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Communication

Photooxidation of Plastids Inhibits Transcription of Nuclear
Encoded Genes in Rye (Secale cereale)1
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ABSTRACI

Rye (Secale cereale cv Halo) seedlings treated with the herbicide
Norflurazon SAN 9789 showed a reduced concentration of mRNA for
the small subunit of ribulose-1,5-bisphosphate carboxylase and for the
light-harvesting chlorophyll a/b protein. The inhibition of mRNA accu-
mulation by Norflurazon occurred only in the presence of high light
intensities and only after a period of days. The primary effect was an
inhibition of the transcription rate that occurred within 1 day after
exposure of the seedlings to light.

In higher plants, numerous genes are regulated by light (21,
32). Chloroplast development is light-dependent and requires
interactions of the plastid and the nuclear genome (18). Many
chloroplast proteins are nuclear-encoded; they are synthesized in
the cytoplasm, transported into the chloroplast and, finally,
processed into the mature polypeptide (3, 5-7, 10-12). The
treatment of seedlings with NF,2 a herbicide that blocks carote-
noid synthesis, leads to the photooxidation of Chl under the
influence of intense WL (1, 17). Chlorosis-inducing herbicides
applied to seedlings in concentrations from 10 to 100 uM resulted
in nearly 100% reduction of the carotenoid and 95 to 99% of
the Chl contents in rye and wheat (15, 16), barley (22, 29), maize
(24), mustard (17), pearl millet (19), and tomato (9). In the
cotyledons of such seedlings, normal chloroplasts are no longer
visible, and the thylakoid system of these chloroplasts is reduced
to rudimentary membrane structures (17, 30). Typical chloro-
plast proteins such as LHCP and ribulose- 1,5-bisphosphate car-
boxylase are no longer detectable, and almost no mRNA ofthese
proteins is found (4, 23, 25, 27, 28). In contrast, cytosolic proteins
such as phenylalanine ammonia-lyase, chalcone synthase, NAD-
dependent malate dehydrogenase, and phytochrome (9, 30), as
well as cytosolic mRNAs such as for phosphoenolpyruvate car-
boxylase (25), are not adversely affected by photodestruction of
plastids. Plastidic factors might be necessary for light-dependent
accumulation of SSU and LHCP mRNA (2, 27, 28). For LHCP
mRNA it has been shown that transcription is inhibited in NF-
treated barley seedlings grown under WL (2).

In this study a transcriptional inhibition similar to that found
in barley was observed for LHCP mRNA in NF-treated rye
seedlings. Furthermore, a reduction in the transcription rate of

' Supported by the Deutsche Forschungsgemeinschaft (SFB 184).
2Abbreviations: LHCP, light-harvesting Chl a/b protein; NF, Norflur-

azon SAN 9789; SSU, small subunit of ribulose-1,5-bisphosphate car-
boxylase; WL, white light.

light-regulated SSU mRNA was also found. It appears very likely
that in rye the transcription of light-regulated, nuclear-encoded
mRNAs whose translation products are located in chloroplasts
is dependent on intact plastids.

MATERIALS AND METHODS

Plant Material. Seeds of rye (Secale cereale cv Halo) (BayWa
AG, Argelsried, FRG) were grown in absolute darkness at 27C
for 5 d in the absence or presence of 100 ,LM NF (Sandoz, Basel,
Switzerland). Seedlings were then transferred to continuous WL
(30 W/m2). At different time intervals, plants were harvested for
nuclei isolation or immediately frozen in liquid N2 and stored at
-70C until use for RNA extraction.
RNA Extraction and Blotting. RNA was isolated and electro-

phoresed on agarose-formaldehyde gels as previously described
(13). Non-stained RNA was transferred to Gene Screen (NEN,
Dreieich, FRG) using the electroblot procedure. Hybridization
was performed as described in the NEN manual with labeled
riboprobes ofanti-sense RNA for SSU and LHCP genes (13, 14).
In Vitro Transcription. Nuclei were isolated as described ( 13),

