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Supplementary information

S1 System characterization: lateral resolution,
axial precision and accuracy, and depth of
field

We performed several experiments to characterize the performance of our com-
putational 3D imaging system, starting with imaging of a USAF resolution
target near the center and edge of the field of view (FOV) of a single cam-
era (Fig. S1a,b). Our system can resolve group 5 elements 2-3, corresponding
to a bar width of 12-13 µm or a full-pitch lateral resolution of ∼25 µm. We
then characterized the depth of field (DOF) by axially translating the same
flat patterned target used in Figs. 4 and 5, using a motorized stage (Zaber)
in increments of 0.25 mm. This defines the axial FOV of our 3D reconstruc-
tions. For each axial position, we computed a contrast metric based on the
mean image gradient magnitude (Fig. S1c). The full width at half maximum
(FWHM) of this curve is 9.434 mm, which is similar to value obtained by
fitting the curve to the intensity of a Gaussian beam,

I(z) =
I0

1 + (z−z0)2

z2
R

+ Ib, (S1)

where I0 and Ib are the arbitrary amplitude and offset, z0 is the focal position,
and 2zR is the DOF, corresponding to when the lateral resolution degrades by√
2. Least-squares fitting yields 2zR = 9.402 mm. In practice, the DOF may

be smaller if the neighboring cameras are not focused to the same plane, such
that the focus regions are offset.

Finally, we characterized the accuracy and precision of our 3D height maps
by imaging 6 gauge blocks (Mitutoyo), precisely machined and characterized
to be within 0.3 µm of their nominal values: 1.000, 1.020, 1.050, 1.100, 1.200,
and 1.400 mm (Fig. S1d,e). We computed the accuracy as the absolute error
between the estimated and ground truth heights, aggregated across all pixels
within each gauge block, and the precision as the standard deviation of the
height estimates across each gauge block, which are summarized in Table S1
for all three configurations in Table 1. Since there is an arbitrary global height
offset, we chose the one that minimizes the MSE between the estimated and
ground truth heights [1].

S2 Generalization experiments

Here, we show that the multiocular stereo CNN trained on a subset of frames
can generalize well to unseen frames. As validation we compare this general-
ization performance to that of a monocular stereo CNN (i.e., one that only
takes in a single image as the input). To make these comparisons, we picked
two independent subsets of the video frames. In Set 1, we took about 15 frames
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Fig. S1 System characterization experiments. a, b, USAF resolution test chart image near
the center and edge of the FOV of one camera without downsampling. c, Image contrast of
a patterned target as a function of axial position. d, Stitched photometric composite of 6
precisely-machined gauge blocks placed on a green patterned target (captured with the 60-
fps configuration), with their nominal thicknesses denoted. e, The reconstructed 3D height
map of the gauge blocks. Accuracy and precision are quantified in Table S1.

Ground truth 1× downsamp 2× downsamp 4× downsamp
height Acc. Prec. Acc. Prec. Acc. Prec.

0 44.3 19.3 25.3 17.2 60.0 55.9
1000 8.9 17.5 12.0 32.2 50.6 69.4
1020 4.1 11.2 18.1 24.3 51.6 72.7
1050 3.2 18.5 4.3 25.7 14.8 63.8
1100 7.9 17.7 7.8 28.6 12.7 68.7
1200 5.2 24.1 0.4 33.0 20.3 88.9
1400 55.0 8.7 1.0 27.7 49.4 100.4
mean 18.4 16.7 9.8 26.9 37.1 74.3

Table S1 Accuracy (absolute error from ground truth) and precision (standard
deviation) of the height estimation of the 6 gauge blocks (and background) in Fig. S1a,b
for all three downsampling configurations. All values are in µm.

equally spaced temporarily across the video. In Set 2, we took another 15
equally spaced frames at half a period offset with respect to Set 1. For exam-
ple, if the video was 601 frames, then Set 1 would consist of frames 1, 41, 81,
... 561, 601 and Set 2 would consist of frames 20, 60, 100, ...540, 580. We then
trained two independent multiocular CNNs, one on Set 1, the other on Set 2,
and compared the 3D height map predictions on both sets. The idea is that
in the absence of ground truths, the physics-supervised CNN predictions on
training set examples could serve as pseudo-truths. For comparison, we also
trained a monocular CNN on Set 1 and compared predictions on Set 1 and
Set 2.

