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Experimental tumor volume data

In Table 5, we present the temporal dynamics of the mean and standard

deviation of the six different treatment schedules presented in Table 1. The

data presented here are the results from [12].
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Table 5: Temporal dynamics of the mean and standard deviation of the six different treatment

schedules presented in Table 1.

Time
Group

1 2 3 4 5 6

7 51.79 ± 20.21 33.85 ± 17.56 48.81 ± 19.29 46.07 ± 20.44 30.99 ± 17.75 44.41 ± 13.04

14 66.19 ± 27.35 60.32 ± 15.22 69.04 ± 35.96 51.23 ± 27.33 34.64 ± 25.40 60.14 ± 16.15

23 100.84 ± 48.55 73.69 ± 26.72 126.05 ± 42.18 94.35 ± 72.08 61.91 ± 33.89 135.85 ± 62.74

29 205.29 ± 85.58 148.26 ± 54.16 241.48 ± 111.85 284.59 ± 129.68 134.99 ± 65.11 207.22 ± 91.55

34 334.88 ± 106.08 241.46 ± 90.64 393.01 ± 100.61 495.51 ± 209.63 257.32 ± 123.48 303.39 ± 117.38

35 327.55 ± 98.02 253.25 ± 91.93 424.15 ± 99.11 493.29 ± 208.72 238.00 ± 109.67 297.32 ± 134.83

36 372.13 ± 124.06 291.30 ± 137.01 387.86 ± 65.67 495.42 ± 224.98 227.29 ± 135.08 268.52 ± 118.93

37 363.14 ± 170.50 287.25 ± 127.89 392.03 ± 80.06 527.12 ± 232.59 207.24 ± 129.63 241.84 ± 85.53

40 400.36 ± 119.16 308.06 ± 160.04 326.11 ± 96.22 538.87 ± 204.49 163.55 ± 84.69 140.07 ± 43.16

42 450.91 ± 221.79 369.38 ± 175.77 337.42 ± 134.63 602.62 ± 207.90 148.91 ± 78.78 131.73 ± 40.31

44 465.51 ± 179.67 395.23 ± 182.30 309.13 ± 142.16 551.35 ± 189.70 141.74 ± 79.90 98.76 ± 41.35

47 483.39 ± 182.00 497.79 ± 236.40 308.30 ± 156.32 651.08 ± 220.07 137.84 ± 71.89 81.14 ± 40.78

49 589.67 ± 288.69 574.88 ± 257.73 331.70 ± 181.88 791.66 ± 303.31 122.13 ± 88.98 71.51 ± 41.88

51 689.38 ± 221.18 599.99 ± 311.14 318.42 ± 188.58 821.88 ± 288.89 91.34 ± 78.96 70.43 ± 63.39

54 749.47 ± 346.45 655.05 ± 314.64 330.26 ± 189.56 893.61 ± 340.50 59.33 ± 78.71 18.53 ± 37.05

56 875.36 ± 463.20 846.18 ± 387.37 324.89 ± 182.62 1315.13 ± 185.20 69.93 ± 90.59 14.69 ± 29.37

61 1194.46 ± 664.49 1165.65 ± 462.57 362.43 ± 264.85 1681.84 ± 251.88 47.73 ± 58.84 17.41 ± 34.83

63 1218.30 ± 577.52 1043.77 ± 782.41 385.02 ± 273.41 1917.22 ± 299.99 70.08 ± 65.56 16.75 ± 33.49

68 1640.11 ± 788.76 1238.73 ± 860.63 382.49 ± 373.35 2571.60 ± 414.17 71.78 ± 61.66 15.52 ± 31.05

Optimal control derivation

According to the OPAL framework, model 3CLM0 is the simplest (i.e., the

lowest number of parameters) that can be used to represent the experimental

scenarios. Model 3CLM0 is given as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dϕt
dt

