold 

change. (C) Schematic depiction of the primer-probe combinations used to quantify total 

HAC1 as well as spliced HAC1
i
 mRNA levels via RT-qPCR. (D) Wild type, ∆ire1 and ∆hac1 

cells were grown in presence or absence of 1 µg/ml tunicamycin and HAC1 and HAC1
i
 levels 

were analyzed with the primer-probe assay shown in C. As expected, HAC1
i
 levels increased 

in wild type cells treated with tunicamycin, but no HAC1
i
 was detected in cells lacking HAC1 

or IRE1, confirming the specificity of the RT-qPCR assay. 

  



Supplementary Figure 3. Clogger-induced growth defects are not due to elevated cell 

death. (A-B) Cell viability of wild type, ∆ire1 and ∆hac1 cultures expressing either cytosolic 

DHFR or b2-DHFR was assessed with propidium iodide (PI) staining, subsequent flow 

cytometry and quantification of the fraction of PI negative cells. Cells in which no ectopic 

gene was expressed, that were not stained with PI or that were killed by incubation at 70°C 

for 30 min served as controls (A). Clogger expression does not result in cell death (B). 

  



Supplementary Figure 4. Cytosolic peroxide levels are not elevated upon clogger 

expression or in UPR
ER

-deficient cells. (A) The roGFP2-Tsa2∆CR probe reacts with 

peroxides, which ultimately results in the formation of an intramolecular disulfide bond 

between two cysteine residues adjacent to the GFP chromophore. This changes the excitation 

spectrum of roGFP2, which can be measured and used as a proxy for probe oxidation (see 

Methods for details). (B-C) Wild type and ∆hac1 cells that express either cytosolic or b2-

DHFR (induced for 4.5 h), as well as the roGFP2-Tsa2∆CR (constitutively expressed) in the 

cytosol (B) or in mitochondria (C, Su9- roGFP2-Tsa2∆CR) were analyzed in a fluorescence 

plate reader. Fluorescence of roGFP2 was followed for 4 min before H2O2 was added at final 

concentration of 0, 10, 50 or 100 µM. Responses to the treatment were monitored for 1 h (B) 

or 1.5 h (C). Probe oxidation (OxD) was calculated from fluorescence intensities obtained by 

excitation at 405 nm and 490 nm (see Methods for details). (D) For the data shown in b, the 0 

µM H2O2 baseline was subtracted from the H2O2-challenged samples and differences in 

probe oxidation after H2O2 addition was analyzed. 

  



Supplementary Figure 5. Mitochondrial morphology changes precede ER localization of 

Oxa1. (A) The mitochondrial inner membrane protein Oxa1 was genomically tagged with 

ymNeonGreen, the ER marker Sec63 was tagged with ymScarletI. Confocal fluorescence 

microscopy was performed after 4.5 h of expression of either b2-DHFR or cytosolic DHFR. 

When the clogger was induced, a fraction of Oxa1-ymNeonGreen colocalized with Sec63-

ymScarletI. Scale bar, 5 µm. (B) Cells expressing Oxa1-GFP
11

 and Oxa1-GFP
1-10

 and either 

cytosolic DHFR or b2-DHFR were imaged at indicated times after clogger induction with a 

fluorescence microscope. Clogger-induced changes in mitochondrial morphology were 

observed 1 hour after induction (yellow arrows), ER localization after 3 hours (red arrows). 

  



Supplementary Figure 6. A split-GFP assay to assess the subcellular localization of 

mitochondrial precursor proteins. (A) The GFP
11

 fragment was fused to Oxa1, Om45, 

Mia40 and Dld1, and the GFP
1-10

 reporter was fused to Oxa1 (mitochondrial inner membrane, 

matrix side), Mia40 (mitochondrial inner membrane, IMS side), Sec63 (ER membrane, 

cytosolic side) and Ssa1 (cytosol). (B-D) The split-GFP constructs described in panel a were 

co-expressed with b2-DHFR or cytosolic DHFR and fluorescence was measured with a plate 

reader after 4.5 h of galactose induction. Under non-stressed conditions (expression of 

cytosolic DHFR), the split-GFP signals recapitulated the known localizations of Oxa1, 