Figs. S2 and S3 show the comparisons among these three CNNs for both
zebrafish and fruit flies. In both organisms, the multiocular CNNs generalize
well to unseen video frames, based on comparisons between images from the
CNN trained on Set 1 and the one trained on Set 2. However, for zebrafish,
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Fig. S2 Generalization performance of multiocular and monocular CNNs trained on frames
from a video of freely swimming zebrafish. a, First row shows an example from Set 1 and
3D height predictions of three different CNNs – two multiocular CNNs, trained on Set 1 and
Set 2, and one monocular CNN trained on Set 1. Second row shows predictions on Set 2. b,
Zoom-in of the red boxes in a. Arrowheads point out features for which the multiocular CNN
generalized well, but not the monocular CNN, as evaluated by comparing the predictions
the respective pseudo-truth.

the monocular CNN (trained on Set 1) generalizes poorly (to Set 2). This
is evidenced by erroneous heights of several zebrafish’s heads or tails, as it
is difficult to determine the heights of the fish based on appearance alone –
magnification-based cues are confounded by natural size variation. Similarly,
the monocular CNN incorrectly estimates the heights of the sunken food par-
ticles. This is likely due to the fact that the vast majority of food particles are
floating, and since the food particles have no discernible height indicators, the
monocular CNN simply uniformly assigns the floating height to all particles.
While the monocular CNN performs better for the fruit flies than for zebrafish,
it still makes a few errors, e.g., when one fly is climbing on top of another.
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Such fly behavior was rare in our captured video, so the monocular CNN had
fewer training examples to learn the semantic cues to accurately predict the
elevated height, whereas the multiocular CNN was able to predict the elevated
height from the parallax cues.

4.5 mm
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Fig. S3 Generalization performance of multiocular and monocular CNNs trained on frames
from a video of fruit flies. First row shows an example from Set 1 and 3D height predictions
of three different CNNs – two multiocular CNNs, trained on Set 1 and Set 2, and one
monocular CNN trained on Set 1. Second row shows predictions on Set 2.

S3 Implementation details on patch-based
training with multi-ocular stereo inputs

As mentioned in the main text (Sec. 2.4), the CNN is supplied multi-view
inputs of the same sample scene (as shown in Fig. 2a,c), whose goal is to
improve the generalizability of the CNN (Supplementary Sec. S2). These
neighboring views are stacked along the channel input dimension in a way
that preserves convolutionality, so that patch training and full-FOV inference
are consistent. This is beneficial because monocular stereo depth estimation
is insufficient for objects whose appearances don’t change significantly as a
function of depth. For example, when imaging a fruit fly or zebrafish larva,
it is difficult to distinguish between height-dependent magnification changes
and natural variation in organism size. Thus, we train our CNN to solve a
multi-ocular stereo 3D estimation problem, which is better-posed, as the 3D
supervision signal itself is derived from the registration of the multi-ocular
data (Supplementary Sec. S2). In this paper, we use 3 stereo inputs or fewer
(center, left, and right, if available).
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Here, we expand upon the explanation of our patch-based CNN training
procedure given in Sec. 2.5 and Fig. 2c.

S3.1 Determining the observing cameras and the
coordinates

We start with the camera pose calibration based on a flat patterned target
(Methods 5.3) to generate a “visitation log”, V . V is an nrow × ncolumn × 54
× 2 tensor look-up table specifying which of the 54 cameras view a certain spa-
tial position in the reconstruction coordinate system as well as the respective
(row,column) pixel coordinates in the camera coordinate system that map to
that position. The formation process of V is somewhat similar to the backpro-
jection step of the reconstruction (Fig. 2a), but instead of backprojecting the
RGBH values, we backproject the (row, column) coordinates. This visitation
log facilitates rapid retrieval of the relevant cameras for each randomly sam-
pled position. Note that since we want to avoid rolling shutter artifacts that
may occur where the bottom of one camera overlaps with the top of the camera
below (Methods 5.1 and Supplementary Sec. S4), we only consider horizontal
overlap.

