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1. Supporting experimental details and discussion 99 

 100 

The effect of PEGDA concentration and presence of microbial culture on printability 101 

of BSA-PEGDA conjugates were determined by characterization of rheological properties of 102 

resin formulations (Supplementary Table 3). In all formulations, resin viscosities were found 103 

≤ 1 Pa. s. After the addition of microbial culture media, resins were stirred for 30 min at 200 104 

rpm to maintain homogenous distribution of microorganism in the resin. It has been observed 105 

that when the 30 wt% BSA, 10 wt% PEGDA formulation was stirred for 30 min at 200 rpm 106 

the viscosity was changed 1.0 Pa. s (Entry 3, Supplementary Table 3) to 0.35 Pa. s (Entry 4, 107 

Supplementary Table 3). Therefore, it may be said that the viscosity reduction of Entry 5, Entry 108 

6, Entry 7, and Entry 8 was mainly caused by stirring step rather than the addition of 109 

microorganism or culture media to the resin formulation. According to the findings, Entry 1 110 

and Entry 2 required longer time, 47.5 s and 20 s, respectively, to reach the crossover point 111 

compared to other formulations (Supplementary Table 3). This longer time is not desirable to 112 

obtain 3D printed constructs in SLA 3D printers (Supplementary Fig. 1a). When PEGDA 113 

concentration was increased from 3 wt% to 10 wt%, the resin reached the crossover point at 114 

least 10 times faster (Entry 3, Supplementary Table 3). Presence of more PEGDA units in 30 115 

wt% BSA, 10 wt% PEGDA formulation led to the reaction of the acrylate groups with each 116 

other more easily. Therefore, this formulation provided faster photocuring rate and shorter time 117 

to achieve crossover point (Entry 3, Supplementary Table 3). 3D printed objects were 118 

successfully obtained with formulation 30 wt% BSA, 10 wt% PEGDA (Supplementary Fig. 119 

1b). In ELM formulations (Entry 6, and Entry 8, Supplementary Table 3,) both stirring step (30 120 

min at 200 rpm) and presence of microbial culture could affect the time to reach crossover 121 

point and rate of photocuring (Entry 6 and Entry 8, Supplementary Table 3). On the other hand, 122 

these changes did not affect the SLA. 123 

To understand the effect of bioactive compounds produced from metabolically 124 

engineered cells on the BSA-PEGDA network, possible interactions between bioactive 125 

components and BSA were evaluated with UV-absorbance measurements. Supplementary Fig. 126 

5 represents the interaction of L-DOPA to BSA. The samples prepared as follows, BSA (0.5 127 

mg/ml in DI water), L-DOPA (0.5 mg/ml in DI water), BSA+L-DOPA (0.5 mg/ml for each 128 

component in DI water). Supplementary Fig. 6 shows the interaction of naringenin (NGN) to 129 

BSA. The samples prepared as follows, BSA (0.5 mg/ml in DI water). 100 mg/ml NGN stock 130 

solution was prepared in ethanol and diluted in water to 0.5 mg/ml. BSA+NGN sample 131 

contained 0.5 mg/ml for each component and prepared in DI water.  132 

We observed that in-situ betaxanthins (BXN) production prevented microbial 133 

degradation, as both BSA-PEGDA and ELM-SC-BXN showed a similar trend in terms of mass 134 

change over 45 d. Two possible mechanisms of actions can be responsible to this resistance: 135 

binding of BXN to degradation enzymes such as proteinase or binding of BXN to BSA.[1-3] We 136 

selected ProK as a model enzyme to examine the binding of BXN to microbial enzymes. The 137 

binding of BXN to BSA and ProK was confirmed by UV-vis absorbance and CD-spectroscopy. 138 

The absorbance of both proteins, as well as BXN, was changed after they interact with each 139 

other Supplementary Fig. 7 and Supplementary Fig. 8. In addition, the binding of BXN to BSA 140 

resulted in the loss of the α-helical structure of BSA. The characteristic spectrum of α-helix 141 

motif in the negative region at between 222 to 208 nm disappeared in the presence of BXN ( 142 