Om45, Mia40 and Dld1. Under mitoprotein-induced stress (b2-DHFR expression), Om45-

GFP
11

 also evoked a fluorescence signal when combined with Sec63-GFP
1-10

 and Ssa1-GFP
1-

10
, indicating accumulation at the cytosolic side of the ER membrane. (E) Fluorescence 

microscopy of cells expressing Oxa1-GFP
11

 and Oxa1-GFP
1-10

 (left) or Oxa1-GFP
11

 and 

Sec63-GFP
1-10

 (right) and either b2-DHFR or cytosolic DHFR after 4.5 h of induction. Scale 

bar, 5 µm. (F) WT, ∆doa10, ∆hac1 and ∆yos9 cells expressing Oxa1-GFP
11

 and Sec63-GFP
1-

10
 were cultured with either 0 or 50 µM carbonyl cyanide m-chlorophenylhydrazone (CCCP) 

for 16 h and fluorescence was measured. 

  



Supplementary Figure 7. Certain mitochondrial proteins are constitutively synthesized 

close to the ER surface. (A) Data from (Fazal et al., 2019) on the subcellular distribution of 

mRNA in HEK293T cells. The biotin ligase APEX2 was localized to the ER or mitochondria 

and biotinylated mRNAs were purified and sequenced (APEX-Seq). For all mitochondrial 

proteins in the dataset, the log2 enrichment of mRNAs at the ER membrane (ERM-APEX2) 

and the mitochondrial outer membrane (OMM-APEX2) over the total mRNAs are shown. 

While most mRNAs localize to the mitochondrial membrane, some transcripts are also 

enriched near the ER surface. (B) Potential glycosylation sites in the Oxa1 sequence were 

predicted with the NetNGlyc 1.0 Server (Gupta and Brunak, 2002). Underlined motifs are 

predicted to be luminal if Oxa1 was inserted into the ER membrane (Weill et al., 2019a). (C) 

Lysates from cells expressing GAL-Oxa1-HA and either cytosolic DHFR or b2-DHFR for 4.5 

hours were treated with EndoH and analyzed by Western blotting against the HA tag on Oxa1 

alongside untreated lysates. The EndoH-sensitive band (asterisk) denotes a glycosylated form 

of Oxa1. p, unmodified precursor form of Oxa1, m, mature Oxa1.  

(D) Quantification of EndoH-sensitive bands from n=3 Western Blots against Oxa1-HA in 

cells expressing either cytosolic DHFR or b2-DHFR. The fraction of glycosylated Oxa1 

increases with clogger expression, but is already present under physiological conditions. 

 

  



Supplementary Figure 8. The UPR
ER

 is required for efficient growth upon metabolic 

switches and mitoprotein-induced stress. (A) Maximum growth rate r of the cultures 

shown in Figure 5B. (B-C) Maximum capacity k and maximum growth rate r of the cultures 

shown in Figure 5E. p values for pairwise comparisons with a significant difference 

(p < 0.05) are shown. (D) Schematic depiction of the LexA-ER expression system used to 

express HAC1
i
 independently of the clogger. Upon binding of β-estradiol to the estrogen 

receptor domain, the transcription factor LexA-ER-AD binds to lexO elements upstream of 

the HAC1
i
 ORF and stimulates its transcription. (E) Wild type cells and cells that express 

HAC1
i
 from a lexO promoter driven by the β-estradiol-inducible artificial transcription factor 

LexA-ER-AD were grown to log phase in lactate medium. Clogger expression was induced 

by addition of 0.5% galactose and at the same time, the media were supplemented with the 

indicated concentration of β-estradiol. Ectopic expression of low levels of HAC1
i
 did not 

result in better growth of clogger-expressing cells. (F) Maximum growth rate r of the cultures 

shown in Panel E. 

  



Supplementary Tables 

Supplementary Table 1. Yeast strains used in this study. 

Supplementary Table 2. Plasmids used in this study. 

Supplementary Table 3. Primers used in this study. 

Supplementary Table 4. Numerical source data for all experiments. 

Supplementary Table 5. Ribosome profiling data. 
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Supplementary Figure 7C Original Data

The films show two different exposures of the same Western Blot
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