S3.2 Selecting random patches

Given this visitation log, we select nbatch random 2D coordinates in the recon-
struction frame of reference for each CNN training iteration. For each of these
random coordinates, we retrieve the relevant cameras and their corresponding
camera-centric coordinates. For each camera image, we then crop out a square
patch of width wpatch centered at the sampled coordinates. If these coordinates
are within wpatch/2 of a camera image edge, they are shifted so that the patch
remains within the image.

For each image patch, we also extract patches from the left and right cam-
eras and stack them along the channel dimension of the CNN input, which
the CNN can exploit for 3D estimation (Fig. 2c). To do this in a manner con-
sistent with both training on patches and inference on full-sized images, we
homographically transformed the left/right neighboring images into the frame
of reference of the central camera in question, as if the sample were flat (more
precisely, coincident with the pre-calibration reference plane; Sec. 2.3, Meth-
ods 5.3). If the sample were completely flat, then the transformed neighboring
images would theoretically be identical to the image captured by the camera
in question where their viewpoints overlap. However, if the sample exhibits
height variation, the transformed neighboring images would exhibit parallax
shifts in proportion to the height variation. When there is no left or right
camera (i.e, the first or last column of cameras), we input blank images (all
zeros). Similarly, when either the left or right patch overlaps with the edge
of its respective camera, we assign zeros to the missing regions. Note that in
this scenario, we cannot shift the left/right patch away from the edge, as we
could above, because the left/right patch must remain coaligned with the main



Springer Nature 2021 LATEX template

(central) patch so that we maintain full convolutionality for the inference step
(Supplementary Sec. S3.8). Furthermore, we do not want to exclude training
cases where the central patch is close to the edge of the camera, as these cases
appear when applied to full-size camera images during the inference step.

We note that the number of cameras observing a particular point can range
from 1 - 3, since we only consider horizontal overlap. When only one camera
views a particular point (the left and right edges of the reconstruction) during
training, we reject the resulting patch as there’s nothing to register. To account
for the fact that the number of patches may vary for each batch element, we
use tensorflow’s [2] tf.RaggedTensor construct, which allows some dimensions
of a tensor to have slices with different lengths. In our experiments, we used
nbatch =1, 2, and 8 for the 1×, 2×, and 4× downsampling cases.

S3.3 CNN architecture

The input to the CNN has nine channels, corresponding to three stacked RGB
inputs – the camera image whose height we wish to predict, followed by the left
and right camera views (Fig. 2c). The output of the CNN is a single-channel
height map, obtained by summing across the channel dimension of the final
convolutional layer.

The encoder-decoder CNN architectures were based on one basic building
block, consisting of the following operations in sequence:

1. 3× 3 convolution, k filters, stride=1, padding=‘same’,
2. Batch normalization,
3. Leaky ReLU,
4. 1× 1 convolution, k filters, stride=1, padding=‘valid’,
5. Batch normalization,
6. Leaky ReLU (unless final block of the CNN),

where k is a free hyperparameter, specifying the number of filters in the
convolution layers. In the case of an upsample block, a 2× nearest-neighbor
upsampling procedure is applied before the block. In the case of a downsample
block, a 2×2 max pooling operation is applied after the block.

The full, symmetric encoder-decoder CNN architecture is described by a list
of positive integers, each of which specifies the k for an upsample/downsample
block pair. For example, [8, 16, 32] indicates three downsample blocks with k
= 8, 16, and 32 filters, followed by three upsample blocks with k = 32, 16,
and 8 filters. In our experiments, we set k = 32 for all upsample/downsample
blocks, but varied the number of blocks between 3 and 6 (i.e., [32, 32, 32] and
[32, 32, 32, 32, 32, 32]), depending on the sensor downsampling.