Fig. 5b). Similarly, conformational changes were observed in ProK after the binding of BXN 143 

to this protein (Supplementary Fig. 0). The weak negative peak between 230 to 220 nm belongs 144 

to -turns[2] and the -sheet motif in ProK[2] was identified (Supplementary Fig 12). In the 145 

presence of BXN, the characteristic CD spectra of ProK were completely changed. BXN alter 146 

the structural motifs, both -sheets, and -turns, of ProK.  147 
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Supplementary Table 1. Name of 3D printed ELM samples, the microorganisms that each 160 

sample contains, and the bioactive compound that is produced from each microorganism.   161 

Sample Microorganisms Bioactive compound 

ELM-SC-WT Wild type S. cerevisiae - 

ELM-SC-WT Wild type E. coli - 

ELM-SC-BXN S. cerevisiae BY4741 Betaxanthin 

ELM-EC-LDOPA E. colie BL0430D L-DOPA 

ELM-EC-NGN E. coli BL21(DE3) Naringenin 

 162 
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Supplementary Table 2. Description of strains and plasmids 164 

Strain/plasmid Description Source 

E. coli strains 

BL21(DE3) E. coli str. B F– ompT gal dcm lon hsdSB(rB
–mB

–) λ 

(DE3 [lacI lacUV5- T7p07 ind1 sam7 nin5]) 

[malB+]K-12(λS)  

New England 

Biolabs  

E. coli 

BL21(DE3) Mut-

17  

[BL21(DE3)]: pETM-PUTRtrxA-TAL-PUTRtalB-

4CL, pCDM-PssrA-UTRrpsT-CHS-PUTRglpD-CHI, 

pACM-PfdeR-mut-FdeR-PfdeA-mut-acpH-asacpT-

asacpS, and pRSM-PcspA-mut-PadR-acs-ACC 

(KanR, AmpR, SpcR, CmR) 

Reference 4 
 

eBL0430D  [E. coli BL21(DE3)] ΔtyrR , pET28-pYIBN-

aroG(fbr)-B30rbs-tyrA(fbr)-tRRNC; KanR , 

 pCDF-pLPP-B30rbs-hpaB-hpaC-T7t; KanR; SpcR 

Reference 5  

S. cerevisiae strains 

BY4741 MATα SUC2 gal2 mal2 mel flo1 flo8-1 hap1 ho bio1 

bio6 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

American 

Type Culture 

Collection 

(ATCC) 

BY01 S. Cerevisiae BY4741: ura3:pCCW12-

MjDOD(T261N; ACC to AAC)-pTDH3-CYP76AD5 

-tPRM9 (URA3integration with Leu2 marker) 

This Study 

Plasmids 

pET28-pYIBN-

aroG(fbr)-

B30rbs-tyrA(fbr)-

tRRNC. KanR 

For L-DOPA production Reference 5  

pCDF-pLPP-

B30rbshpaB-

hpaC-T7t. SpcR 

For L-DOPA production  Reference 5  

pETM-

PUTRtrxA-TAL-

PUTRtalB-4CL 

For Naringenin production Reference 4 

 
 

pCDM-PssrA-

UTRrpsT-CHS-

PUTRglpD-CHI 

For Naringenin production Reference 4  

pACM-PfdeR-

mut-FdeR-PfdeA-

mut-acpH-

asacpT-asacpS 

For Naringenin production Reference 4  

pRSM-PcspA-

mut-PadR-acs-

ACC 

For Naringenin production Reference 4  

 165 

  166 



Supplementary Table 3. Primers and sequences 167 

Primer Sequence (5’-3’) 

P1 GTGGTTTCAGGGTCCATAAAGCgagctcCTGAACTGGCCGATAATTGC 

P2 gatgcgtaaggagaaaataccgcatcaggTAGGTTGTCTGTGCCCATAC 

P3 CCTGATGCGGTATTTTCTCCTTACG 

P4 GAGCTCGCTTTATGGACCCTG 

P5 GAAGGATAAGTTTTGACCATCAAAG 

P6 GGTGAAGTTGTAGGTAGAGTAACC 
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Supplementary Table 4. Effect of PEGDA concentration and microbial culture media on 170 

rheological properties and SLA 3D printability of BSA-PEGDA conjugates. 171 

* Entry 4 was stirred for 30 min before measurement similar to Entry 5-8. These samples 172 

were stirred after the addition of microbial culture and/or culture media to provide the 173 

homogenous distribution of added compounds to resin formulation. 174 
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 207 

Entry BSA wt. 