= (r − λtψt − λtdψdψt)ϕt (1 −
ϕt
K

) ,

dψd

dt
= −τdψd + ud(t),

dψt

dt
= −τtψt + ut(t) exp(−λdiψd),

(18)

where ϕt(t), ψd(t), ψt(t) and are the state variables, and ud(t) and ut(t) are

the control functions. To obtain the minimal tumor size, while delivering the
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same dose of doxorubicin and trastuzumab, the optimal control problem is to

minimize the following objective function

J = ∫
tf

ti

ϕ
2
t (t) dt, (19)

where ti and tf are the first and last day that the treatment can be delivered,

respectively. This optimization problem is subject to the following doxorubicin

and trastuzumab restrictions:

∫
tf

ti

ud(t) dt = ūd, (20)

∫
tf

ti

ut(t) dt = ūt, (21)

where ūd and ūt are the experimental total dose of doxorubicin and trastuzumab,

respectively. The controls ud(t) and ut(t) are bounded by 0 ≤ ud(t) ≤ γd and

0 ≤ ud(t) ≤ γt for all t ∈ [ti, tf ], where γd and γt are the doxorubicin and

trastuzumab maximum daily dose, respectively. We normalized these restric-

tions by the daily experimental dose such as ud = 2, ut = 2, γd = 1, and γt = 1.

The necessary conditions for the optimal control problem are given by Pon-

tryagin maximum principle (please, see [68, 69] for details about optimal control

theory). These conditions come from the Hamiltonian of the problem. Before

applying Pontryagin maximum principle, we need to introduce two new state

variables, zd(t) and zt(t), such as

zd(t) = ∫
tf

ti

ud(t) dt, (22)

zt(t) = ∫
tf

ti

ut(t) dt, (23)

which leads to

dzd(t)
dt

= ud(t), with zd(ti) = 0, and zd(tf) = ūd, (24)

dzt(t)
dt

= ut(t), with zt(ti) = 0, and zt(tf) = ūt. (25)
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Introducing the multipliers λ for each equation in our model (Eqs. (18),

(24), and (25)) and for the objective function (Eq. (19)), the Hamiltonian is

given as

H = ϕ
2
t + λ1 (r − λtψt − λtdψdψt)ϕt (1 −

ϕt
K

) + λ2 (−τdψd + ud)

+ λ3 (−τtψt + ut exp(−λdiψd)) + λ4ud + λ5ut (26)

Computing the derivative of the negative Hamiltonian in relation to every state

variable we have the following adjoint equations:

dλ1
dt

= −
∂H

∂ϕt
= −2ϕt − λ1 (r − λtψt − λtdψdψt) (1 −

2ϕt
K

) , (27)

dλ2
dt

= −
∂H

∂ψd
= λ1λtdψtϕt (1 −

ϕt
K

) + λ2τd + λ3λdiut exp(−λdiψd), (28)

dλ3
dt

= −
∂H

∂ψt
= λ1 (λt + λtdψd)ϕt (1 −

ϕt
K

) + λ3τt, (29)

dλ4
dt

= −
∂H

∂zd
= 0, (30)

dλ5
dt

= −
∂H

∂zt
= 0. (31)

Since the Hamiltonian function H is linear on the controls, the optimality con-

ditions are

ud(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if λ2 + λ4 < 0,

γd, otherwise ,
(32)

ut(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if λ3 exp(−λdiψd) + λ5,

γt, otherwise .
(33)

We suggest the book of [68] for examples of numerical algorithms to solve the

optimal control problem.
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Leave-one-out calibration

In the leave-one-out approach, we calibrated the parameters from model

3CLM0 using the data from five scenarios, excluding one treatment protocol

(prediction scenario) from the calibration process. We then check the model’s

ability to forecast the tumor response in scenarios not included in the calibration

data. Figure 6 displays the prediction of the temporal evolution of the tumor in

each scenario (when this scenario was not included in the calibration data). We

compute the mean absolute percent error (MAPE) for each treatment protocol,

the CCC, and the PCC. When compared to the results presented in Figure ??