S3.4 Data-dependent loss function

The data-dependent loss function is computed based on the model depicted in
Fig. 2a, where 2-3 image patches are used instead of 54 full-size images. Specif-
ically, the 4-channel (RGBH) image patches are backprojected onto a blank
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“canvas” according to the camera poses and height map-derived orthorectifi-
cation fields (Eq. 1). The same coordinates are then used to reproject back
to camera-centric coordinates to obtain the forward predictions. The data-
dependent loss function is thus the MSE between forward predictions and the
original RGBH patches.

S3.5 Normalized high-pass filtering

For terrestrial samples, which were illuminated in reflection, we found that reg-
istering the RGB images sometimes led to artifacts due to camera-dependent
photometric appearance. This can be caused by illumination variation across
the FOV due to off-axis LED panel geometry and anisotropic, non-Lambertian
reflections, causing different amounts of light entering each camera. To combat
these effects, we used normalized high-pass filtered versions of the images,

Ĩσ(x, y) =
I(x, y)⊛ exp

(
−x2+y2

4σ2

)
I(x, y)⊛ exp

(
−x2+y2

2σ2

) , (S2)

where ⊛ denotes 2D convolution. Thus, Eq. S2 is the ratio of two Gaussian-
blurred versions of I(x, y), the grayscale-converted RGB image, with widths
σ and

√
2σ. Like high-pass filtering, applying Eq. S2 to the images highlights

edges and attenuates DC and low-frequency features. The motivation for tak-
ing a ratio rather than subtracting (i.e., difference of Gaussians) is so that
the spatial fluctuations are normalized and therefore illumination-variation-
independent, thereby facilitating registration. To capture different scales, we
used three values of σ for the three image channels (σ = 1, 2, 4).

S3.6 Regularization of the height maps

In addition to the CNN reparameterization (i.e., DIP) of the height maps as a
regularizer [1, 3, 4], we also incorporated two additive regularization terms to
the overall loss function: height map consistency regularization and support
regularization. The height map consistency regularization enforces agreement
in height values in overlapped regions of camera images and simply comes from
the fourth channel of the RGBH images, whose contribution can be scaled
by a hyperparameter, λheight . We observed smoothing effects with increasing
λheight . The object support regularization relies on a segmentation mask of the
background pixels, whose height values we enforce to be a particular constant
(e.g., 0) via an L2 loss. In other words,

losssupport = λsupport

∑
x ,y

maskbackground(x, y)(h(x, y)− h0)
2, (S3)

where maskbackground(x, y) is the segmentation mask, h(x, y) is the height map
output of the CNN, h0 is the known background height value, and λheight is
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the regularization coefficient. In this paper, we used a simple intensity-based
threshold on the green channel of the photometric images, as our backgrounds
are relatively homogeneous, although other segmentation strategies may be
used.

S3.7 Additional training details

We optimized the loss function, consisting of the aforementioned data-
dependent and regularization terms, using the Adam Optimizer [5]. Depending
on the downsampling configuration, we used a different patch size and num-
ber of patches per iteration: one 1024×1024 patch (no downsampling), two
768×768 patches (2× downsampling), and eight 384×384 patches (4× down-
sampling). These patches were randomly selected from a subset of the recorded
video frames – for the 2× and 4× downsampling configurations, we selected
from 15-16 frames evenly distributed frames, while for the no downsampling
configuration, we used 8 frames (due to memory constraints).

For the reflection-illuminated terrestrial samples, we performed a two-
step training procedure, where we first optimized with RGB images using
λheight = 500 (Supplementary Sec. S3.6) to scale the height channel (with units
of mm) and λsupport = 0 (Eq. S3) for 30k iterations. Thereafter, we ran 70k
iterations with the normalized high-pass filtering (Supplementary Sec. S3.5)
and λheight = 50 and λsupport = 100. For aquatic samples, high-pass filtering
was not necessary because they were illuminated in transmission. Thus, we
used a one-step training procedure with 70k iterations with λheight = 50 and
λsupport = 100.

