Ab name	Clone	Fluorochrome	Reference	Brand
CD90	5E10	APC	559869	BD Bioscience
CD34	581	РЕ-Су7	343516	Biolegend
CD34	581	PerCPCy5.5	343522	Biolegend
CD38	HB-7	FITC	356610	Biolegend
CD45RA	HI100	PE	304108	Biolegend
CD45RA	REA1047	APCVio770	130-117-747	MiltenyiBiotec
CD45RA	HI100	BV421	562885	BD Biosciences
CD45	REA747	VioGreen	130-110-638	MiltenyiBiotec
CD45	HI30	PE	304008	Biolegend
CD14	M5E2	PE	301850	Biolegend
CD15	W6D3	PE	323006	Biolegend
CD3	SK7	APCCy7	344818	Biolegend
CD19	SJ25C1	PerCPCy5.5	45-0198-42	Life Technologies
CD45 (mouse)	30-F11	APC	17-0451-83	eBiosciences
Ki67	B56	FITC	556026	BD Biosciences
Phospho-p38MAPK (Thr130/Tyr182)	3D7	PE	6908S	Cell Signaling
8-Hydroxy-2'- deoxyguanosine (8oxodG)	N45.1	purified	ab48508	abcam
NRF2	polyclonal	Purified (rabbit)	ab31163	abcam
Goat-anti-rabbit	polyclonal	AF647	A-21244	Life Technologies
Goat-anti-mouse	polyclonal	AF647	A-21235	Life Technologies

Figure S1 related to Figure 1: GSEA analysis of the data using (A) hallmark gene-sets and (B)EPPERT_HSC signature: several pathways are significantly different: NORM p value $<10^{-3}$, FDR $<10^{-3}$. (C) MCL1 gene expression is also downregulated in D2 HSC compared to D0 HSC, however some other genes known to be involved in HSC self-renewal as well are not differentiation regulated by culture conditions.

А

В

Figure S2 related to Figure 2: (A) human HSC were treated or not with tempol then exposed or not to 20 mGy or 2.5 Gy irradiation then serial CFU-C plating assays were performed. Here is represented the number of colonies generate in the secondary plating (CFU-C IIRy) n=3 independent experiments ***p<0.001. Two-ways anova (B) CellRox Orange staining of CD34⁺ cells after treatment with pro and antioxidants: demonstration of the antioxidant activity of Tempol. n>3. *p<0.05, ***p<0.001. Two-ways anova. (C) Kinetic of ROS production over time in culture. Untreated CD34+ cells were cultured and ROX levels measured in HSC fraction at D0, D1 and D2 of culture. 4 independent experiments with 4 independent CB samples, Two-ways anova with Kruskal-Wallis test **p<0.01.

Figure S3 related to Figure 3. (D) HSC from 2 independent cord blood samples were either seeded directly in CFU-C medium (D0, red) or first treated or not with Tempol, cultured for 48h and then seeded in CFU-C medium (D2, black and Tempol, blue). Colonies were quantified 10 to 12 days after. (B) Tertiary CFU-C: 10% of total cells of equivalent secondary plates were seeded in triplicate. n=1. (C-D). Repartition of the different types of colonies in primary and secondary CFU-C respectively n=5. (E) Sorting strategy for extended LTC-IC. (F) FACS dot plot of bone marrow staining with antibodies against human and murine CD45. Representative example of each condition at the median of reconstitution (G) CD34⁺ cells were treated or not with Tempol then cultivated 2 days in transduction medium then transplanted into NSG mice (250000 cells/mice). Serial transplantation assay was performed. Left % of chimerism at the first and the second transplantation. Median of % of chimerism for the secondary transplantation, 3.16% and 33.67% for D2 and Tempol-D2 conditions respectively (H) among hCD45⁺ cells, the % of mature cells (CD19⁺ B cells and CD14+15 myeloid cells) in the first and the second transplantation. One experiment, n>5 per condition.

Figure S4 related to Figure 4: (A) Example of gate to distinguish cell divisions from day 2 to day 7 (B) Quantification of the % of HSC depending on cell division after 3 and 7 days of culture. 3 independent experiments. One-way ANOVA test, ** p<0.01

Figure S5 related to Figure 5: (A) VEGA expression in uncultured D0 HSC vs culture untreated D2 HSC, microarray signal (Left, n=3) and qPCR experiment (Right, n=1). (B) Validation of the microarray data by qPCR. (C) CD34⁺ cells were first pre-treated with Tempol (blue), VEGFa (orange) or remained untreated (white) and then cultured several day as indicated. Curves representing the number of total cells (Left) and histograms indicating % of HSC normalized to % of HSC in untreated condition after 2 and 5 days of culture (Right) (D) ROS levels were measured at D0 and D2 of culture for each condition, here is represented the fold increased MFI of CellRox Deep RED probe at D2 compared to D0. 3 independents experiments using CD34⁺ cells from 3 independent CB samples (E) sorted-HSC were first pre-treated with Tempol (blue), Brivanib (red), Brivanib and Tempol (hatched red bar) or remained untreated (white) then cultured for 2 days before being seeded in CFU-C medium Primary CFU-C (Left) and Secondary CFU-C (Right) were quantified 10-12 days later. 2 independent experiments.