(where every scenario was included in the calibration), we can see that scenarios

show in panel (a), untreated tumor, panel (b), tumor treated with doxorubicin,

and panel (e), tumor treated with two doses of trastuzumab followed by one dose

of doxorubicin, the difference on the CCC was less than 0.1. This small difference

demonstrated the ability of the model to predict these scenarios, with a CCC

above 0.8, when one of them was not part of the calibration process. However,

the model was not able to predict the scenarios presented in panel (c), tumor

treated with trastuzumab, panel (d), tumor treated with doxorubicin followed by

trastuzumab, and panel (f), tumor treated with trastuzumab plus doxorubicin.

Thus, indicating the necessity to have these scenarios in our experimental design.
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Figure 6: Temporal evolution of the experimental data (black) and the prediction of the

3CLM0 (magenta) when the following scenarios are excluded from the calibration process:

(a) control, (b) doxorubicin, (c) trastuzumab, (d) doxorubicin 24 hours prior to trastuzumab,

(e) trastuzumab 24 hours prior to doxorubicin, and (f) trastuzumab + doxorubicin. The

vertical lines indicate the drug (doxorubicin in blue, trastuzumab in red, and doxorubicin +

trastuzumab in green), and the day which it was delivered. The model was able to predict

scenarios (a), (b), and (e) with less than 0.1 difference on the CCC when compared to the

results from the calibration using the six scenarios.

Model plausibility vs Bayesian information criterion

The Occam Plausibility Algorithm version used in [33, 34, 35, 36] computes

the model plausibility instead of the Bayesian information criterion. To compute

the model plausibility, one most compute the evidence of every model (Eq. (8)),

and apply a second Bayesian rule such as:

ρj = π(Mj∣D,M) =
π(D∣Mj ,M)π(Mj∣M)

π(D∣M) , (34)

where the plausibility of model Mj , ρj , is the posterior of this second Bayesian

rule. In Eq. (34) the prior, π(Mj∣M), when there is no preferable model, is

assumed to be one over the number of models, the likelihood, π(D∣Mj ,M), is
the evidence of that model obtained when computing the first Bayesian rule via

Eq. (8), and the evidence in Eq (34), π(D∣M), is the sum of the evidence of
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every model obtained via Eq. (8). As the evidence in Eq. (8) is the integral

of the likelihood times the prior over the parameter space, as you increase the

number of parameters, the computational time to compute it increases. Due

to this fact, most numerical libraries approximate the posterior distribution as

being the likelihood times the prior, as the evidence is a normalization constant.

In [35, 36], we computed the evidence using a parallel, adaptive, multilevel

Markov Chain Monte Carlo (MCMC) algorithm [70] implemented in the C++

library QUESO (Quantification of Uncertainty for Estimation, Simulation, and

Optimization) [71]. However, here our goal was to developed a framework that:

1) could be coupled with an optimization library; 2) is friendly to new users;

and 3) would facilitate model reusability. Thus, we decide to implement the

framework in python, using the MCMC method available in the package PyMC3

[57] (which does not compute the evidence), and make the jupyter notebook code

available to other researchers. However, we also implemented the same models

using the library QUESO to compare how different the models selected would

be. Table 6 is equivalent to Table 4, but using the plausibility instead of the

Bayesian Information Criterion weight. The model with the highest plausibility

is the best one. The model selected in each Occam category (i.e., models with

the same number of parameters) when using the plausibility in the selection

step is the same as the ones obtained using the Bayesian information criterion.
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Table 6: Plausibility of models with the same number of parameters, and mean absolute

percent error (MAPE) of the models with the highest plausibility. The model with the lowest

error is the three-constituent logistic model without the death rate by doxorubicin (3CLM0).

Model Parameters Plausibility MAPE (%)

3CEM0 6 n/a 28.51 ± 17.24

3CLM0 7 1.00 25.29 ± 15.37

3CEM 7 0.00

3CLM 8 1.00 29.06 ± 21.78

4CEM1 8 0.00

4CEM2 8 0.00

4CEM3 8 0.00

4CLM1 9 0.00

4CLM2 9 0.00

4CLM3 9 1.00 28.47 ± 21.42
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