S3.8 Inference step - generating the full-size RGBH
videos

Once the CNN is trained to map from multi-ocular stereo inputs to a 3D height
map using the patch-based procedure, we can apply the CNN to sequences
of full-sized MCAM video streams that includes unseen frames (Fig. S4).
Essentially, this refers to the backprojection step in Fig. 2a. Since iterative
optimization is no longer necessary after the CNN is fully trained, generating
new 3D video frames can be done quickly. For example, one application might
involve a human observer selecting a particular region of interest within the
large FOV, whose 3D height map the computer would then generate in real
time.

S4 Reducing the impact of the per-camera
rolling shutter

Each sensor exhibits a rolling shutter, whereby the pixels begin integrating
sequentially every δt = (230 MHz)−1 = 4.35 ns and are read out in a raster
scan pattern row by row from the top left to bottom right (with the longer
sensor dimension as the horizontal dimension). Although the rolling shutters
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Fig. S4 Inference step post patch-based training (Fig. 2c) that generates the stitched com-
posites and coregistered 3D height map on potentially unseen video frames.

are synchronized to within 10 µs across cameras, there is still significant asyn-
chrony in overlapped regions of neighboring camera FOVs, thus thwarting
accurate 3D estimation. Here, we consider asynchrony in 1) vertically over-
lapped FOVs and 2) horizontally overlapped FOVs. The former asynchrony
is much more serious, as the bottom row of the upper sensor is not reached
until after δt × lrow × lcol , where lrow and lcol are the number of pixels per
row and column, respectively. Using the full sensor without downsampling
(lrow = 4208, lrow = 3120), the time delay between the last row of the upper
sensor and the first row of the lower sensor is ∼57 ms. In practice, the delay
is even larger due to horizontal and vertical blanking (dead time between row
and column reads). To circumvent this problem, we thus reduced the number
of rows approximately in half (3120 to 1536) to ensure the smallest overlap
between vertically adjacent cameras that still allowed for a contiguous com-
posite FOV. This also has the added benefit of increasing the sensor frame
rate.

Asychrony in horizontally overlapped FOVs is less serious, but still an
important consideration. Using the full sensor without downsampling, the time
delay between corresponding rows of perfectly aligned camera FOVs is only
δt × lrow , or approximately 20 µs, which is negligible. In practice, however,
there is a vertical offset due to slight camera misalignments, so that the time
delay is δt × lrow × lmisalign . Based on stitching a flat target, we determined
that the worst-case vertical misalignment was lmisalign = 100 rows, leading to a
2-ms delay between when the corresponding pixels in horizontally neighboring
cameras begin to expose. To ensure significant temporal overlap (at least 90%)
in the exposure periods, we thus exposed for 2 ms/(1− 0.9) = 20 ms.

For 2× and 4× downsampling, the asynchrony is less dramatic because the
numbers of rows and columns are reduced. Going through similar calculations,
we determined that exposing for 5 ms and 2.5 ms for 2× and 4× downsampling,
respectively, leads to >90% temporal overlap in the worst-case vertical camera
misalignment cases. Note that these values don’t quite scale proportionally
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between the 2× and 4× cases due to horizontal blanking periods not decreasing
proportionally.

S5 Impact of hardware design on height
accuracy

p
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Fig. S5 Two identical cameras with effective focal length f observing a common sample
point with height h from the focal plane. The magnification is M = wi/wo.

Here, we explore how hardware design choices impact the accuracy of 3D
height estimation. We will ignore errors stemming from camera distortion,
aberrations, and misalignment and assume ideal paraxial imaging performance.
Further, for simplicity, we assume two adjacent cameras spaced by p center to
center with a common effective focal length, f , a working distance (i.e., the
distance between the sample plane and the lens principal plane) of wo, and a
sensor-to-lens distance of wi (Fig. S5). These latter three parameters satisfy
the lens equation,

1

wo
+

1

wi
=

1

f
. (S4)

The magnification is thus M = wi/wo.
Further, consider a sample point with height h positioned xL from the

optical axis of the left camera and xR from that of the right camera. Due to
nontelecentric optics, the apparent object-side position of this sample point is
parallax-shifted ∆xL in the left camera and ∆xR in the right camera. These
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shifts are related to the height via Eq. 1,