with a yield of about 7 x 106/g fresh weight. Transcription was
performed in a total volume of 300 uL with 1 to 2 x I07 nuclei
in the presence of 0.5 mm each ATP, GTP, and CTP, 50 mM
Tris (pH 7.8), 33 mm KCI, 5 mM MgCl2, 5 mM MnCl2, 2.5 mM
DTE, 12.5% glycerol (v/v), 100 ,Ci [a32P]UTP (400 Ci/mmol;
Amersham-Buchler, Braunschweig, FRG), and 15 units of ribo-
nuclease inhibitor (Sigma, Munchen, FRG). Transcription was
stopped by the addition of 30 ,L 100 mM Tris containing 50 mM
EDTA and 10% SDS, 15 yL tRNA from yeast (2 mg/ml), and 3
uL UTP (120 mM). RNA isolation and slot blot hybridization
with plasmids containing cDNA inserts of SSU (pFPB135) and
LHCP (pFPB302) sequences have been previously described (13,
14). Briefly, after phenol/chloroform extraction, the RNA was
ethanol precipitated, washed with 5% TCA, then washed with
ethanol and, finally dried. The dried RNA was dissolved in 2 x
SSC containing 50% formamide, 1% sarcosyl, 0.2% SDS, 5 x
Denhardt solution, 2 mm EDTA, and 100 sg/mL salmon sperm
DNA and hybridized with plasmid DNA (1 ,tg/slot), which was
previously applied onto GeneScreen. The washed filters were
autoradiographed and the autoradiograms were scanned using
an electrophoresis scanner (Camag, Muttenz, Switzerland).
Pigment Analysis. Carotenoid extraction and assay was per-

formed according to Davies (8) and Chl content was measured
as described by Hippkins and Baker (20).

RESULTS
Nontreated and NF-treated rye seedlings grown in the dark for

5 d contained very low amounts, near the detection limit, of
SSU and LHCP mRNA. Exposure to strong WL resulted in
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increased concentrations of both mRNA species in untreated
seedlings (Fig. 1). After longer exposure to WL, the concentra-
tions ofthese mRNAs declined in untreated seedlings. NF-treated
seedlings also showed an increase in the respective mRNA quan-
tities as compared to the dark-grown controls (Fig. 1); however,
after 2 d this mRNA amount declined and after 7 d WL the
levels of SSU and LHCP mRNA in herbicide-treated seedlings
corresponded to that in the dark controls (Fig. 1, lanes 1, 8). To
determine the extent of plastidic damage by NF, the relative
amount of plastid rRNA was estimated by ethidium bromide
staining of RNA agarose-formaldehyde gels. Discrete plastid
rRNA bands were not visible (Fig. 2); similar observations were
made in NF-treated barley plastids (29). The absence of intact
plastid rRNA indicated that chloroplasts have been destroyed
(24, 30). Since a Chl-containing green tip was always present in
whole NF-treated seedlings (Table I), the carotenoid-free hypo-
cotyl segment was examined separately from the Chl-containing
leaf tip in these experiments. After 2 d WL, SSU and LHCP
mRNA were present in the bleached hypocotyl segment; how-
ever, these amounts were lower than in the untreated controls
(Fig. 3A, lane 2). The green tips of both treated and untreated

Table I. Chl and Carotenoid Content in NF-Treated Seedlings
After 2 d of WL (30 W/m2) seedlings were cut into an uppermost

green part (1 cm) and a bleached hypocotyl part.

Chl Carotenoid
Tissue
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FIG. 1. Northern blotting of total RNA (5 MAg) of rye seedlings. Hy-
bridization was carried out with labeled SSU 'anti-sense' RNA (500,000
cpm) or LHCP 'anti-sense' RNA (500,000 cpm), respectively. Seedlings
were grown in the absence or presence of NF for 5 d in darkness and
then transferred to continuous WL (30 W/m2) for different times. 1 =

dark control; 2 = 6 h; 3 = 12 h; 4 = 24 h; 5 = 36 h; 6 = 48 h; 7 = 77 h;
8 = 7 d.
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FIG. 2. Ethidium bromide-stained agarose gels of totalIRNA (5 Mg)of

the hypocotyl part of rye seedlings, grown in the absence (-) or presence

(+) of NF under continuous WL (30 W/m') for 6 d. Cytosol rRNA are

25S and 18S and plastid rRNA are 16S and 13S. rRNA 13S is a

breakdown fragment of plastid 23S rRNA, due to the isolation procedure.

FIG. 3. Northern blotting of total RNA (10 Mg) of rye seedlings.
Hybridization was carried out with labeled SSU 'anti-sense' RNA
(500,000 cpm) or LHCP 'anti-sense' RNA (500,000 cpm), respectively.
Seedlings were grown in the absence or presence ofNF for 4 d in darkness
and then transferred under continuous WL (30 W/m2) for 2 d (A) or 6
d (B), respectively. 1 = green leaf tip (uppermost 1 cm section); 2 =

lower hypocotyl part (virtually carotenoid-free in NF treated seedlings);
3 = whole seedling.

seedlings, on the other hand, contained approximately equal
amounts of the two mRNA species (Fig. 3A, lane 1). After 6 d
WL, the SSU and LHCP mRNA concentrations were strongly
reduced in the hypocotyl of NF-treated seedlings compared to
the control seedlings (Fig. 3B, lane 2). In contrast, the mRNA
level of SSU and LHCP were the same in the green tips of both
groups of seedlings (compare lane 1 of Fig. 3B). In addition, the
NF-treated whole seedling now also showed a marked reduction
of these mRNA species (Fig. 3B, lane 3).