% 
PEGDA 

wt. % 
Microbial 

Culture Media 
Viscosity 

(Pa s) 
G’ rate change 

(Pa/s) 
Crossover 

point (s) 
Printability 

1 30 3 - 0.17 0.003 47.5 No 

2 30 5 - 0.40 70.45 20.0 No 

3 30 10 - 1.00 2884.1 4.0 Yes 

4* 30 10 - 0.35 - - Yes        

5 30 10 LB 0.27 3535.07 10.0 Yes 

6 30 10 E. coli 0.13 1238.82 13.5 Yes 

7 30 10 YPD 0.35 1088.56 8.0 Yes 

8 30 10 S. cerevisiae 0.30 1620.55 12.0 Yes 



 208 

Supplementary Table 5. Degree of swelling of SLA 3D printed samples. (Samples were 209 

prepared in triplicate, (± s.d).  210 

Sample Degree of Swelling (q) 

BSA-PEGDA in LB media 1.56 ± 0.05 

ELM-EC-LDOPA 1.34 ± 0.01 

ELM-EC-WT 1.56 ± 0.07 

BSA-PEGDA+L-DOPA 1.33 ± 0.17 

ELM-EC-NGN 2.70 ± 0.4 

BSA-PEGDA+NGN 1.10 ± 0.01 

BSA-PEGDA in YPD media 1.63 ± 0.03 

ELM-SC-BXN 1.61 ± 0.07 

ELM-SC-WT 1.89 ± 0.01 
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Supplementary Figure 1. Optical images of SLA 3D printed constructs. (a) Formulation 

of 30 wt% BSA with 5 wt% PEGDA (Entry 2, Table S2), unsuccessful printing, 

delamination was observed. (b) Formulation of 30 wt% BSA with 10 wt% PEGDA (Entry 

3, Table S2), printing was successfully completed.  
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Supplementary Figure 2. Optical images of ELM samples after culturing. (a) ELM-

SC-BXN cultured in YPD for 1 d, (b) ELM-SC-BXN in YPD, cultured for 1 d, (c) 

ELM-EC-LDOPA in vitamin C supplemented LB media cultured for 1 d, (d) ELM-

EC-LDOPA in LB media cultured for 1 d.  
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Supplementary Figure 3. Distribution of cells in SLA 3D printed ELM construct. (a), 

Schematic illustration of ELM-SC-BXN sample and location of each section that was imaged 

in the scanning electron microscope (SEM), (b) SEM images of S. cerevisiae in ELM-SC-

BXN, images were taken at 500x magnification.   
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Supplementary Figure 4. Morphology of cells in 3D printed ELMs. (a) SEM images 

of E. coli in 3D printed ELM-EC-LDOPA constructs at different magnifications; 

1000X magnification (scale bar 20 micron), 5000X (scale bar 5 micron), 20000X 

(scale bar 1 micron), (b) SEM images of S. cerevisiae in 3D printed ELM-SC-BXN 

constructs at different magnifications; 1500X magnification (scale bar 20 micron), 

2500X (scale bar 10 micron), 7000X (scale bar 2 micron). 
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Supplementary Figure 5. Interaction of L-DOPA to BSA. UV-absorption spectra of 

BSA, L-DOPA, sum of individual spectra of BSA and L-DOPA, and spectra of BSA+L-

DOPA mixture. 
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Supplementary Figure 6. Interaction of naringenin (NGN) to BSA. UV-absorption 

spectra of BSA, NGN, sum of individual spectra of BSA and NGN, and spectra of 

BSA+NGN mixture. 
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Supplementary Figure 7. Interaction of betaxanthins (BXN) to BSA. UV-absorption spectra of 

BSA, BXN, sum of individual spectra of BSA and BXN, and spectra of BSA+BXN mixture. 
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Supplementary Figure 8. Interaction of betaxanthins (BXN) to Proteinase K (ProK). UV-absorption 

spectra of ProK, BXN, sum of individual spectra of ProK and BXN, and spectra of ProK+BXN 

mixture. 

 



 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

Supplementary Figure 9. Effect of betaxanthins (BXN) on the secondary structure of Proteinase K 

(ProK). CD spectra of ProK and CD spectra of ProK with the presence of BXN (ProK+BXN). 
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Supplementary Figure 10. Degradation of BSA-PEGDA, ELM-SC-WT and ELM-SC-BXN samples 

over 30 d. 
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Supplementary Figure 11. The long-term viability of cells in ELM-SC-BXN (samples collected on 

day 40).  

 