∆xL =
hxLM

f(M + 1)− hM
, ∆xR =

hxRM

f(M + 1)− hM
. (S5)

We are interested in the total parallax shift between both cameras, given by

∆x = ∆xL +∆xR =
hpM

f(M + 1)− hM
, (S6)

which does not depend on the lateral position of the sample point, as xL+xR =
p. How well we can estimate ∆x depends on how accurately we can match
and register the sample point in both camera images, which in turn depends
on the lateral resolution of the imaging system. We consider two limits: the
diffraction-limited regime and the pixel-size-limited regime. Let δxpixel be the
camera pixel size, so that δxpixel/M is the object-side pixel size. Further, let
δxdiff be the camera-side diffraction-limited spot size, so that δxdiff /M is the
object-side diffraction-limited spot size:

δxdiff ∝
λ

NA
≈ 2λwi

w
=

2λf(M + 1)

w
, (S7)

where w is the lens aperture diameter and λ is the wavelength. Assum-
ing that we can match corresponding points in the two camera images with
an uncertainty proportional to the lateral resolution, then the corresponding
height error can be estimated by setting ∆x (Eq. S6) equal to the object-
side lateral spot size and solving for h. In the pixel-resolution-limited regime
(δxpixel ≫ δxdiff ), we have that the height uncertainty is

δhpixel ∝
fδxpixel(M + 1)

M(δxpixel + pM)
, (S8)

meaning that downsampling the images results in a roughly proportional
decrease in height uncertainty. In the diffraction-limited regime, we have that

δhdiff ∝
2λf2(M + 1)2

M(2λf(M + 1) + pwM)
. (S9)

We can see that in both cases, all else equal, decreasing f and increasing p and
M improve the height estimation accuracy. It may appear helpful to decrease
M to increase the amount of overlap of neighboring camera FOVs until even-
tually non-adjacent cameras begin to overlap, resulting in larger values of p.
However, in both pixel-limited and diffraction-limited regimes, 1/p decreases
more slowly than the factors that includeM increase asM decreases (e.g., con-
sider p→ 2p, M →M/2). Furthermore, this analysis assumes that the object
height variation is within the depth of field of the imaging systems, within
which the lateral resolution remains roughly constant. Thus, while designs that
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increase the lateral resolution can improve height estimation accuracy, they
also compromise the axial FOV.

We now consider the case where the camera FOVs are critically overlapped
at 50%, that is when M = s/2p, where s is the sensor width. Thus, the height
uncertainties in the pixel- and diffraction-limited regimes are, respectively,

δhpixel ∝
2δxpixelf(2p+ s)

s(2δxpixel + s)
≈ 2δxpixelf(2p+ s)

s2
, (S10)

δhdiff ∝
2λf2(2p+ s)2

s(2λf(2p+ s) + psw)
≈ 2λf2(2p+ s)2

ps2w
. (S11)

In the ideal case of p = s, so that there are no gaps in between the sensors
and M = 1/2, we have

δhpixel ∝
δxpixelf

p
, (S12)

δhdiff ∝
λf2

pw
. (S13)

S6 SNR considerations

As with all imaging systems, SNR is an important metric for 3D-RAPID.
Specifically, the better the SNR of the photometric images, the higher the
image registration accuracy and by extension the 3D estimation accuracy.
There are several trade offs involving SNR with our method as it relates to
imaging small model organisms.

1. Numerical aperture (NA): the higher the NA, the more light collected and
the better the shot-noise-limited SNR. The associated improved lateral reso-
lution also improves the 3D height estimation accuracy, because the parallax
estimation accuracy would increase (Supplementary Sec. S5). However, at
the same time, the higher the NA, the shallower the depth of field, which
limits the axial FOV of the 3D reconstructions. In addition, the higher the
NA, the smaller the lateral FOV becomes in practice due to difficulties in
correcting aberrations [6] and therefore the tighter the camera array packing
would need to be.