Since a quantitation ofRNA with labeled gene probes reflects
only the steady state concentration of the specific messages, no
decision regarding a transcriptional or post-transcriptional regu-
lation of gene expression is possible. In order to discriminate
between these two possibilities, the rate of transcription for SSU
mRNA and LHCP mRNA was analyzed with nuclei that had
been isolated from NF-treated and untreated seedlings. In etio-
lated rye seedlings, LHCP mRNA as well as SSU mRNA are
under transcriptional control (Fig. 4, lanes 1 and 2) (13, 14). The
transcription rate for SSU and LHCP mRNA in nuclei isolated
from NF-treated seedlings grown under strong WL was reduced
(Fig. 4, lanes 3 and 5). Densitometric scanning ofthe correspond-
ing slot blots revealed for the SSU mRNA a 1.5-fold reduction
and for the LHCP mRNA a 2.5-fold reduction after 1 d WL.
After 3 d WL, the LHCP mRNA transcription rate in NF-treated
seedlings was below the detection limit, and that for the SSU
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FIG. 4. Autoradiogram of slot blots of plasmid DNAs, complemen-
tary to SSU and LHCP mRNA, probed with equal amounts of in vitro
labeled RNA transcripts of nuclei isolated from rye seedlings. Seedlings
were grown for 5 d in darkness (1), for 4 d in darkness and 1 d under
WL (30 W/m2) (2, 3), or for 4 d in darkness and 3 d under WL (4, 5).
Seedlings were grown in the absence (2, 4) or presence (3, 5) of 100 ,AM
NF.

mRNA was reduced by a factor of 4.0 compared to the untreated
seedlings (Fig. 4, lanes 4 and 5).

DISCUSSION

Treatment of plant seedlings with NF, under the influence of
strong WL, resulted in damage to chloroplasts and a decrease of
nuclear mRNAs whose translation products were located in the
chloroplast (2, 4, 23, 25, 27, 28, 30). In NF-treated rye seedlings,
a reduction ofLHCP and SSU mRNA concentrations was found
after 3 d ofWL (Fig. 1, lane 7), and after 7 d ofWL these mRNA
concentrations corresponded to the dark controls (Fig. 1, lanes 1

and 8). This is in agreement with the effect of NF on LHCP
mRNA levels in maize, barley, and mustard (2, 23, 27). Despite
NF treatment, a concentration increase was measured for both
mRNA species during the first 3 d of WL; this increase was,
however, less marked than in the untreated seedlings (Figs. 1 and
3). This increase in mRNA levels was probably due to the
presence of intact chloroplasts in the green leaf tip, since the
levels of LHCP and SSU mRNA in the virtually carotenoid-free
hypocotyl segments were lower than in the corresponding tissue
of control seedlings (Fig. 3A, lane 2). In NF-treated barley, the
LHCP mRNA concentration decreased after 12 h WL to the
dark level (2); in maize, however, an elevated level as compared
to the dark control was still measured after 8 d (23). In mustard,
translatable LHCP and SSU mRNA were no longer found after
60 h WL (27). In mustard (31), maize (26, 33), and rye (13, 14),
light affected the rate of increase and the amount to which these
two mRNA species accumulated when compared to dark con-
trols. Photooxidation in all these plants resulted in a decrease of
the two mRNA levels; however, this decrease occurred with
different kinetics, indicating a differential sensitivity to photoox-
idative damage or different mRNA stabilities in these plants.

In run-off studies with isolated nuclei, the transcription rate in
NF-treated rye seedlings decreased after 1 d WL for both mRNA
species studied and corresponded to the dark value after 3 d WL
(Fig. 4, lanes 3 and 5). This clearly demonstrates an influence of
plastids on nuclear gene transcription, rather than on mRNA
stability. A similar effect was found for LHCP mRNA in barley
(2). In contrast to rye, no effect ofNF on SSU mRNA was found
in barley. This could be accounted for by SSU mRNA not being
light-regulated within 12 h after illumination in barley, whereas
in rye a light and phytochrome control has been shown after just
30 min of illumination (2, 13, 14). As in maize and mustard,
intact plastids were necessary in rye seedlings for the occurrence
of these positively light-regulated nuclear mRNAs, whose trans-
lational products are located in chloroplasts (4, 25, 27, 28).
Furthermore, as previously shown for LHCP mRNA in barley
(2), the presented data indicated that under continuous white
light intact plastids were necessary for the transcription of SSU
and LHCP genes in rye.
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