YMTHE, Volume 31

Supplemental Information

Chemerin triggers migration

of a CD8 T cell subset with natural

killer cell functions

Romain Ballet, Melissa LaJevic, Noelle Huskey-Mullin, Rachel Roach, Kevin Brulois, Ying Huang, Muhammad A. Saeed, Ha X. Dang, Russell K. Pachynski, Elizabeth Wilson, Eugene C. Butcher, and Brian A. Zabel

Supplemental Information

Supplemental Figures

Figure S1. scRNA-seq and flow cytometry analyses reveal CD4 subsets expressing CMKLR1. (A)

Analysis of publicly available single cell gene expression data from human CD4+ T cells (Liver¹⁰; Lung¹¹).

Boxplots showing expression of *PDCD1*, *KLRD1*, and *CMKLR1* in naïve (C06_CD4-CCR7), exhausted (C10_CD4-CXCL13), and effector memory or effector memory RA (EM/EMRA, C11_CD4-GNLY) CD4+ T cells from human blood, tumor tissue or normal tissue of liver and lung cancer patients at single cell resolution. **(B-D)** Flow cytometry of CMKLR1 immunostaining in subsets of **(B)** CD4 effector memory (EM, CD45RO+ CCR7-), effector memory RA (EMRA, CD45RO- CCR7-), central memory (CM, CD45RO+ CCR7+), or naïve (N, CD45RO- CCR7+) **(C-D)** CD28- CD27- (28- 27-), CD28- CD27+ (28- 27+), CD28+ CD27- (28+ 27-), or CD28+ CD27+ (28- 27-) CD4 EM **(C)** or EMRA **(D)**. (Left) Shown are representative gating strategy and histograms for CMKLR1 in each CD4 subsets. Representative dot plots from n= 2 experiments with 5 donors total.

Figure S2. RNAseq analysis of human CD8 EMRA T cells. (**A**) Gene set enrichment analysis (EnrichR) was performed to identify GO terms enriched in chemerin-binding CD8 EMRA subset relative to chemerin non-binders. Significantly enriched GO term-defined functional properties are listed (adjusted P-value <0.05). (**B**) Heat map of selected genes encoding transcription factors and markers of T cell immune checkpoints/exhaustion. Gene expression counts were rlog-transformed for visualization and are colored from blue (low expression) to red (high expression).

Figure S3. CMKLR1-expressing CD8 EM display phenotypic and cytotoxic features of NK cells (A) Flow cytometry of CD16, CD57, CD156, CD94, and CD56 immunostaining in subsets of NK cells, CD8 T naïve and EM divided into CD27/CD28 subsets as shown in Figure 1. (Left) For each subset, the percentage of positive cells for each marker is shown. Shown are pooled data (means \pm s.e.m.) from n= 3 experiments with 6-9 donors total. (Right) Representative histogram overlays are shown. **(B-C)** Cell surface expression of CD107a **(B)** and intracellular IFN-g **(C)** in cell-sorted populations of CD8 EM T cells positive (CMKLR1+) or negative (CMKLR1-) for CMKLR1 cocultured with K562 cells at an effector to target ratio (E:T) of 2:1. Shown are pooled data (means \pm s.e.m.) from n = 3 experiments. For each

experiment, the percentage of CD107a or IFN-g positive cells is set to 100 for the CMKLR1- group, and the data for the CMKLR1+ group is shown as a percentage of the CMKLR1- control group. Groups were compared by two-way ANOVA with Dunnett's multiple comparisons test **(A)** or two-tailed Student's ttest **(B-C).** *P \leq 0.05; **P \leq 0.01; ***P \leq 0.001; ****P \leq 0.0001, ns: not significant.

Chem155^{AF647}
Chem157^{AF647}
1 nM

- CXCL12

🛔] ns

6

Figure S4. Active chemerin triggers chemotaxis and alpha 4 integrin activation in CMKLR1+ CD8 EM T cells. Migration of CD8 subsets (A) or CD8 EMRA CD28- or CD28+ subsets (B) in response to human CXCL12. Migration of CD8 EM CD28- or CD28+ subsets in response to human active chemerin (Chem157^{AF647} or dead chemerin (Chem155^{AF647}) (C), or human CXCL12 (D). For (A-D), shown are pooled data from two experiments (means \pm s.e.m.) with n=3 donors in total. For each donor and subset, results are shown as a percentage of the absolute migrating cell number in absence of CXCL12 or chemerin in the bottom chamber. Groups were compared by one-way ANOVA with Sídák's multiple comparisons test. Flow cytometry analyses of LDV-FITC binding to CD28- (E-F) or CD28+(G-H) EM upon stimulation with human Chem155^{AF647}, Chem157^{AF647}, or CXCL12. For each sample, the median fluorescence intensity (MFI) of the LDV-FITC staining was calculated per ten seconds bins, and data expressed as a percentage of the maximal MFI recorded upon Manganese stimulation, taken as a positive control. Shown are pooled data (means \pm s.e.m.) from four experiments with n=6 donors in total. Groups were compared by two-way ANOVA with Šídák's or Tukey's multiple comparisons test. *** $P \le 0.001$; **** $P \le 0.0001$, ns: not significant.