2. Behavior: while increasing the illumination power would yield higher SNR,
care must be taken to avoid influencing the behavior of the model organisms.
This tradeoff can be partially alleviated by using wavelengths invisible to
the model organism’s visual system, however radiative heating from the
illumination source can potentially still influence behavior.

3. Speed: the higher the frame rate, the less light that is detected and therefore
the lower the SNR per frame. Increasing illumination power can alleviate
this tradeoff until it influences the behavior of interest.

4. Camera type: one of the factors enabling the financial tractability of the
3D-RAPID architecture is its use of CMOS digital image sensors that are
currently fabricated at large scales for the cell phone camera market. While
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the sensitivities of these camera sensors have improved significantly over the
past decade (e.g., now with very low read noise and dark current and high
quantum efficiency, due in part to the introduction of back-side illuminated
CMOS sensors), their performance may still generally lag behind that of
high-end scientific CMOS and EMCCD sensors. While this latter technology
is currently too expensive to multiplex into an array with more than several
dozen sensors, it may become feasible in the future.

S7 Supplementary video descriptions

1. 60-fps, 36.6-MP video of freely swimming zebrafish larvae (10 dpf) feeding
on mostly floating AP100 food particles. The left panel is the photometric
composite and the right panel is the 3D height map. The video zooms into
three feeding events (or attempts) by two different fish.

2. 230-fps, 9.1-MP video of freely swimming zebrafish larvae (10 dpf) feeding
on mostly floating AP100 food particles. The left panel is the photometric
composite and the right panel is the 3D height map. The video zooms in
on three independent feeding events by three different fish. The third fish
can be seen swallowing the food particle.

3. 60-fps, 36.6-MP video of freely swimming zebrafish larvae (10 dpf) feeding
on mostly floating AP100 food particles. The left panel shows the full field
of view with the trajectories mapped out. The panels on the right each
correspond to individual fish, uniquely identified by a 2-digit number, whose
position and orientation are denoted with red annotations. The righthand
panels’ border colors nonuniquely match those of the tracks in the lefthand
panel, to assist the viewer in matching the fish to the trajectories. Righthand
panels appear and disappear when the fish enters or exits the FOV. The
first half of the video shows the photometric values, while the second half
of the video shows the 3D height maps.

4. 60-fps, 36.6-MP video of 20-dpf zebrafish larvae feeding on live brine shrimp.
The left panel is the photometric composite and the right panel is the 3D
height map. The video zooms in on two feeding events from two different
fish.

5. 230-fps, 9.1-MP video of 20-dpf zebrafish larvae feeding on live brine shrimp.
The left panel is the photometric composite and the right panel is the 3D
height map. The video zooms into one feeding event.

6. 60-fps, 36.6-MP video of a large school of 5-dpf zebrafish larvae freely swim-
ming in an open arena at high speed. The left panel is the photometric
composite and the right panel is the 3D height map.

7. 230-fps, 9.1-MP video of a large school of 5-dpf zebrafish larvae freely swim-
ming in an open arena at high speed. The left panel is the photometric
composite and the right panel is the 3D height map.

8. 60-fps, 36.6-MP video of freely moving fruit flies. The left panel is the
photometric composite and the right panel is the 3D height map.
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9. 230-fps, 9.1-MP video of freely moving fruit flies. The left panel is the
photometric composite and the right panel is the 3D height map.

10. 60-fps, 36.6-MP video of freely moving fruit flies. The left panel shows the
full field of view with the trajectories mapped out. The panels on the right
each correspond to individual flies, uniquely identified by a 2-digit number,
whose position is denoted by a red circle. The righthand panels’ border
colors nonuniquely match those of the tracks in the lefthand panel, to assist
the viewer in matching the flies to the trajectories. Righthand panels appear
and disappear when the fish enters or exits the FOV. The first half of the
video shows the photometric values, while the second half of the video shows
the 3D height maps.

11. 60-fps, 36.6-MP video of freely moving harvester ants. The left panel is the
photometric composite and the right panel is the 3D height map.

12. 230-fps, 9.1-MP video of freely moving harvester ants. The left panel is the
photometric composite and the right panel is the 3D height map.
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